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Abstract: Neurodegenerative diseases have become a major challenge for public health because of
their incurable status. Soft nanotechnology provides potential for slowing down the progression of
neurodegenerative disorders by using innovative formulations of neuroprotective antioxidants like
curcumin, resveratrol, vitamin E, rosmarinic acid, 7,8-dihydroxyflavone, coenzyme Q10, and fish oil.
Curcumin is a natural, liposoluble compound, which is of considerable interest for nanomedicine
development in combination therapies. The neuroprotective effects of combination treatments can
involve restorative mechanisms against oxidative stress, mitochondrial dysfunction, inflammation,
and protein aggregation. Despite the anti-amyloid and anti-tau potential of curcumin and its
neurogenesis-stimulating properties, the utilization of this antioxidant as a drug in neuroregenerative
therapies has huge limitations due to its poor water solubility, physico-chemical instability, and low
oral bioavailability. We highlight the developments of soft lipid- and polymer-based delivery
carriers of curcumin, which help improve the drug solubility and stability. We specifically focus
on amphiphilic liquid crystalline nanocarriers (cubosome, hexosome, spongosome, and liposome
particles) for the encapsulation of curcumin with the purpose of halting the progressive neuronal loss
in Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis (ALS).

Keywords: curcumin; lipid nanoparticles; liquid crystalline carriers; nanomedicines;
neuroprotection; antioxidant

1. Introduction

Neurodegenerative diseases (Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington
disease (HD), and amyotrophic lateral sclerosis (ALS)) are disabling chronic disorders characterized
by the progressive loss of neurons in different areas of the central nervous system. Neuronal cell
death leads to cognitive, behavioral, sensory, and motor dysfunctions [1–13]. Currently, age-related
neuronal diseases have higher incidences because of increasing life expectancies. Neurodegenerative
disorders are caused by multiple factors, such as the accumulation of misfolded proteins, the depletion
of endogenous antioxidant enzyme activity, mitochondrial dysfunction, and the deficiency of
neurotrophin brain-derived neurotrophic factor (BDNF), neuro-inflammation, as well as various
genetic mutations [14–30].

In recent years, several studies have shown that curcumin is a safe natural compound which
may prevent the deleterious effects of risk factors causing brain damage as well as slowing down the
progressive neuronal loss via different pathways [26–50]. However, clinical studies performed with
AD patients with various degrees of progression have reported poor results on the AD symptoms
following curcumin treatment [51–54]. This did not allow firm conclusions about the therapeutic or
neuroprotective potential of curcumin to be drawn. The obstacles for curcumin utilization as a drug
originate from its limited water solubility, poor physicochemical stability, high-grade metabolism,
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and low plasma concentrations [36,53–55]. The development of nanoparticulate delivery systems for
curcumin has attracted scientific interest in order to improve its bioavailability and stability as a drug
compound [56–65]. Curcumin administration to neurodegenerative disease models by nanoparticles
has been realized using liposomes, solid lipid nanoparticles, and polymeric particles. Delivery by
other carriers such as amphiphilic proteins, e.g., casein, is also possible, but has not been examined as
a means of transporting curcumin across the BBB towards neuro-regeneration.

In this review, we briefly summarize the in vitro and the in vivo evaluations of curcumin,
which are linked to multiple risk factors and the multi-target mechanisms of neurodegenerative
diseases, and discuss the reported clinical investigations of varying efficacy in humans. Then,
we highlight the variety of amphiphilic curcumin-loaded nanocarriers including liposomes,
liquid crystalline nanoparticles (cubosomes, hexosomes, and spongosomes), solid lipid nanoparticles,
micelles, and polymeric nanoparticles as potential nanomedicine formulations in regeneration
therapies of the major neurological disorders.

2. Risk Factors for Neurodegenerative Disorders

Alzheimer’s disease (AD) is the most common cause of dementia. It currently affects about 10%
of the world’s population over 60–65 years of age, and about 50% over 85 years of age. More than
30 million people may expect to be affected by AD during the next 20 years due to the increasing
lifespan of the world population [1,2]. Major pathological features of AD include the accumulation
of extracellular amyloid plaques and fibrils, intracellular neurofibrillary tangles, and disruption of
the cholinergic transmission, including reduced acetylcholine levels in the basal forebrain (Table 1).
The most common symptom is the short-term memory loss, i.e., difficulty in remembering recent
events [2–5]. Other symptoms include disorientation, mood, language, and behavioral issues, and loss
of motivation, depending on the progression of the disease. The treatments of AD have employed
acetylcholinesterase inhibitors (tacrine, rivastigmine, galantamine, and donepezil) to overcome the
decrease of the ACh levels as a result of the death of cholinergic neurons. The NMDA receptor
antagonist (memantine) acts by inhibiting the overstimulation by glutamate, which can cause cell
death. Atypical antipsychotics have modest efficacy in reducing the aggression and psychosis of AD
patients. These medications provide little benefit, and provoke various adverse effects [6,7].

