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Abstract

APOBEC3G (A3G) is an intrinsic antiviral factor that inhibits HIV replication by deaminating 

cytidine residues to uridine. This causes G-to-A hypermutation in the opposite strand and results 

in viral inactivation. HIV counteracts A3G through the activity of viral infectivity factor (Vif), 

which promotes A3G degradation. We report that viral protein R (Vpr), which interacts with a 

uracil glycosylase, also counteracts A3G by reducing uridine incorporation. However, this process 

results in activation of the DNA damage response pathway and expression of NK cell activating 

ligands. Our results reveal that pathogen-induced cytidine deamination and the DNA damage 

response to viral-mediated repair of uridine incorporation enhance recognition of HIV-infected 

cells by NK cells.

Following exposure to HIV, the acute phase of infection is characterized by high viral loads, 

which are counteracted by a rapid immune response1. The first line of defense against viral 

infections is the innate immune system, which uses pattern recognition receptors to detect 

pathogen associated molecular patterns. This response leads to cytokine secretion, which 

increases the expression of innate immune factors such as APOBEC3G (A3G) that limit 

viral replication and spread2.

A3G is a member of a family of cytidine deaminases known as apolipoprotein B editing 

complex (APOBEC) proteins. In addition to inhibiting HIV, members of the APOBEC3 

family inhibit DNA viruses and potentially harmful retrotransposition3. The mechanism by 

which A3G inhibits HIV replication is twofold. A3G is packaged into HIV particles and 
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deaminates cytosine residues to uracils in exposed stretches of viral ssDNA during cDNA 

synthesis4. This editing leads to G to A hypermutation on the opposite strand, which 

inactivates the virus. A3G also inhibits the translocation of reverse transcriptase along 

template RNA, disrupting cDNA synthesis5. The importance of A3G in HIV disease 

pathogenesis is highlighted by the fact that genetic variation at the A3G locus predicts 

disease progression in HIV-infected people6.

The viral infectivity factor (Vif) from HIV-1 counteracts A3G by targeting it for 

proteasomal degradation, thus reducing the amount of A3G incorporated into virus 

particles7. However, the action of Vif is not absolute and hypermutated viral genomes have 

been isolated from individuals harboring full-length HIV-18. These sub-lethal mutations 

may influence HIV-1 evolution and promote the acquisition of drug resistance and immune 

evasion9.

HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs) decrease viremia during acute and 

chronic stages of the disease10 but do not prevent the development of AIDS in most infected 

people. The HIV-1 Nef protein may limit the effectiveness of CTLs by downmodulating 

surface major histocompatibility complex class I (MHC-I) expression11, 12. However, MHC-

I inhibits the lytic activity of natural killer (NK) cells and thus MHC-I downmodulation by 

Nef may increase susceptibility to NK cells.

Studies of NK cell inhibitory receptor allelic frequencies have provided strong evidence for 

a role of NK cells in limiting HIV infection. For instance, HIV-infected individuals 

expressing the NK cell inhibitory receptor KIR3DL1 and its cognate ligand, HLA-Bw4, 

progress to AIDS at a slower rate than individuals without this allelic combination13. This 

delayed progression likely results from a decrease in the activation threshold in the absence 

of inhibitory signals via HLA-Bw4, which is targeted by Nef in HIV infected individuals14. 

In addition, resistance to HIV-1 among sex workers is associated with a higher incidence of 

inhibitory KIR genes that lack their cognate inhibitory HLA ligand, which could lower the 

threshold for NK cell activation15.

NK cell activating signals also influence the progression of HIV disease. Infected 

individuals who encode the NK cell activating receptor KIR3DS1 and HLA-Bw4-80Ile 

progress more slowly to AIDS16, due to increased KIR3DS1 expression by HLA-Bw4+ 

individuals17. Ligands detected by the NKG2D NK cell activating receptor also stimulate 

NK cell recognition. These ligands represent a diverse family of proteins commonly 

upregulated in viral infection18 and can affect NK cell recognition in HIV infected people19. 

In sum, these studies provide strong evidence that NK cells influence HIV disease 

progression and that strategies aimed at enhancing NK cell activity may benefit HIV-

infected people.

Recent reports have linked NKG2D activating ligand expression to viral protein R (Vpr)20. 

Known cellular targets bound by Vpr are DNA repair proteins, including the uracil DNA 

glycosylases UNG2 and SMUG1 21, 22. However, the role of these DNA repair proteins in 

the normal functioning of Vpr and their potential role in HIV disease pathogenesis is 

unknown.
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Here, we examined the effect of A3G, Vif and Vpr on recognition of HIV-infected cells by 

NK cells. These studies uncover a role for A3G in alerting NK cells to the presence of viral 

pathogens and reveal the way HIV evades this response. Specifically, we provide evidence 

that pathogen-induced cytidine deamination and the DNA damage response to viral-

mediated repair of uridine incorporation act as intrinsic antiviral responses by upregulating 

NK cell activating ligand expression and increasing the sensitivity of HIV infected cells to 

NK cell lysis.

Results

HIV accessory proteins alter expression of NKG2D ligands

To better understand the factors that influence NK cell recognition of HIV-infected cells, we 

used a recombinant human NKG2D-Fc fusion protein to directly measure protein expression 

of NKG2D ligands on primary T cells. Infection with HIVs that encoded all of the viral 

accessory proteins (Nef, Vif, Vpu and Vpr, Fig. 1a) resulted in about 3-fold more NKG2D 

ligand expression in infected cells than in mock-infected cells (Fig. 1b). This result was 

consistently observed in nine independent donors with upregulation varying from about 1.5 

to 5 fold (Fig. 1c). However, expression was further increased when cells were infected with 

an HIV that lacked Vif expression (Fig. 1b). Data compiled from nine independent donors 

revealed a consistent and statistically significant increase in ligand expression that was on 

average 1.5 fold higher than wild type HIV infection (Fig. 1c). As previously reported, 

infection with an HIV lacking Nef also yielded higher ligand expression23 (Fig. 1b and 1c). 

Infection of T cells with a virus lacking expression of both Vif and Nef resulted in ligand 

expression similar to that achieved with each single mutant suggesting that Vif and Nef were 

acting on the same pathway.

In contrast, mutation of Vpr reduced NKG2D ligand expression to that observed in 

uninfected cells (approximately three-fold lower than wild type virus, Fig. 1b and 1c), 

confirming that Vpr expression was required for HIV-mediated NKG2D ligand 

upregulation20. Examination of ligand expression by cells infected with vif −vpr− and 

nef−vpr − double mutant HIVs revealed that all of the additional ligand upregulation 

observed in the absence of Vif and Nef depended on Vpr expression (Fig. 1d and 1e).

To confirm that the ligand phenotype we observed was due to alteration in Vif expression by 

vif − HIV, we demonstrated that this phenotype could be rescued by a lentiviral vector 

expressing wild type vif in the HIV-infected target cells (Fig. 1f, left panel). The expression 

level of Vif we achieved with lentiviral transduction was less than wild type (Fig. 1g, left 

panel) and this difference may explain the partial rescue. In contrast, expression of Vif in the 

virus producing cells at amounts similar to that achieved with wild type HIV (Fig. 1g, right 

panel) did not significantly alter ligand expression of the infected cells (Fig. 1f, right panel). 

