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Abstract: AbstractsTaxol is one of the most effective anticancer drugs in the world that is widely
used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic
pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway
has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes in-
volved in the taxol pathway have been well characterized, including a novel taxane-10β-hydroxylase
(T10βOH) and a newly putative β-phenylalanyl-CoA ligase (PCL). Moreover, the source and for-
mation of the taxane core and the details of the downstream synthetic pathway have been basically
depicted, while the modification of the core taxane skeleton has not been fully reported, mainly
concerning the developments from diol intermediates to 2-debenzoyltaxane. The acylation reaction
mediated by specialized Taxus BAHD family acyltransferases (ACTs) is recognized as one of the most
important steps in the modification of core taxane skeleton that contribute to the increase of taxol
yield. Recently, the influence of acylation on the functional and structural diversity of taxanes has
also been continuously revealed. This review summarizes the latest research advances of the taxol
biosynthetic pathway and systematically discusses the acylation reactions supported by Taxus ACTs.
The underlying mechanism could improve the understanding of taxol biosynthesis, and provide a
theoretical basis for the mass production of taxol.

Keywords: taxol; biosynthetic pathway; acylation reaction; acyltransferase; latest research progress

1. Introduction

Taxol, a kind of tetracyclic diterpenoid secondary metabolite originally extracted from
the bark of Taxus brevifolia [1], is recognized as one of the most effective antitumor drugs
around the world. Taxol could inhibit the division of tumor cells in the G2/M phase of the
cell cycle by promoting the formation and stability of microtubules, where it was approved
by the U.S. Food and Drug Administration (FDA) for the treatment of several cancers, such
as breast, lung and ovarian cancer [2]. Recently, the annual sales of taxol and its related
products have exceeded $1 billion [3]. However, the content of taxol in the Taxus species is
extremely low (the highest content in the bark is only about 0.06%), and the slow growth
rate, lack of resources and the poor competitiveness and regeneration ability in the Taxus
population, resulting in the insufficient yield of natural harvest to meet the growing market
demand [4].

Several alternative methods have been explored to increase taxol production. The
chemical total synthesis of taxol was reported by Holton et al. [5] and Nicolaou et al. [6]
simultaneously with different synthetic routes, but neither of them was commercially viable
due to the complex routes, uncontrollable reaction conditions and the low yields [3,7]. The
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semisynthetic method involves extracting relatively high levels of taxol precursor baccatin
III or 10-deacetyl baccatin III (10-DAB) from the reproducible twigs and leaves of cultivated
Taxus species, and then converting to taxol by chemical synthesis. This is so far the main
approach for industrial production of taxol, but it relies heavily on Taxus resources in
essence [8,9]. Moreover, the extractions of taxol from Taxus cell culture and taxol-producing
endophytic fungi are also expected, because they are controllable and environmentally
sustainable, but no major breakthrough has been achieved at this stage [10–12].

Recently, a series of encouraging progress has been made in the production of taxol
through heterologous synthesis. Ajikumar et al. [13] reported a multivariate modular
pathway engineering, which increased the yield of taxadiene, the first committed taxol
intermediate, to approximately 1 g/L in an engineered Escherichia coli strain; the yield of
taxadien-5α-ol was also up to 58 ± 3 mg/L. Stable coculture of Saccharomyces cerevisiae and
E. coli in the same bioreactor was reported by Zhou et al. [14], who designed specialized
environments or compartments for optimal function, and produced 33 mg/L oxygenated
taxanes, including a monoacetylated dioxygenated taxane, the taxadien-5a-acetate-10β-ol.
Moreover, several plant hosts have also been exploited to produce taxol intermediates,
such as Arabidopsis thaliana [15], tomato [16] and Physcomitrella patens [17]. However, the
accumulation of taxadiene could cause the growth retardation and decreased levels of
photosynthetic pigment in transgenic plants. Fortunately, Li et al. [18] used a chloroplas-
tic compartmentalized metabolic engineering strategy, which produced taxadiene and
taxadiene-5α-ol at 56.6 µg/g FW and 1.3 µg/g FW, respectively, in a high biomass plant
Nicotiana benthamiana. This study highlights the potential of tobacco as an alternative
platform for taxol production. Production of taxol and its precursors in heterologous hosts
is more sustainable than extraction from tissues of Taxus trees or chemical synthesis. How-
ever, it still cannot circumvent the bottlenecks in the taxol biosynthetic pathway. Further
developments from diol intermediates to functional taxanes are rarely reported.