The second most common disorder, Parkinson’s disease (PD), affects more than 1% of the
population over 60 years of age and 5% over 85. PD is characterized by progressive impairments in
locomotive ability such as tremor, rigidity, and bradykinesia. These symptoms are attributed to the loss
of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies in the brain [8,9].
Treatments are symptomatic and aim at boosting the depleted levels of dopamine (Table 1). The most
used drug is levodopa. Dopamine agonists are used when the treatment by levodopa becomes less
efficient. The inhibitors of MAO-B and COMT (safinamide, selegiline, rasagiline, and tolcapone) are
used to inhibit the activity of the enzymes which degrade dopamine. These medications become
less effective as the neurons are continuously lost during disease progression. At the same time,
they produce complications marked by the involuntary movements of the patients [8,9].

Huntington disease (HD) is a rare disease which affects about 1/10,000 people (usually between
30 to 50 years of age) in the United States and 1/18,000 people in Europe. It is a poly-glutamine
(PolyQ) autosomal genetic disorder characterized by impairments of cognitive, psychiatric, and motor
functions [10]. The hallmark of the HD pathology is the abnormal accumulation of misfolded mutated
huntingtin protein (mHTT) as intracellular aggregates. They cause selective neuronal loss, primarily in
the cortex and in the medium spiny neurons of striatum. Symptoms develop from a general lack
of coordination to apparent uncoordinated, jerky body movements [11]. The physical abilities of
the patients gradually worsen until coordinated movement becomes difficult. There is no effective
cure available to HD (Table 1). The only approved medication, tetrabenazine, and other tested drugs
(neuroleptics and antipsychotics) help to reduce chorea and psychiatric symptoms.
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Amyotrophic lateral sclerosis (ALS) is a severe debilitating disease caused by motors neurons
degeneration in the brain and the spinal cord. It is generally characterized by progressive paralysis
starting at the limbs and ultimately leading to death caused by respiratory failure within 3 to 5 years
after the onset of the symptoms. There is no cure for ALS (Table 1). The approved medication, riluzole,
may extend life by just a few months [12,13].

The pathological characteristics, genetic factors, clinical symptoms, and actual medications of
these diseases are summarized in Table 1. It should be emphasized that the existing therapeutic
approaches do not exert disease-modifying effects on the neurodegeneration. The associated economic
and societal challenges lead to a growing public health burden.

Table 1. Pathological characteristics, genetic factors and clinical symptoms of Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS)
[1–30].

Diseases Characteristics Genetics factors Symptoms Actual treatments

AD

Senile plaques from
extracellular amyloid-Aβ
accumulation,
Intracellular neurofibrillary
tangles, Tau protein
aggregation, Irreversible
neuronal loss, Brain atrophy

Inherited form (70% of
patients): mutations of APP,
PSEN1 or PSEN2.
Sporadic form (30%):
presence of ApoE4 allele in
the ApoE gene

Progressive
memory loss,
Decision
judgement loss,
Autonomy loss

Anticholinergics
(tacrine, rivastigmine,
galantamine and
donepezil),
Memantine,
Antipsychotics,
NSAIDs

PD

α-Synucleinopathy,
Presence of Lewy bodies,
Degeneration of
dopaminergic neurons in the
substance nigra of the brain,
Dopamine deficiency

Gene mutations:
α-synuclein SNCA, Parkin
PRKN, PARK7, PINK1,
LRRK2, GBA, DJ-1, VPS35,
EIF4G1, DNAJC13 and
CHCHD2

Hypokinesia,
Bradykinesia,
Rigidity,
Postural instability,
Neuropsychiatric
disturbances

Levodopa,
Dopamine agonists,
MAO-B inhibitors,
COMT inhibitors,
Anticholinergics

HD
Accumulation of mutant
Huntingtin protein in the
brain

Expansion of CAG
trinucleotide in Huntingtin
gene (HTT)