These data confirm that Vif expression in HIV infected target cells reduces Vpr-dependent 

NKG2D ligand upregulation.
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A3G expression correlates with NKG2D ligand upregulation

Because Vif targets A3G for degradation, we asked whether the effects of Vif on NKG2D 

ligand expression were related to A3G. Amongst uninfected donors, the amount of baseline 

A3G protein were highly variable (Fig. 2a). In addition, we found that we could increase 

A3G expression by incubating the CD56−CD8− target cells with conditioned supernatant 

from CD8-depleted PBMC cultures (Fig. 2a) according to the time line shown in Fig. 2b. 

We also noted that the surface expression of NKG2D ligands increased with this treatment 

(Fig. 2c, left panels). Variation in the amounts of A3G protein across donors correlated 

strongly with NKG2D ligand expression (Fig. 2d).

In some donors, we also observed an increase in the amount of A3G in primary T cells 

treated with viruses that lacked Vif expression or that contained a mutant Vif (Vif Y44A) 

defective at binding and degrading A3G24 (Fig. 2e - 2g). The increase in A3G protein with 

Vif Y44A was less than vif − viruses in some donors, potentially indicating this mutation was 

incompletely defective. Compared with vif − viruses there was no further effect of mutating 

vpr on A3G levels (Fig. 2g).

Furthermore, intracellular staining and flow cytometric analysis of a separate set of five 

donors revealed that A3G expression was higher in vif − HIV infected (Gag+) cells 

compared to uninfected cells in the culture or mock infected cells (Fig. 2h, p = 0.04). These 

data support the conclusion that in the absence of Vif, HIV infection can induce A3G 

expression in the infected cell for the majority of donors.

Overall, we noted a strong positive correlation across multiple donors between A3G 

expression, as determined by immunoblotting, and the induction of NKG2D ligand 

expression for both infected and uninfected cells with a significant additional effect of 

infection (Fig. 2i, slope of regression lines significantly different, p < 0.0001). These data 

support the possibility that A3G expression determines the extent to which NKG2D ligands 

are upregulated.

We then examined NKG2D expression on cells infected with HIV expressing the Y44A 

mutant vif, which is unable to bind and degrade A3G. We found that cells infected with this 

mutant virus had similar NKG2D ligand protein as Vif-deficient virus in eight independent 

donors, indicating that Vif’s ability to limit NKG2D ligand expression is secondary to its 

ability to bind A3G (Fig. 2j).

A3G activates the DNA damage response pathway

Recent reports have indicated that activation of the DNA damage response pathway can lead 

to increases in NK cell activating ligand expression25. DNA damage results in 

phosphorylation of the cyclin-dependent kinases ATR and ATM and phosphorylation of the 

checkpoint kinases Chk1 or Chk2 which inhibit cell cycle progression and promote DNA 

repair. Distinct types of damage activate these pathways. For example, ATR is activated in 

response to exposed stretches of single stranded DNA whereas ATM is activated in response 

to double stranded DNA breaks (reviewed in 26).
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To examine whether the DNA damage response pathway could be linked to A3G expression 

and/or upregulation of NKG2D ligands in HIV-infected cells, we measured the effect of 

HIV infection on Chk1 and Chk2 phosphorylation. We observed that HIV infection 

increased Chk2 phosphorylation several fold (Fig. 3a and 3b). Moreover, we noted further 

increases in phosphorylated Chk2 in cells infected with vif − HIVs (Fig. 3a and 3b). HIV 

infection also influenced Chk1 phosphorylation in some donors, although to a lesser degree 

than Chk2 (Fig. 3a and 3c). Notably, Chk2 phosphorylation was affected by HIV in a 

manner that mirrored the induction of NKG2D ligands in that it was Vpr-dependent and 

attenuated by Vif expression (compare Fig. 3b to Fig. 2j).

We also observed that the magnitude of Chk2 phosphorylation correlated across multiple 

donors with A3G expression in cells infected with vif − HIVs and mock infected control 

cells, but the slope of the regression line was significantly higher in HIV-infected cells (Fig. 

3d, p < 0.02). In contrast, when A3G protein expression across multiple donors were 

compared to Chk1 phosphorylation there was no significant correlation and NL-PIvif− 

infected cells were indistinguishable from mock infected (Fig. 3e). While this suggests that 

Chk2 is more important than Chk1 for this response, higher background expression of Chk1 

than Chk2 may limit our ability to detect changes in the infected subpopulation.

Based on the fact that A3G protein expression correlated best with Chk2 phosphorylation, 

we predicted that A3G was activating an ATM pathway. Consistent with this prediction, we 

observed an increase in ATM phosphorylation in HIV-infected cells and we found that ATM 

phosphorylation was enhanced in NL-PIvif− infected cells (Fig. 3f). In addition, we found 

that the ATM inhibitor KU55933 27 significantly reduced NKG2D ligand upregulation by 

wild type and vif − HIVs when compared to solvent controls (Fig. 3g, p = 0.03 for NL-PI 

and p = 0.02 for vif −). Furthermore, cells treated with the ATM inhibitor (KU55933) no 

longer displayed a significant increase in NKG2D ligands in NL-PIvif − infected cells 

compared to wild type virus infected cells, further indicating that A3G-mediated NKG2D 

ligand upregulation is ATM-dependent (Fig. 3g). However, total NKG2D ligand expression 

remained 3-fold higher in HIV-infected cells treated with KU55933 than mock-infected cells 

(Fig. 3g). The partial inhibition by KU55933 is consistent with the fact that Vpr can also 

upregulate NKG2D ligands via the ATR pathway20.

To determine whether the observed increase in Chk2 phosphorylation in vif − HIV infected 

cells was also ATM-dependent, we measured Chk2 phosphorylation in KU55933 treated 

primary T cells infected with an HIV lacking Vif expression. As predicted, we found that 

KU55933 reduced the phosphorylation of Chk2 for vif − HIV infected primary T cells (Fig. 

3h). These data support a model in which A3G upregulates NKG2D ligands through an 

ATM pathway and in which Vif counteracts this upregulation by reducing A3G expression.

A3G sensitizes HIV infected T cells to NK cell lysis

To assess the relevance of NK cell ligand expression on NK cell recognition of HIV infected 

cells and to determine whether Vif might protect infected cells from NK cell lysis by 

degrading A3G, we used a previously described flow cytometric killing assay12. In this 

assay system, target cells pre-labeled with carboxyfluorescein succinimidyl ester (CFSE) 

were incubated with media or unlabeled, highly purified, autologous NK cells. Immediately 
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afterward, the cell mixture was stained with antibodies directed against the NK cell markers 

CD16 and CD56 as well as the vital dye 7AAD to discriminate live and dead cells. The 

number of 7AAD−CD16−CD56−CFSE+ cells was then scored as a function of a defined 

number of inert counting beads added just prior to flow cytometric analysis. When this assay 

system was tested using the highly sensitive K562 cells, which lack MHC-I and express high 

amounts of NK cell activating ligands, the addition of primary NK cells resulted in a 

dramatic reduction of living CFSE+ target cells (Supplementary Fig. 1).