The acylation is one of the most important steps involved in modifying the core taxane
skeleton, which is mainly catalyzed by a large group of Taxus-specific acyl-coenzyme A
(acylCoA)-dependent acyltransferases (ACTs) [19]. Interestingly, some of the acylation
reactions supported by Taxus ACTs were considered the rate-limiting steps in the taxol
pathway [20,21]. These corresponding Taxus ACT genes have also been important tar-
gets for the purpose of overexpression in relevant producing organisms to increase taxol
yields [22]. Since the taxol is a highly acylated compound, the less strict acyl or acetyl
transfers also contribute to large numbers of taxoid side chain variants possessing distinct
biological roles, and theoretically lead to considerable diversion of taxol pathway flux.
Therefore, until the entire pathway is characterized, the rate for each step determined, and
the regulatory networks understood, any manipulations would be hampered by the lack of
knowledge [23].

There is no doubt that the synthesis and yield of taxol will continue to depend on
the improvement of biological methods for the foreseeable future. In view of this, the
review summarizes the recent advances of taxol biosynthetic pathway, and discusses the
acylation reactions mediated by Taxus ACTs. The new concepts and perspectives are
helpful to develop reliable solutions and provide theoretical basis for producing taxol in
large quantities.

2. Taxol Biosynthetic Pathway

The taxol biosynthetic pathway has been basically elucidated, which requires esti-
mated 20 enzymatic steps from the common diterpenoid precursor geranylgeranyl diphos-
phate (GGPP) to taxol itself. As shown in Figure 1, this complex process can be divided into
three parts: the source and formation of taxane core, the modification of the core taxane
skeleton and the synthesis of β-phenylalanyl-CoA side chain and the assembly of taxol.
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Figure 1. Putative taxol biosynthetic pathway. (A) The source and formation of the taxane core. (B) The modification of 
the core taxane skeleton. (C) The synthesis of the β-phenylalanyl-CoA side chain and the assembly of taxol. The solid 
arrows show the identified steps. The dotted arrows show the unknown steps. Steps marked by red color represent the 
uncharacterized enzymatic reactions. Dotted frame represents intermediate steps of the pathway where several enzymes 
and the order of their reactions are unknown. 

2.1. The Source and Formation of Taxane Core 
The taxane core, namely taxadiene, derived from the cyclization of the GGPP cata-

lyzed by taxadiene synthase (TS) [24]. In detail, GGPP is converted from three molecules 
of isopentenyl diphosphate (IPP) and one of dimethylallyl diphosphate (DMAPP) cata-
lyzed by geranylgeranyl diphosphate synthase (GGPPS) [25]. IPP is considered as a com-
mon intermediate in the cytosolic mevalonic acid (MVA) pathway and the plastid 2-C-
methyl-D-erythritol-4-phosphate (MEP) pathway. The conversion of IPP to DMAPP is cat-
alyzed by a plastid IPP isomerase (IDI) [26]. Recently, the dispute over the source of IPP 

Figure 1. Putative taxol biosynthetic pathway. (A) The source and formation of the taxane core. (B) The modification of
the core taxane skeleton. (C) The synthesis of the β-phenylalanyl-CoA side chain and the assembly of taxol. The solid
arrows show the identified steps. The dotted arrows show the unknown steps. Steps marked by red color represent the
uncharacterized enzymatic reactions. Dotted frame represents intermediate steps of the pathway where several enzymes
and the order of their reactions are unknown.