To assess NK cell lysis of HIV-infected primary T lymphocytes, we infected cells with HIV 

expressing a GFP reporter inserted within the env open reading frame (ORF) to distinguish 

infected from uninfected cells (Fig. 4a). On day two of infection, autologous NK cells were 

co-incubated with the infected cells for four hours and then analyzed to detect NK cell lysis 

as described for Supplementary Fig. 1. We found that a high fraction of HIV-infected 

primary T lymphocytes survived treatment with autologous NK cells, whereas K562 cells 

were completely killed (Fig. 4b, left panels and quantified in Fig. 4c). At the highest effector 

to target cell ratio tested, 47% of the HIV-infected primary T lymphocytes survived, 

compared with <1% survival of K562 cells (Fig. 4c).

To determine whether inefficient killing resulted from deficient NK cell activation, we 

constructed an HIV genome that overexpressed the NKG2D activating ligand, ULBP1 (NL-

GIulbp1+) plus or minus a full-length nef open reading frame (Fig. 4a). Primary T cells 

infected with NL-GIulbp1+ expressed roughly 40-fold more ULBP1 on their surface 

compared to control infected cells (Fig. 4d). We found that ULBP1 overexpression 

enhanced NK cell clearance of HIV-infected cells approximately ten-fold, suggesting that 

NKG2D activating ligand expression was limiting for NK cell lysis of HIV-infected primary 

T cells (Fig. 4b, right panels and quantified in Fig. 4c).

We then asked whether overexpression of activating ligands would affect NK cell 

recognition of infected cells that had normal MHC-I expression. To test this, primary T cells 

were infected with nef− HIVs plus or minus ULBP1 overexpression. In the absence of ligand 

overexpression these cells were substantially more sensitive to NK cell lysis than mock 

infected cells, indicating that HIV infection activated NK cell lysis even without MHC-I 

downmodulation (Fig. 4e, left panels and quantified in Fig. 4f). These data are consistent 

with our observations that HIV infection upregulates NKG2D activating ligands. However, 

overexpression of NK cell activating ligands in infected cells further increased killing and 

resulted in loss of most of the remaining cells (Fig. 4e, right panels and Fig. 4f). These data 

indicate that at high amounts of NKG2D ligands, MHC-I downmodulation is not essential 

for efficient NK cell lysis.

To determine whether the inhibitory effect of Vif on NKG2D ligand upregulation was 

physiologically relevant, we asked whether Vif expression affected NK cell lysis of infected 

cells. An analysis of infected cells from five independent donors revealed that cells lacking 

Vif were significantly more sensitive to NK cell recognition than wild type HIV controls in 

a four hour cytotoxicity assay (Fig. 5a, mean survival 60% and 66% for wild type compared 

with 38% and 45% for infected cells lacking Vif were significantly more sensitive to NK 

cell recognition than cells infected with wild type HIV.
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We then asked whether A3G expression influenced NK cell recognition by knocking down 

A3G with siRNA. To accomplish this, we constructed a lentiviral vector expressing an 

shRNA directed against A3G and GFP, which allowed us to gate on the knock-down cells 

and assess survival in the presence of NK cells using the flow cytometic killing assay. As a 

control, we determined that the shRNA containing vector could significantly reduce A3G 

expression in transfected 293 cells (Fig. 5b).

When primary T cells were co-transduced with shA3G or shNC expressing lentiviruses and 

vif − HIV, we found that A3G knock down significantly improved survival of infected cells 

co-incubated with autologous NK cells (p=0.02, n= 3, Fig. 5c and 5d). These data indicate 

that A3G sensitizes infected cells to NK lysis and that Vif-dependent A3G degradation 

likely explains Vif’s protective effect (Fig. 5a).

Vif and Vpr reduce uridine incorporation

Because A3G deaminates cytosine to uracil, it is possible that the presence of uracil in DNA 

is sufficient to cause upregulation of NK activating ligands. Alternatively, gaps and breaks 

created by the cellular repair of uridine containing DNA could be responsible. To 

distinguish between these two possibilities, we directly measured the effect of Vpr and Vif 

on uridine incorporation. The assay we developed to measure uridine incorporation utilizes 

the activity of recombinant uracil DNA glycosylase (UDG), which specifically removes 

uracils, creating an abasic site that no longer serves as a template for PCR. In this assay, 

uridine incorporation is detected by a relative reduction in amplification of the template 

following UDG treatment. As a control, we generated uridine-containing and non-uridine 

containing PCR products and demonstrated that amplification of templates containing 

uridine was specifically inhibited by UDG treatment (Fig. 6a).

When we examined DNA prepared from infected primary T cells, UDG treatment did not 

affect amplification of wild type (NL-PI) HIV proviral DNA, indicating that there was no 

detectable uridine in this sample. However, a significant effect of UDG on the amplification 

of HIV proviral DNA from vif − vpr − infected cells (Fig. 6b, compared to theoretical mean 

of 1.0, p = 0.03), indicating the presence of uridine in the DNA from this sample. There was 

no significant effect of UDG on amplification of proviral DNA from cells infected with 

either of the single mutants, suggesting that Vif and Vpr can independently limit uridine 

incorporation.

We noted a similar pattern of sensitivity to UDG when we amplified sequences from a 

cellular gene (β-actin) (Fig. 6b, compared to theoretical mean of 1.0, p = 0.02 and p = 

0.0006 for vif − and vif −vpr −, respectively) and UDG sensitivity positively correlated with 

infection rate for DNA isolated from vif − vpr − HIV infected cells (Fig. 6c). Thus, these data 

indicate uridine incorporation can also occur in cellular genomic DNA isolated from 

infected cells.

We also recovered significantly less HIV DNA from cells infected with vif −vpr − HIV 

relative to wild type HIV after normalizing for infection rate and cellular DNA content (Fig. 

6d). By comparison, the relative amounts of cellular DNA recovered from each sample, as 

measured by amplification of β-actin was somewhat increased with infection by this mutant 
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(Fig. 6e). The relatively low recovery of vif −vpr − HIV DNA was not explained by 

differences in the ability of the polymerase to amplify uridine-containing DNA; control 

uridine-containing templates were amplified as efficiently as non-uridine containing 

templates (Fig. 6f). Thus, vif −vpr − provirus appears to be less stable following infection of 

primary T cells. The synergistic effect of mutating both Vif and Vpr is consistent with our 

hypothesis that both proteins act on the same pathway to stabilize provirus.

Vpr-UNG2 interaction and NKG2D ligand upregulation

Based on the fact that uridine was only detectable in cells infected with vif −vpr − HIV and 

the fact that cells infected with vif −vpr − HIV have low ligand expression, we concluded 

that uridine itself was not sufficient to induce ligand expression. Thus, we hypothesized that 

it was the repair of uridine containing DNA that was responsible for Vpr and A3G-

dependent NK cell activating ligand upregulation. In this model the effects of Vpr on 

NKG2D ligand expression would be mediated by interaction with uracil glycosylase, UNG2. 

To test this, we constructed HIVs that contained a Vpr with a mutation in the UNG2 binding 

domain (Vpr W54R)28. The Vpr phenotype is masked in the presence of Vif or Nef (Fig. 1c 

and 1e). Therefore, to focus on a potential Ung2 binding phenotype, we tested the Vpr 

mutant in a nef– background. As predicted, we found that this mutant was less active at 

inducing NK activating ligand expression compared with wild type Vpr (Fig. 7a, p = 

0.0004), indicating that at least a component of Vpr’s effect on ligand expression required 

UNG2 binding. Mutating the UNG2 binding site of Vpr did not completely eliminate 

NKG2D ligand upregulation, thus we cannot rule out the possibility that Vpr also 

upregulates ligands through interactions with other cellular factors, such as SMUG1.

To confirm a role for UNG2, we knocked down UNG2 expression and assayed for NKG2D 

ligands in HIV-infected primary T lymphocytes. UNG2 expression was reduced 85% in 

CEM-SS T cells with UNG2-specific shRNA compared to control treated cells (Fig. 7b). 

Consistent with our model, knockdown of UNG2 in primary T cells also reduced the 

upregulation of NKG2D ligands by wild type HIV compared to control treated (Fig. 7c, p = 

0.03). Once again, complete inhibition of NKG2D ligand expression was not observed by 

knocking down UNG2 expression, potentially implicating other cellular factors. In sum 

however, these data support a model in which Vpr induces NKG2D ligand upregulation in 

HIV infected T cells by stimulating UNG2-dependent repair of uridine-containing DNA 

(Supplementary Fig. 2).

Discussion

Members of the APOBEC and AID family of cytidine deaminases are key host factors that 

aid in the defense against pathogens. There is growing evidence for overlapping roles of 

these deaminases in alerting killer T cells to infection and DNA damage. For example, A3G 

has been shown to stimulate CTL recognition through the generation of defective translation 

products29. In addition, the “DNA damage” resulting from AID-mediated somatic 

hypermutation leads to upregulation of NK cell activating ligands that transiently mark these 

cells as potentially dangerous30. We now show that, like AID, A3G expression sensitizes 

cells to NK cell recognition through the upregulation of NKG2D ligand expression in HIV 
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infected cells. A3G knockdown increased the survival of cells infected with a Vif-deficient 

HIV and incubated with autologous NK cells. In addition, wild type Vif inhibited NKG2D 

ligand expression whereas Vif mutants defective at binding and degrading A3G did not. It is 

intriguing to speculate that these effects on NKG2D ligands may also contribute to A3G-

dependent enhancement of CTL recognition29, as NKG2D can serve as a co-stimulatory 

molecule in CTLs31.

The effect of AID on the DNA damage response is related to its cytidine deaminase activity 

that results in uridine incorporation into cellular genomic DNA. Removal of the uracil by 

UNG2 and AP endonucleases generates gaps and breaks that lead to activation of the DNA 

damage response32. In contrast to AID, A3G is a cytoplasmic protein that targets ssDNA 

and it is less clear how its expression could lead to the incorporation of uridine into double 

stranded cellular DNA and activate the nuclear DNA damage response. Indeed, a recent 

publication did not detect an effect of A3G on mutation rate of transfected HEK 293 cells33. 

Thus, the ability of A3G to access cellular DNA appears to be specific to HIV-infected 

primary T cells lacking Vpr and Vif. The finding that Vif and Vpr specifically inhibit 

uracilation of cellular DNA suggests this is an important cellular response that HIV has 

evolved to evade.

Although A3G targets single stranded DNA, and most cellular DNA is double stranded, 

short stretches of dsDNA have the propensity to temporarily dissociate or “breathe” 34, and 

these may be targeted by A3G in infected cells. In addition, it remains possible that other 

cytidine deaminases, some of which are nuclear and able to target double stranded DNA33, 

contribute to uracilation of cellular DNA in the setting of HIV infection. Importantly, in the 

absence of Vpr and Vif we not only observed uracilation but also instability of HIV DNA. 

Thus, the in-coming HIV-1 genome is likely the primary target of this response, which 

results in uracilation followed by degradation of the HIV-1 DNA in the absence of Vpr and 

Vif.

We also show here that maximal upregulation of NKG2D ligands and the DNA damage 

response requires Vpr in addition to A3G. One model that explains the combined effects of 

Vpr and A3G is that Vpr expression is required to promote the repair of A3G-generated 

mutations through its interaction with UNG2 28. This model is consistent with prior studies 

demonstrating that Vpr reduces the requirement for high Vif expression in the presence of 

A3G21. Moreover, NKG2D ligand upregulation was reduced when the UNG2 binding site of 

Vpr was mutated or UNG2 expression was knocked down. Complete reversal of NKG2D 

ligand expression was not observed when UNG2 expression was reduced, either because of 

incomplete knockdown or because other factors can substitute for UNG2 activity.

Repair of integrated uridines reduces the error rate and improves the infectivity of progeny 

virus. However, the repair process, which generates nicks, gaps and breaks, has the side 

effect of activating an ATM response that results in NKG2D ligand upregulation. The link 

between NKG2D ligand upregulation and deamination reveals broader implications of the 

intrinsic antiviral response mediated by APOBEC proteins than had previously been 

appreciated. Indeed, it appears that the A3G response to infection includes the initiation of a 

cellular suicide mission meant to contain viral production and spread.
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The importance of uridine incorporation as an innate immune response is made clear by the 

fact that a wide range of viruses encode mechanisms to avoid it35. In addition, HIV-1 

recruits UNG2 to virions, which has been reported to enhance viral infectivity by limiting 

dUTP misincorporation during reverse transcription36 and to excise uridines resulting from 

A3G-editing37. Thus, there may be multiple routes through which HIV limits uridine 

incorporation.

When prior studies have measured the effect of A3G on viral particle inactivation, it was 

clear that A3G made in the producer cells and packaged into newly formed virions was 

required for viral inactivation and that A3G in the target cells was dispensable7. However, 

we provide evidence here that A3G expressed in the target cell also plays a role in the innate 

immune response. While A3G present in the target cell may be insufficient to inhibit the 

invading virus from productively infecting the cell, our data indicate that A3G expression in 

target cells is required for sensitization of HIV-infected cells to NK cell lysis.

We also report here that treatment of primary T cells with Vif-deficient HIV-containing cell 

supernatants resulted in an increase in A3G expression in HIV infected cells in some donors. 