2.1. The Source and Formation of Taxane Core

The taxane core, namely taxadiene, derived from the cyclization of the GGPP catalyzed
by taxadiene synthase (TS) [24]. In detail, GGPP is converted from three molecules of
isopentenyl diphosphate (IPP) and one of dimethylallyl diphosphate (DMAPP) catalyzed
by geranylgeranyl diphosphate synthase (GGPPS) [25]. IPP is considered as a common
intermediate in the cytosolic mevalonic acid (MVA) pathway and the plastid 2-C-methyl-
D-erythritol-4-phosphate (MEP) pathway. The conversion of IPP to DMAPP is catalyzed
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by a plastid IPP isomerase (IDI) [26]. Recently, the dispute over the source of IPP and
DMAPP for the taxol pathway has made substantial progress. Despite evidence suggested
that fosmidomycin and mevinolin could inhibit the plastid and cytosolic IPP pathways of
T. baccata cells respectively [27,28], their selective blocking function in a TS-transgenic N.
benthamiana plant suggesting that the MEP pathway supplies the bulk of the isoprenoid
precursors for the taxane skeleton [18]. Moreover, the coexpression model of taxol synthesis
related genes and upstream genes in T. cuspidate suggested a local IPP bias from the
plastids [29] (Figure 1A).

2.2. The Modification of the Core Taxane Skeleton

After the synthesis of taxane skeleton, multiple tailoring enzymes are involved in mod-
ifying the skeleton at the C-1, C-2, C-4, C-5, C-7, C-9, C-10 and C-13 positions (Figure 1B).
Firstly, a class II cytochrome P450 (CYP450) hydroxylase called taxadiene-5α- hydroxy-
lase (T5αOH) [30] converts taxadiene into taxadien-5α-ol via hydroxylation at the C-5
position and migration of the carbon double bond. Then, the taxol pathway has been
reported in two speculations: the taxadien-5α-ol is instigated by either a hydroxylation
at the C-13 position to form taxadien-5α,13α-diol [31], or an acylation at C-5 position to
form taxadien-5α-yl acetate [32], which could be further hydroxylated at C-10 position to
form taxadien-5α-acetoxy-10β-ol [33]. Recently, a hydroxylation at the C-14 position leads
to the formation of taxadien-5α-acetoxy-10β,14β-diol, but the intact structure of taxane
core showed no modification at C-14 position, which implied a putative bifurcation leads
to the biosynthesis of other taxoids [34]. The hydroxylation of the taxane skeleton has
proven to be mediated by the CYP450 family. However, these CYP450s are selective for
acetylated and polyoxygenated taxadiene substrates. Trials to produce triols from the diol
intermediates using the corresponding CYP450s are currently unsuccessful.

The order of the catalytic steps after diol intermediates is not yet clear, including
a series of hydroxylation at C-1, C-2, C-4, C-7 and C-9 positions, a further oxidation
at C-9 position, and a formation of oxetane ring at C-4 and C-5 positions. Since the
oxygenation of C-9 is believed to be an early event, while the oxygenation of C-1 happens
later, Holton et al. [35] reported the order of hydroxylation should be C5, C10, C13, C9, C7,
C2 and C1. However, according to the ratio of oxygenated taxoids found in Taxus cells,
Vongpaseuth and Roberts [36] considered the order of C5, C10, C13, C2, C9, C7 and C1
may be more accurate. A series of transformations produce the hypothetical precursor
2-debenzoyltaxane, which could be further catalyzed by the enzyme taxane-2α-O-benzoyl
transferase (TBT) to produce 10-DAB [37], one of the most important precursors for the
chemical semisynthesis of taxol. Then a 10-deacetylbaccatin III-10-O-acetyl transferase
(DBAT) could catalyze 10-DAB at the C-10 position to generate baccatin III, which is
considered to be the last reaction in the formation of taxane core [38].