This response has not previously been reported and the mechanism is unknown. Influenza 

virus ssRNA also increases A3G expression38. Although the mechanism for this increase is 

unclear, HIV-1 single stranded RNA binds Toll-like receptors 7 and 839. Pathogen 

recognition receptor ligation induces type I interferon production, which stimulates A3G 

expression2. Our results highlight the possibility that detection of HIV by the innate immune 

system could lead to the production of A3G in infected cells.

In sum, the data presented here demonstrate that A3G expression enhances recognition of 

HIV-infected cells by NK cells through upregulation of NKG2D activating ligands. Thus, 

therapeutic strategies aimed at augmenting the anti-viral activity of A3G may have the 

added benefit of promoting immune clearance of virally infected cells by NK cells.

Methods

Cell culture and viral infections

We obtained pre-existing leukopaks lacking subject identifiers from The New York Blood 

Center. The use of these specimens was reviewed by the University of Michigan IRB and 

found not to be human subjects research. We isolated PBMCs by Ficoll-Paque density 

separation. We prepared CD56+ NK cells from adherence-depleted PBMCs using 

commercially available kits (EasySep, StemCell Technologies). After isolation we 

maintained CD56+ cells in RPMI 1640 with 10% human AB serum (Fisher scientific), 

penicillin, streptomycin, L-glutamine and 500 IU/ml rhIL-242. PBMCs were prepared for 

HIV infection as previously described14 except that they were also CD56-depleted 

(EasySep, StemCell Technologies). Virus production and infection of PBMCs have been 

previously described12, 43

Viral constructs

HIV NL-PI and nef−, vpr−, vpu−, vpr−nef− accessory protein mutants have been reported 

previously12, 40. Vif expression was disrupted by filling in the NdeI site at position 83 of vif. 
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Nef expression was disrupted by filling in the XhoI site at position 101 of nef. We used a 

standard PCR-based mutagenesis strategy to generate NL-PIvifY44A and NL-PIvprW54R 

(see primers in Table S1).

FG12 shA3G and shUNG2, short hairpin RNA expression constructs targeting APOBEC3G 

and UNG2, were cloned using the primers in Table S1 into the lentiviral vector FG1244 as 

described previously43. The negative control vector (FG12 shNC) was previously 

described43.

To construct the Vif FG9 lentiviral expression vector, NL4-3 Vif was amplified by PCR (see 

primers in Table S1) and cloned into the BamHI and NotI sites of FG945.

To construct pNL-GIulbp1+, ulbp was amplified from cDNA (MegaMan Human 

Trascriptome Library, Stratagene; Table S1) and a PCR-based strategy was used to create 

the IRESulbp1 cassette from the amplicon (see primers in Table S1). The cassette was 

cloned into the NheI and BglII sites in the env open reading frame of pNL-G (pNL4-3-

deltaE-EGFP)41.

Flow cytometry

Cell surface proteins (aside from NKG2D ligands), were stained in flow cytometry buffer 

plus human serum (PBS with 2% FBS, 1% human type AB serum, 1% HEPES and 1% 

NaN3) using the antibodies listed in Table S2 and fluorescently conjugated isotype-specific 

secondary antibodies (Invitrogen or Caltag), then fixed in 2% paraformaldehyde. For 

NKG2D ligand analysis, cells were stained with rhNKG2Dfc (R&D Systems) and anti-CD3 

antibody (Table S2) in flow cytometry buffer without human serum. Intracellular Gag stains 

were performed as previously described46. For A3G staining, cells were fixed and 

permeabilized in 90% methanol, blocked in PBS-1% BSA-10% goat serum prior to staining 

with APOBEC3G antibody (Abcam) or normal rabbit serum control (Santa-Cruz) in 

PBS-1% BSA. Cells were subsequently stained for Gag and FITC or GAR-488 conjugated 

anti-rabbit secondary antibodies (Biosource and Invitrogen) diluted in PBS-1% BSA for 30 

min RT.

NK cell cytotoxicity

Target cells (K562 cells and HIV-1 infected and mock treated primary T lymphocytes) were 

labeled with 500 μM CFSE (Invitrogen) one day prior to the NK cell assay and incubated 

overnight at 37°C. Alternatively, target cells were infected with FG12 shRNA or NL-G 

viruses expressing GFP. Labeled target cells were co-incubated with purified, autologous 

NK cells at increasing effector:target ratios for 4 hours at 37°C and then stained for surface 

MHC-I, PLAP, CD56, CD16 and 7-amino actinomycin D (7-AAD, Calbiochem) and 

analyzed by flow cytometry. Live target cells were identified by light scatter parameters, 7-

AAD exclusion, and CD56−/CD16−/CFSE+(or GFP) staining. A constant number of 

fluorescent counting beads (Countbright beads, Invitrogen) was added to each tube and 

counted during cytometric acquisition. The normalized number of live cells was calculated 

as the number of cells times the fraction of beads counted. Percent target cell survival was 

determined as the percent normalized target cells remaining after NK cell incubation.
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Immunoblot Analysis

48 hours post HIV infection, PBMC lysates were isolated as previously described47. 

Normalized whole cell lysates were analyzed by immunoblot using the antibodies in Table 

S2. APOBEC3G48 and Vif49 antibodies were previously described. Membranes were 

incubated with HRP-conjugated secondary antibodies (Invitrogen) and developed. 

Background-subtracted median band intensities were determined using Adobe Photoshop 

and normalized to tubulin for quantification.

Quantitative PCR analysis

Infected cells were harvested 48 hours post-infection. For DNA extraction, cells were 

resuspended in PBS and lysed with MagNa Pure Lysis/Binding buffer (Roche). Lysed cells 

were loaded on the MagNa Pure Compact and total DNA was extracted. Samples were 

treated with 10U UDG (NEB) and incubated at 37°C for 1h followed by 10 minutes at 95°C 

to inactivate the UDG. For samples with heat-inactivated UDG, DNA was added after UDG 

heat-inactivation.

For qPCR analysis, the TaqMan ProbeMaster kit (Roche) and the primers in Table S3 were 

used. HIV-1 DNA was first subjected to 12 cycles of linear amplification using the 2nd-

LTR-F-univ primer46 to amplify the negative strand. Probe-2 was previously described50.

Control TTP and UTP-containing templates were generated by PCR amplifying NL-PI using 

the 2nd-LTR-F and Gag-R-3 primers. For UTP control templates, dUTP instead of dTTP 

was used. Gel purified TTP and UTP-containing control templates were analyzed post UDG 

treatment by gel electrophoresis of re-amplified samples

Statistical analysis

Statistical significance in the flow cytometry and western blot data were assessed by paired t 

test. Regression analysis was performed using GraphPad Prism software.

For qPCR data, amplification efficiency (E) was calculated as E = 10^(−1/slope of target 

standard curve) – 1. Average Cq for three replicates of each sample was converted to Cq at 

100% efficiency (Cq100) = Cq*Log2(1+E) to permit comparison between different genes. 

ΔCt values for each sample were calculated as Cq100(untreated) – Cq100(UDG treated) and 

converted to quantity ratios (2^ΔCt). One sample t-tests were used to compare ΔCts and 

quantity ratios to the expected values if UDG treatment has no effect: 0 and 1, respectively. 