2.3. The Synthesis of β-Phenylalanyl-CoA Side Chain and the Assembly of Taxol

The β-phenylalanyl-CoA side chain is derived from α-phenylalanine, which is first
converted into β-phenylalanine by phenylalanine aminomutase (PAM) [39]. Subsequently,
a β-phenylalanyl-CoA ligase (PCL) [40] is predicted to convert β-phenylalanine into β-
phenylalanyl-CoA. This intermediate is then attached to the C13 hydroxyl group of the
taxane core by the enzyme baccatin III: 3-amino, 13-phenylpropanoyltransferase (BAPT) to
produce β-phenylalanyl baccatin III [41], which is then hydroxylated at the C2’ position of
the side chain, and terminal N-benzoylation at the C3’ position by the enzyme N-benzoyl
transferase (DBTNBT) to produce the final product taxol [42] (Figure 1C).

2.4. Key Enzymes Involved in the Taxol Pathway

So far, sixteen enzymes involved in the taxol pathway have been well characterized
(Table 1), including a novel C10 hydroxylase [30] and a putative PCL. The enzymes respon-
sible for C-1 hydroxylation, C-2′ hydroxylation and C-9 oxidation are currently unknown,
but are predicted to belong to the CYP450 family. Moreover, neither the proposed C4β, C20-
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epoxidase (EPOX) nor the oxomutase (OXM) responsible for the formation of oxetane ring
has been identified, but potential gene candidates have been discovered through the analy-
sis of jasmonate-induced T. baccata cultures [40]. Interestingly, both taxane-2α-hydroxylase
(T2αOH) and taxane-7β-hydroxylase (T7βOH) could use taxusin as a substrate to form
2α-hydroxytaxusin and 7β-hydroxytaxusin, respectively. Then, these intermediates can
reciprocally convert the corresponding hydroxyl products of the respective reactions to the
common 2α,7β-dihydroxytaxusin [43,44] (Figure 2A). This suggested that the taxol biosyn-
thetic pathway may not be a single linear, but a complex network of anastomosing routes
that potentially have several common nodes. Moreover, the enzyme taxane-9α-hydroxylase
(T9αOH) was characterized by Zhang et al. [45] in Ginkgo biloba cells, which can convert
Sinenxan A (SIA) to form 9α-hydroxy-SIA (Figure 2B). This further implied that the process
in the production of 2-debenzoyltaxane may involve transient acylation/deacylation for
the purposes of trafficking and organellar targeting, or flux regulation. Such processes also
greatly increase the number of biosynthetic steps and pathway complexity [46].

Table 1. Characterized key enzymes in the taxol pathway.

Enzyme Abbreviation Size (kDa) Probable Localization GenBank Number

Geranylgeranyl diphosphate synthase GGPPS 42 Plastids AF081514
Taxadiene synthase TS 98 Plastids AY364469

Taxadiene-5α-hydroxylase T5αOH 56 Endoplasmic reticulum AY289209
Taxane-10β-hydroxylase T10βOH 56 Endoplasmic reticulum AF318211

Taxane-10β-hydroxylase a T10βOH 55 Endoplasmic reticulum AY563635
Taxadiene-13α-hydroxylase T13αOH 54 Endoplasmic reticulum AY056019

Taxane-2α-hydroxylase T2αOH 55 Endoplasmic reticulum AY518383
Taxane-9α-hydroxylase T9αOH 55 Endoplasmic reticulum KF773141
Taxane-7β-hydroxylase T7βOH 56 Endoplasmic reticulum AY307951

Taxadiene-5α-ol-O-acetyl transferase TAT 49 Cytosol AF190130
Taxane-2α-O-benzoyl transferase TBT 50 Cytosol AF297618

10-deacetylbaccatin III-10-O acetyl transferase DBAT 49 Cytosol AF193765
Baccatin III: 3-amino, 13-phenylpropanoyltransferase BAPT 50 Cytosol AY082804

N-benzoyl transferase DBTNBT 49 Cytosol AF466397
Phenylalanine aminomutase PAM 76 Cytosol AY582743
β-phenylalanyl-CoA ligase b PCL 59 Cytosol KM593667

a A second taxane-10β-hydroxylase has also been found; b The PCL listed here is a putative candidate isolated from T. baccata cultures.