Total HIV-1 DNA was assessed by computing ΔCt values for non-UDG treated samples 

relative to beta-actin and Ct values comparing each mutant virus to NL-PI. Ct values were 

converted to quantity ratios and normalized to infection rate. One sample t-tests were used to 

compare the normalized quantity ratios to the expected value of 1 if HIV-1 DNA 

amplification does not vary with Vif or Vpr mutation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Norman et al. Page 12

Nat Immunol. Author manuscript; available in PMC 2012 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This work was funded by U.S. National Institutes of Health Grant RO1 AI051192. LAM was supported by U.S. 
National Science Foundation Graduate Student Research Fellowship under Grant DGE 0718128. MM was 
supported by U.S. National Institutes of Health grants T32GM007863 and T32AI007413. AON was supported by 
U.S. National Institutes of Health grant UL1RR024986 from the National Center for Research Resources. Services 
were provided by the University of Michigan Flow Cytometry core, Sequencing Core (supported by National 
Institutes of Health grant P30CAO46592), Hybridoma Core (supported by National Institutes of Health grant 
P30AR048310) and Center for Statistical Consultation. The content is solely the responsibility of the authors and 
does not necessarily represent the official views of NCRR or the National Institutes of Health. The following 
reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National 
Institute of Allergy and Infectious Diseases, US National Institutes of Health: Human rIL-2 from Dr. Maurice 
Gately, Hoffmann (La Roche Inc), pNL4–3–deltaE–EGFP (Cat# 11100) from Drs. Haili Zhang, Yan Zhou, and 
Robert Siliciano (Johns Hopkins University), APOBEC3G antiserum (ApoC17) from Dr. Klaus Strebel (NIAID, 
NIH), HIV-1 Vif monoclonal antibody (#319) from Dr. Michael H. Malim (King’s College London), and 
HIV-1SF2 p24 antiserum.

References

1. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus 
control in the absence of antiretroviral therapy. Immunity. 2007; 27:406–416. [PubMed: 17892849] 

2. Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM. Induction of APOBEC3 family proteins, a 
defensive maneuver underlying interferon-induced anti-HIV-1 activity. The Journal of experimental 
medicine. 2006; 203:41–46. [PubMed: 16418394] 

3. Chiu Y-L, Greene WC. The APOBEC3 cytidine deaminases: an innate defensive network opposing 
exogenous retroviruses and endogenous retroelements. Annual review of immunology. 2008; 
26:317–353.

4. Zhang H, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 
DNA. Nature. 2003; 424:94–98. [PubMed: 12808465] 

5. Bishop KN, Verma M, Kim E-Y, Wolinsky SM, Malim MH. APOBEC3G inhibits elongation of 
HIV-1 reverse transcripts. PLoS Pathogens. 2008; 4:e1000231. [PubMed: 19057663] 

6. An P, et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol. 
2004; 78:11070–11076. [PubMed: 15452227] 

7. Yu X, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF 
complex. Science (New York, NY). 2003; 302:1056–1060.

8. Kijak GH, et al. Variable contexts and levels of hypermutation in HIV-1 proviral genomes 
recovered from primary peripheral blood mononuclear cells. Virology. 2008; 376:101–111. 
[PubMed: 18436274] 

9. Jern P, Russell R, Pathak V, Coffin J. Likely role of APOBEC3G-mediated G-to-A mutations in 
HIV-1 evolution and drug resistance. PLoS Pathogens. 2009; 5:e1000367. [PubMed: 19343218] 

10. Goulder PJR, Watkins DI. Impact of MHC class I diversity on immune control of 
immunodeficiency virus replication. Nature Reviews Immunology. 2008; 8:619–630.

11. Schwartz O, Maréchal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major 
histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature 
Medicine. 1996; 2:338–342.

12. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected 
primary cells against killing by cytotoxic T lymphocytes. Nature. 1998; 391:397–401. [PubMed: 
9450757] 

13. Martin MP, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 
2007; 39:733–740. [PubMed: 17496894] 

14. Le Gall S, et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a 
cryptic sorting signal in MHC I molecules. Immunity. 1998; 8:483–495. [PubMed: 9586638] 

15. Jennes W, et al. Cutting edge: resistance to HIV-1 infection among African female sex workers is 
associated with inhibitory KIR in the absence of their HLA ligands. J Immunol. 2006; 177:6588–
6592. [PubMed: 17082569] 

Norman et al. Page 13

Nat Immunol. Author manuscript; available in PMC 2012 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Martin MP, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to 
AIDS. Nat. Genet. 2002; 31:429–434. [PubMed: 12134147] 

17. Morvan M, et al. Phenotypic and functional analyses of KIR3DL1+ and KIR3DS1+ NK cell 
subsets demonstrate differential regulation by Bw4 molecules and induced KIR3DS1 expression 
on stimulated NK cells. J Immunol. 2009; 182:6727–6735. [PubMed: 19454667] 

18. Champsaur M, Lanier L. Effect of NKG2D ligand expression on host immune responses. 
Immunological reviews. 2010

19. Fogli M, et al. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous 
natural killer cells from HIV-infected viremic individuals. PLoS Pathogens. 2008; 4:e1000101. 
[PubMed: 18617991] 

20. Ward J, et al. HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through 
activation of the ATR-mediated DNA damage response. PLoS Pathogens. 2009; 5:e1000613. 
[PubMed: 19798433] 

21. Schröfelbauer B, Yu Q, Zeitlin SG, Landau NR. Human immunodeficiency virus type 1 Vpr 
induces the degradation of the UNG and SMUG uracil-DNA glycosylases. Journal of Virology. 
2005; 79:10978–10987. [PubMed: 16103149] 

22. Mansky LM, Preveral S, Selig L, Benarous R, Benichou S. The interaction of vpr with uracil DNA 
glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. Journal of 
Virology. 2000; 74:7039–7047. [PubMed: 10888643] 

23. Cerboni C, et al. Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the 
activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J. Gen. Virol. 
2007; 88:242–250. [PubMed: 17170457] 

24. Russell RA, Pathak VK. Identification of two distinct human immunodeficiency virus type 1 Vif 
determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol. 2007; 
81:8201–8210. [PubMed: 17522216] 

25. Gasser S, Orsulic S, Brown E, Raulet D. The DNA damage pathway regulates innate immune 
system ligands of the NKG2D receptor. Nature. 2005; 436:1186–1190. [PubMed: 15995699] 

26. Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 
2008; 9:297–308. [PubMed: 18285803] 

27. Hickson I, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-
telangiectasia mutated kinase ATM. Cancer Res. 2004; 64:9152–9159. [PubMed: 15604286] 

28. Mansky LM, Preveral S, Selig L, Benarous R, Benichou S. The interaction of vpr with uracil DNA 
glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol. 
2000; 74:7039–7047. [PubMed: 10888643] 

29. Casartelli N, et al. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-
infected T cells. Journal of Experimental Medicine. 2009

30. Gourzi P, Leonova T, Papavasiliou FN. A role for activation-induced cytidine deaminase in the 
host response against a transforming retrovirus. Immunity. 2006; 24:779–786. [PubMed: 
16782033] 

31. Maasho K, Opoku-Anane J, Marusina AI, Coligan JE, Borrego F. NKG2D is a costimulatory 
receptor for human naive CD8+ T cells. Journal of immunology (Baltimore, Md : 1950). 2005; 
174:4480–4484.

32. Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J. Inducible DNA breaks in 
Ig S regions are dependent on AID and UNG. The Journal of experimental medicine. 2005; 
202:561–568. [PubMed: 16103411] 

33. Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. APOBEC3 proteins mediate the clearance 
of foreign DNA from human cells. Nature Structural & Molecular Biology. 2010; 17:222–229.

34. Altan-Bonnet G, Libchaber A. Bubble dynamics in double-stranded DNA. Physical review letters. 
2003; 90:138101. [PubMed: 12689326] 

35. Sire J, Quérat G, Esnault C, Priet S. Uracil within DNA: an actor of antiviral immunity. 
Retrovirology. 2008; 5:45. [PubMed: 18533995] 

36. Priet S, et al. HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in 
viral DNA and is essential to the HIV-1 life cycle. Mol Cell. 2005; 17:479–490. [PubMed: 
15721252] 

Norman et al. Page 14

Nat Immunol. Author manuscript; available in PMC 2012 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Yang B, Chen K, Zhang C, Huang S, Zhang H. Virion-associated uracil DNA glycosylase-2 and 
apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent 
HIV-1 DNA. J Biol Chem. 2007; 282:11667–11675. [PubMed: 17272283] 

38. Pauli E-K, et al. High level expression of the anti-retroviral protein APOBEC3G is induced by 
influenza A virus but does not confer antiviral activity. Retrovirology. 2009; 6:38. [PubMed: 
19371434] 

39. Heil F, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. 
Science. 2004; 303:1526–1529. [PubMed: 14976262] 

40. Collins KL, Baltimore D. HIV’s evasion of the cellular immune response. Immunol. Rev. 1999; 
168:65–74. [PubMed: 10399065] 

41. Zhang H, et al. Novel single-cell-level phenotypic assay for residual drug susceptibility and 
reduced replication capacity of drug-resistant human immunodeficiency virus type 1. J. Virol. 
2004; 78:1718–1729. [PubMed: 14747537] 

42. Lahm HW, Stein S. Characterization of recombinant human interleukin-2 with micromethods. J. 
Chromatogr. 1985; 326:357–361. [PubMed: 3875623] 

43. Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL. HIV-1 Nef targets MHC-I and 
CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS 
Pathogens. 2008; 4:e1000131. [PubMed: 18725938] 

44. Qin X-F, An DS, Chen ISY, Baltimore D. Inhibiting HIV-1 infection in human T cells by 
lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 
2003; 100:183–188. [PubMed: 12518064] 

45. Galbán S, et al. Cytoprotective effects of IAPs revealed by a small molecule antagonist. The 
Biochemical journal. 2009; 417:765–771. [PubMed: 18851715] 

46. Carter CC, et al. HIV-1 infects multipotent progenitor cells causing cell death and establishing 
latent cellular reservoirs. Nature Medicine. 2010

47. Nakai-Murakami C, et al. HIV-1 Vpr induces ATM-dependent cellular signal with enhanced 
homologous recombination. Oncogene. 2007; 26:477–486. [PubMed: 16983346] 

48. Kao S, et al. The human immunodeficiency virus type 1 Vif protein reduces intracellular 
expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus 
infectivity. Journal of Virology. 2003; 77:11398–11407. [PubMed: 14557625] 

49. Simon JH, Southerling TE, Peterson JC, Meyer BE, Malim MH. Complementation of vif-defective 
human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. 
Journal of Virology. 1995; 69:4166–4172. [PubMed: 7769676] 

50. Yamamoto N, et al. Analysis of human immunodeficiency virus type 1 integration by using a 
specific, sensitive and quantitative assay based on real-time polymerase chain reaction. Virus 
genes. 2006; 32:105–113. [PubMed: 16525741] 

Norman et al. Page 15

Nat Immunol. Author manuscript; available in PMC 2012 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. NKG2D ligand expression in HIV infected cells
(a) HIV genome of NL-PI, which has been previously described12, 40. Locations of 

mutations in individual ORFs are indicated. (b-f) Flow cytometric analysis of NKG2D 

ligand expression by CD3+ T cells. Cells infected with NL–PI (solid black line), NL–PI 

accessory protein mutants (dashed black line) and mock-treated control (shaded gray 

histogram) are shown in part (b) whereas cells infected with NL–PIvpr− (solid black line), 

the indicated NL–PI accessory protein mutant (dashed black line) and mock-treated controls 

(shaded gray histogram) are presented in part (d). (c and e) Summary plots of NKG2D 
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ligand expression on infected versus mock-infected T cells. The fold difference in NKG2D 

ligand expression relative to mock-treated controls is shown for independent donors, each 

represented by a different character. Black bars represent the mean fold change in ligand 

expression for each virus. Statistical analyses were calculated by paired t test. * p<0.05, ** 

p<0.01. (f) Summary plots of NKG2D ligand expression on NL-PI or NL-PIvif− infected 

primary T cells with or without Vif rescue. Left panel, primary T cells co-transduced with 

NL-PI or NL-PIvif− and vif-expressing or control lentiviruses. Right panel, viruses used to 

infect primary T cells were prepared from vif-expressing or control 293T cells. Two 

independent donors assayed in triplicate are shown. * p<0.05, ** p<0.01. (g) Immunoblot 

analysis of whole cell lysates from primary T cell targets (left panel) and 293T producer 

cells (right panel). Data are representative of two independent donors.
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Figure 2. Upregulation of A3G correlates with NKG2D ligand upregulation
(a) Immunoblot analysis of T cells treated with media alone (−) or conditioned supernatant 

(Sup) (−16hr or 2hr) according to the experimental timeline in part (b). (c) Flow cytometric 

analysis of CD3+ T cells treated with conditioned supernatant (Sup) or control media 

(Control med) and infected with the indicated virus. The mean fluorescence intensity is 

indicated for the total Gag− and Gag+ populations. (d) Plot of relative A3G expression from 

part (a) versus NKG2D ligand normalized to control media treated cells. The linear best-fit 

line is indicated (R2=0.83). (e and f) Immunoblot analysis of T cells infected with the 

indicated virus, control media (mock) or 293T cell supernatant. Data are representative of 

three independent donors. (g and h) Plot of relative A3G expression determined by (g) 
Immunoblot or (h) flow cytometric analysis of permeabilized cells infected with the 

indicated virus. Data obtained from each donor is indicated by unique symbols. *p<0.05 

Donors in part (g) and (h) are independent. The mean fold change is indicated by the black 

bars. (i) Plot of A3G expression versus NKG2D ligand expression of mock-infected (white 

symbols) or NL-PIvif− infected (gray symbols) cells with each independent donor indicated 

by a different symbol. R2 for mock-infected =0.66, NL-PIvif− R2=0.84. (j) Summary of 

NKG2D ligand expression by cells infected with wild type or mutant NL-PI. Black bars 

indicate mean change in ligand expression. Each symbol represents a unique donor 

independent of those shown in Fig. 1. **p<0.02.
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Figure 3. Activation of the DNA damage response in HIV infected primary T cells
(a) Representative immunoblot analysis of primary T cells infected with the indicated virus. 