Recently, the differential mechanism of taxol synthesis among different tissues of
Taxus mairei [47] and T. cuspidate [29], different cultivars within T. yunnanensis [48,49], and
different Taxus species (T. media, T. mairei and T. cuspidata) [50,51] was revealed respectively
by transcriptome sequencing technology, which showed huge correlations between the
taxol contents and the expression levels of taxol pathway genes. Multiomics analysis
further confirmed the regulation of these corresponding enzymes on taxol and its deriva-
tives [52–54]. Moreover, different elicitors were used to treat Taxus cells. Among them,
exogenous methyl jasmonate (MeJA) elicitation significantly increased the expression levels
of several taxol pathway genes, such as the Taxus ACT genes [55,56]. The promoter se-
quences of related genes contained cis-elements involved in different hormones and abiotic
stress responses, which may explain why these factors could stimulate taxane biosynthesis
in Taxus species [57]. Additionally, the process was believed to be mainly mediated by
a series of specific transcription factors (TF), such as MYB, bHLH, ERF, AP2 and MYC.
So far, the divergence roles of two ERF TFs, TcERF12 and TcERF15 act as a repressor and
activator of the TS gene [58], the negative regulation of TcMYC2a on genes encoding for TS,
TAT, DBTNBT, T5αOH and T13αOH either directly or via ERF regulators depending on
JA signaling transduction [59], and the positive regulation of TcWRKY1 on its target gene
DBAT [60], have been gradually revealed. Moreover, the related regulatory mechanisms
of a phloem-specific TmMYB3 [61], and the comprehensive analysis of the R2R3-MYB TF
family [62] have also been successively reported in recent years, which promoted further
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understanding on taxol biosynthesis. Therefore, the increase of production of taxol could
be realized by adjusting the catalytic enzymes at the key sites of the core taxane skeleton,
which is also the focus and difficulty in the current synthetic biology of taxol.
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3. Acylation Reactions Mediated by Taxus ACTs

The acylation reactions mediated by Taxus ACTs for natural taxane metabolism are
common and biochemically significant, which substantially contribute to the structural
and functional diversity of taxanes. These supported ACTs mainly belong to a super-
family named BAHD, which is according to the first letter of each of the first four bio-
chemically characterized enzymes of this family, including benzylalcohol O-acetyl trans-
ferase (BEAT), anthocyanin O-hydroxycinnamoyl transferase (AHCT), anthranilate N-
hydroxycinnamoyl/benzoyl transferase (HCBT) and deacetylvindoline 4-O-acetyl trans-
ferase (DAT). The BAHD family is a large group of plant-specific proteins for acylation of
secondary metabolites. These proteins mainly utilize acyl-CoA as the substrate to produce
small volatile esters, modified anthocyanins and constitutive defense compounds and
phytoalexins [63].



Molecules 2021, 26, 2855 7 of 13

3.1. Characterized Taxus ACTs Involved in the Taxol Pathway

At least five ACTs have been characterized to be involved in taxol pathway, including
TAT, TBT, DBAT, BAPT and DBTNBT, which are grouped in the second subgroup within
clade V of BAHD family [64]. These enzymes differ in substrate specificities for both acyl
donors and acceptors, and they utilize acetyl-CoA, benzoyl-CoA or phenylalanoyl- CoA
for O- and N-acylation of various taxanes.

3.1.1. Taxadiene-5α-ol-O-acetyl Transferase (TAT)

The enzyme TAT catalyzes the first acylation step of taxol pathway, which converts
taxadien-5α-ol to taxadien-5α-yl acetate. This reaction is a slow step for the downstream
hydroxylation reactions, but not a rate-limiting step in the synthesis of core taxane skeleton.
Clone TAT bears an open-reading frame (ORF) of 1317 nucleotides and encodes a deduced
protein of 439 amino acids with a calculated molecular weight of 49,079. Expression of this
clone in E. coli JM109 cells yielded the functional enzyme, which possesses the HXXXDG
motif associated with catalytic activity. The deduced amino acid sequence of TAT has
higher similarity (64–67%) and identity (50–56%) with other ACTs involved in different
pathways of secondary metabolism in plants, but shows rather little overall homology.
Moreover, the amino acid sequence information of TAT is slightly different between T.
canadensis and T. cuspidata (91% identity), which may attribute to the species (subspecies)
differences or to allelic variations [32].

3.1.2. Taxane-2α-O-benzoyl Transferase (TBT)

The enzyme TBT appears to function in a late-stage acylation step of the taxol biosyn-
thetic pathway, which catalyzes the conversion of 2-debenzoyl-7,13-diacetyl baccatin III to
7,13-diacetyl baccatin III (Figure 3). The TBT cDNA contains an ORF of 1320 nucleotides
and encodes a protein of 440 amino acids with a calculated molecular weight of 50,089.
Expression of this clone in E. coli JM109 cells afforded a functional enzyme, which possesses
the HXXXDG motif associated with catalytic activity. TBT has a closer relationship with
TAT and DBAT (similarity 74% and 70%, respectively; identity 68% and 64%, respectively).
Moreover, the similarity and identity with other ACTs also reached 64–65% and 50–56%,
respectively [37] More database retrieval with PSI-Blast from other enzymes families of
Taxus showed that such higher similarities are universal [65].
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3.1.3. 10-Deacetylbaccatin III-10-O-acetyl Transferase (DBAT)

The enzyme DBAT, catalyzing the acetylation of the C10 hydroxyl group of 10-DAB to
yield baccatin III, is considered a key rate-limiting enzyme of the taxol pathway [21]. The
DBAT cDNA contains an ORF of 1320 nucleotides, which is exactly the same length as TBT,
and encodes a protein of 440 amino acids with a calculated molecular weight of 49,052. A
functional enzyme has been expressed in E. coli JM109 cells, which possesses the HXXXDG
motif associated with catalytic activity. The amino acid sequence similarity and identity
between DBAT and TAT are 80% and 64%, while those with other ACTs are 65–67% and
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56–57%, respectively [38]. Moreover, the active sites of DBAT and residues that recognize
acyl donors and taxane substrates have recently been revealed, which would be elucidated
in detail in a later section.

3.1.4. Baccatin III: 3-amino, 3-phenylpropanoyl Transferase (BAPT)

The enzyme BAPT catalyzes the selective 13-O-acylation of baccatin III with β-
phenylalanoyl CoA as the acyl donor to form N-debenzoyl-2′-deoxytaxol (β-phenylalanyl
baccatin III). The BAPT cDNA contains 1335 nucleotides and encodes a protein of 445 amino
acids with calculated molecular weight of 50,546. The functional enzyme has been ex-
pressed in E. coli BL21(DE3) cells. The amino acid level similarity between BAPT and the
four other ACTs involved in taxol pathway ranged from 71% to 74%. However, The BAPT
sequence is the only one of the five that contains a G163XXXDA168 motif instead of the
typical HXXXDG, or less frequent HXXXDA motif. The Gly-163 for His-163 substitution in
BAPT would likely disrupt a suggested catalytic function involved in acyl group transfer.
Interestingly, the free β-amine of the CoA ester cosubstrate in this instance could, through
hydrogen bonding, function as a surrogate intramolecular general acid/base in place of
the normal histidine at this position [41].

3.1.5. N-benzoyl Transferase (DBTNBT)

The enzyme DBTNBT catalyzes the stereoselective coupling of the surrogate substrate
N-debenzoyl-(3′RS)-2′-deoxytaxol with benzoyl-CoA to form predominantly one 3′-epimer
of 2′-deoxytaxol (Figure 4). The properties of this enzyme indicated that it could transfer
a benzoyl group to the amino group of side chain of N-debenzoyl-taxol, which is consid-
ered the last step of taxol pathway, because the DBTNBT has a substrate preference for
N-debenzoyl-taxol rather than N-debenzoyl-2′-deoxy-taxol based upon tests with both
substrates [66]. The DBTNBT cDNA contains an ORF of 1323 nucleotides encoding a
protein of 440 amino acids with a calculated molecular weight of 49,040. Expression of
this clone in E. coli BL21(DE3) cells yielded the functional enzyme, which possesses the
conserved HXXXDG motif. The deduced amino acid sequence of DBTNBT has a closer
relationship with TBT (60% identity, 69% similarity) [42].
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3.2. Other Taxus ACT Genes Involved in the Taxane Metabolism