(b and c) Summary plots of immunoblot analyses. (b) Chk2 phosphorylation at Thr68; (c) 
Chk1 phosphorylation at Ser345. Each independent donor is represented by a unique symbol. 

The black bar inidcates fold change relative to mock. (d and e) Relative A3G expression 

versus (d) Chk2 phosphorylation at Thr68 or (e) Chk1 phosphorylation at Ser345. Each 

independent donor is represented by a unique symbol. Open symbols; mock infected plus 

conditioned supernatant. Gray symbols; infected plus or minus conditioned supernatant. For 

(d), mock R2=0.75, NL–PIvif − R2=0.92, p<0.02. For (e), R2=0.02. (f) Western blot analysis 

of primary T cells infected with the indicated virus measuring ATM phosphorylation at 

Ser1981. (g) Summary plot of NKG2D ligand expression on primary T cells infected with the 

indicated viruses and treated with the ATM inhibitor KU55933 (10μM, Calbiochem) or 

solvent control. Data from five independent donors is shown. The black bars indicate the 

mean NKG2D ligand upregulation. Statistical analyses were performed by paired t test. * 

p<0.05 (h) Western blot analysis of primary T cells infected with NL-PIvif − and treated 

with KU55933 (10μM), solvent control or Etoposide (10μM, Sigma). Band intensities were 

quantified using Adobe Photoshop software, adjusted for background and normalized to α-
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tubulin levels in the same lane. P-Chk2 expression relative to mock infected, solvent control 

is shown. Data are representative of three independent donors.
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Figure 4. HIV–infected T cells are resistant to NK cell recognition unless an NKG2D ligand is 
overexpressed
(a) HIV genomes. NL4–3–ΔE–EGFP has been described41. Arrow indicates mutation in nef
− construct. (b) Flow cytometric NK cell assay of primary T cells infected with the indicated 

virus and co–incubated with IL–2 stimulated autologous NK cells at a 2:1 effector to target 

ratio in a 4 hour cytotoxicity assay. Plots show MHC–I and GFP expression of 7–AAD− 

CD56− CD16−, live target cells. Infected cells (Inf) are indicated. The total number of GFP+ 

cells normalized to counting beads is indicated. (c) Quantification of NK cell assay from 
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part (b). The data are representative of three independent donors. The effector to target cell 

ratio (Eff/target) is indicated. (d) Flow cytometric analysis of ULBP1 expression in PHA-

activated primary T cells transduced with NL–GIulbp1+, +/− nef (dotted black line) or NL–

G +/− nef viruses (solid black line). ULBP1 expression of the transduced, GFP positive cells 

is shown. The solid gray histogram is the isotype control. The fold change in ULBP1 

expression relative to control virus is indicated. (e) Flow cytometric NK cell assay of PHA 

activated primary T cells infected with the indicated viruses and co-incubated with 

autologous NK cells. 7–AAD−CD56−CD16−GFP+ cells are shown and the number 

(normalized to counting beads) is indicated. (f) Quantification of NK cell assay from part e. 

The data are representative of two independent donors.
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Figure 5. The effect of Vif on NK cell lysis
(a) Summary of flow cytometric NK cell killing assays from five independent donors. The 

percentage of infected cells surviving autologous NK cell treatment is shown. Mean T cell 

survival among the independent donors is indicated. * p<0.05, **p<0.01. (b) Immunoblot 

analysis of 293T whole cell lysates transfected with the indicated shRNAs or untransfected 

(−). Band intensities were quantified using Adobe Photoshop software and normalized to 

tubulin expression. A3G expression relative to the untransfected control is shown. Data are 

representative of three experiments. (c) Flow cytometric NK cell assay of PHA activated 
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primary T cells infected with the indicated virus plus a GFP-expressing lentivirus encoding 

A3G–targeting or negative control shRNAs and co–incubated with IL–2 stimulated 

autologous NK cells at a 1:1 effector to target ratio in a 4 hour cytotoxicity assay. Plots 

show MHC–I and PLAP expression of GFP+, 7–AAD− CD56− CD16−, live target cells. The 

percentage of infected cells with low MHC-I expression remaining after NK cell incubation 

is indicated. The percent cell survival with NK cells compared to without is shown in 

parentheses. (d) Summary of NK cell killing assay for three independent donors, indicated 

by different symbols. The mean cell survival at the indicated effector to target cell ratio (1:1) 

is indicated. In one of three experiments conditioned supernatant was required to observe an 

effect of A3G knockdown. Statistical analysis was calculated by paired t test. * p<0.05.
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Figure 6. Vif and Vpr limit uridine incorporation in primary T cells
(a) Agarose gel of PCR products using NL-PI DNA containing dTTP or dUTP treated with 

recombinant UDG (+) or heat inactivated UDG (−) for 1 hour as template. (b) qPCR 

amplification results using total genomic DNA from primary T cells infected with NL-PI or 

the indicated virus mutant as template. DNAs were treated with UDG (+) or heat-inactivated 

UDG (−) prior to amplification. The graph shows the mean fold change in amplification 

with UDG+ treatment from four independent donors. Statistical significance was determined 

by comparing to the theoretical mean of 1.0, which would represent no effect of UDG 

treatment. * p<0.05, **p<0.002 (c) Graph of qPCR results from part (b) versus infection rate 

of NL-PIvif −vpr − infected primary T cells. HIV-1 DNA; R2=0.86, p=0.07. β-actin DNA; 

R2=0.96, p=0.02. (d and e) qPCR amplification results of (d) total HIV DNA and (e) β-actin 

DNA isolated from primary T cells infected with the indicated viruses. In part (d) the mean 

was normalized for infection rate and β-actin DNA content. Standard error from four 

independent donors is shown. (d) * p<0.002, (e) *p<0.05 (f) qPCR amplification results of 

serially diluted NL-PI DNA templates containing dUTP or dTTP.
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Figure 7. UNG2 binding by Vpr induces NKG2D ligand expression
(a and c) Summary plots of NKG2D ligand expression on activated primary T cells infected 

with the indicated viruses. The fold increase in NKG2D ligand expression relative to mock 

infected cells is shown. The mean expression for (a) eight and (c) four independent donors, 

indicated by different symbols, is represented by the black bars. Statistical analyses were 

performed by paired t test. * p<0.05, **p<0.01. (b) Western blot analysis of CEM-SS T cells 

transduced with control or shUNG2-expressing lentivirus.
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