It is possible that the acylation steps may help to contributing to the formation of
functional and structural diversity of taxanes and the regulation of taxol pathway flux,
which is supported by the many acyltransferase genes responsible for numerous struc-
tural side chain modifications found among taxoid variants. Croteau et al. [23] reported
that except for the five defined ACTs of the taxol pathway, 10 other distinct ACTs were
predicted to be responsible for the production of numerous taxoid side chain structural
and regiochemical variants. Chau et al. [67] cloned a new TAT gene (TAX19) that was
capable of acetylating taxadien-5α-ol with activity comparable to that of the original, but
exhibited different regiospecificities, preferentially acetylating the positions at C5 and C13.
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Two other taxoid-O-acetyl transferase genes (TAX9 and TAX14) were isolated by Hampel
et al. [68], which appear to act exclusively on partially acetylated taxoid polyols to divert
the taxol pathway to side-route metabolites. The native N-debenzoyl-2′-deoxypaclitaxel:
N-benzoyltransferase (NDTBT), isolated from Taxus plants, transfers a benzoyl group
from the corresponding CoA thioester to the amino group of the β-phenylalanine side
chain of N-debenzoyl-2′-deoxypaclitaxel, which is purportedly on the taxol pathway [69].
Moreover, Kuang et al. [29] sequenced Taxus cuspidata transcriptomes with next generation
sequencing (NGS) and third generation sequencing (TGS) platforms and identified seven
BAHD ACT genes as potential lead candidates for the formation of the significant precursor
2-debenzoyltaxane based on phylogenetic and coexpression analysis. However, this re-
quires more investigation because the acylation of the poly-hydroxylated substrate is likely
to occur during the formation of a heptaol intermediate. These combined results indicated
that the acylation may control the synthesis and yield of taxol, theoretically by limiting
the accumulation of intermediates for taxol biosynthesis, and providing precursors for
other taxoid species likely also possessing distinct biological roles. Therefore, the mining
and analysis of specific Taxus ACTs for taxane acylation are the key to further improve the
understanding of network of taxane metabolism.

3.3. Formation of Taxane Core Mediated by Taxus ACTs

Kusano et al. [70] reported that the specialized Taxus BAHD proteins evolved from a
common lineage, and form a Taxus-specific clade, containing all five characterized ACTs
involved in the taxol pathway, and other Taxus proteins of unknown function. Similar
results have also been reported by Kuang et al. [29]. It has been strongly considered that
the neofunctionalization is induced by the acquisition of promiscuous enzymatic activity
allowed by the increase in the number of gene copies during plant evolution, which resulted
in the synthesis of new metabolites and establishment of biosynthetic pathways in the
plant lineage [71]. The clustering of all specialized Taxus ACTs suggested an important role
of the considerable expansion of Taxus BAHD family members for the taxane metabolism
and development of multiple specialized traits within the Taxus species. Walker et al. [32]
reported that the enzyme TAT had the DBAT activity, which was 13.2% that of DBAT. While
DBAT isolated from different Taxus species exhibited acetylation activity against 10-DAB
and 10-deacetyltaxol, a de-glycosylated derivative of 7-b-xylosyl-10-deacetyltaxol [72].
Moreover, NDTBT could transfer hexanoyl, acetyl and butyryl more rapidly than benzoyl
from the CoA donor to taxanes with isoserinoyl side chains, whereas N-debenzoyl-2’-
deoxytaxol was more rapidly converted to its N-benzoyl derivative than to its N-alkanoyl
or N-butenoyl congeners [69]. These combined results may represent the evolutionary
footprint of Taxus BAHD proteins that acquires new functionalities through the alterations
of substrate and product specificities, and resulting in the production of unique taxane
compounds. Since the rates of evolution for genes involved in plant specialized metabolism
are greater than that in primary metabolism, it also provided valuable information to
explain the formation of taxane core from the exon–intron sequence of the Taxus BAHD
family members [70].

3.4. Acylation Mechanism Mediated by Taxus ACTs

Recently, the crystal structure of vinorine synthase, a member of the BAHD family,
was obtained by Ma et al. [73], who made a major breakthrough in the understanding of
the structural and functional characteristics of ACTs within the plant kingdom. Li et al. [72]
generated a three-dimensional structure of DBAT and identified its active site using alanine
scanning, and designed a double DBAT mutant (DBAT G38R/F301V) with a catalytic
efficiency approximately six times higher than that of the DBAT wildtype (WT), which
improved an in vitro one-pot conversion of 7-b-xylosyl-10-deacetyltaxol to taxol. Moreover,
the activity essential residues of the enzyme DBAT, and the acylation mechanism from its
natural substrate 10-DAB and acetyl CoA to baccatin III were investigated by You et al. [74].
Among them, residues H162, D166 and R363, located in the catalytic pocket of the enzyme,
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were important for DBAT activity; and residues S31 and D34 from motif SXXD, D372 and
G376 from motif DFGWG were important for acylation. Based on the above results, You
et al. [75] redesigned the active sites of enzyme DBAT (H162A/R363H, D166H, R363H
and D166H/R363H), which displayed 3, 15, 26 and 60 times higher catalytic activities than
that of the WT, respectively, and these mutants could transfer acetyl group from unnatural
acetyl donor (e.g., vinyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate and
isoamyl acetate) to 10-DAB. These studies also provide a reference for the comprehensive
elucidation of taxane acylation mechanism and the synthesis and regulation of taxol in vitro
and in vivo.

4. Conclusions and Perspectives

Taxol is one of the most effective anticancer drugs, which could be used to treat a
variety of cancers. However, the industrial production of taxol still relies on chemical
synthesis after the precursor is extracted from the Taxus trees, which seriously affected the
survival and reproduction of Taxus species. Therefore, it is essential to explore alternative
methods and increase the taxol yield, which mainly depends on the understanding of the
taxol biosynthetic pathway and related enzymes in detail. So far, the basic framework
of taxol pathway has been elucidated, including the source and formation of the taxane
core and the process of the downstream synthetic pathway, and most of the enzymes
involved have been characterized. Only the order of hydroxylation reactions during the
modification of the core taxane skeleton and the substrate specificity of related enzymes
remain unclear. Moreover, this process may involve transient acylation/deacylation, which
greatly increase the pathway complexity. Recently, the characteristics of Taxus ACTs in
guiding the evolution of taxol pathway, promoting the diversity of taxane compounds
and regulating the synthesis and yield of taxol are continuously reported. Several ACTs
involved in taxane metabolism have also been identified, which contributed to the un-
derstanding of taxane formation. However, the knowledge on the establishment of the
entire taxane metabolic regulatory network associated with the acylation reactions is still
in its infancy. For Taxus ACTs, the typical conserved characteristics, differences in substrate
specificity and the different enzymatic forms and activities, reflect the versatility of the spe-
cialized Taxus BAHD family for taxol synthesis. Moreover, the utilization of heterologous
expression systems and the use of alternative substrates have greatly enriched the research
on the mining and analysis of Taxus BAHD family members. With the popularization of
the third-generation transcriptome sequencing technology and the growing maturity of
biochemical and molecular genetics studies, the understanding of Taxus BAHD family
contributing to specialized development of taxane metabolism will be further improved.
In our opinion, except for the identification of unknown enzymes on the taxol pathway, the
subsequent work should focus on the completion of taxane acylation mechanism mediated
by Taxus ACTs, especially the acylation process involved in the rate-limiting steps of taxol
pathway and the specific recognition modes of the taxane substrates. This will help to
further understand the taxol biosynthetic pathway and mass production of taxol in vivo
and in vitro, thereby alleviating the contradiction of taxol between the supply and demand.
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