Chorea,
Cognitive and
neuropsychiatric
disorders

Tetrabenazine,
Neuroleptics,
Antipsychotics

ALS Progressive degeneration of
motor neurons

Sporadic form: 90% of
patients
Inherited form: 10%
Mutations of SOD1,
TARDBP, FUS, UBQLN2,
OPTN, and C9ORF72 genes

Spasms,
Muscle atrophy,
Squelettal muscle
paralysis,
Cognitive or
behavioral
dysfunction

Riluzole

Although the etiology and the pathological mechanism of the neurodegenerative diseases are not
completely understood, it has been established that the progressive loss of neurons results from the
combination of multiple factors (Figure 1). First, genetic factors are involved in the appearance
of misfolded amyloid-Aβ protein and other misfolded mutant forms like hyperphosphorylated
Tau (p-Tau) and Huntingtin proteins [3–5,10,14]. All these mutated proteins aggregate and form
deposits. The resulting aggregates can be toxic, and can affect the intracellular organelles such as
mitochondria [14,21,25,27]. The disruption of the mitochondrial membrane causes neuronal cell
death [25,27].
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Figure 1. Neurodegeneration is triggered and boosted by a vicious circle involving neurotoxic protein
accumulation, oxidative stress, mitochondrial damage, DNA damage, and impairment of the calcium
(Ca2+) homeostasis, neurotrophin deficiency, neuroinflammation, genetic, and environmental factors.

Second, neurotrophic factors deficiency has been reported in the severe neurodegenerative
disorders [11,13,29–33]. Neurotrophins regulate the neuronal survival, differentiation, growth,
and regeneration, as well as the synaptic plasticity. Studies have shown that the levels of brain
derived neurotrophic factor (BDNF) and its tropomyosin kinase B (TrkB) receptor are decreased in the
hippocampus and the cerebral cortex at the beginning of the Alzheimer’s disease [11]. In addition,
the administration of BDNF mimetics into transgenic mouse models of AD has enhanced learning and
memory capacities [31].

Third, oxidative stress is the most common feature of neurodegenerative diseases [15–20].
Reactive Oxygen Species (ROS) such as superoxide anions, hydroxyl radicals, and hydrogen
peroxide (H2O2) are produced by the mitochondrial transport chain, the endoplasmic reticulum,
the Krebs cycle, and the plasma membrane involving the superoxide-generating NADPH oxidase
(NOX) macromolecular complex [17]. Oxidative stress occurs under environmental factors and
when the generation of ROS exceeds the natural antioxidant defenses of the cell (promoted by
superoxide dismutase, catalase, glutathione peroxidase, carotenoids, and vitamins E or C) [15–20].
ROS accumulation attacks proteins, nucleic acids, and membrane lipids, and thus, causes impairments
of the neuronal cell functions and integrity [18–20]. Mitochondrial lesions are also mediated by
ROS. This leads to the alteration of the neuronal cell bioenergetics, the disruption of the calcium
(Ca2+) homeostasis, or the activation of the mitochondrial permeability transition pore (mPTP).
Thus, a vicious cycle is formed (Figure 1), which amplifies the cellular dysfunction and triggers
neurodegeneration [17–26].

Fourth, neuro-inflammation is a crucial factor that favors neurodegenerative disease development.
Several inflammatory markers (such as chemokines, cytokines, or proteins in the acute phase) are
upregulated and cause inflammation. In fact, elevated levels of the inflammatory markers have been
found during the progression of the neurodegenerative diseases [27,28].
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3. Curcumin Potential for Neuroprotection against Neurodegenerative Diseases

Curcumin is a hydrophobic polyphenolic substance (Figure 2) produced in the root of the plant
Curcuma Longa L. This antioxidant compound is extensively marketed worldwide as a nutraceutical in
various preparations, because it has a very safe nutraceutical profile with low side effects. Curcumin has
been reported to be well tolerated at doses up to 8 g per day over short periods in humans [32].
Research on the pharmacological activities of curcumin has attracted strong attention in relation to its
multiple actions of therapeutic interest, e.g., the anti-inflammatory, antioxidant, antiviral, antibacterial,
antifungal, and antitumor activities. These activities appear to be dose-dependent [33].
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3.1. In Vitro and In Vivo Studies of Curcumin Properties in Neurodegenerative Disease Models

The neuroprotective potential of curcumin (Figure 2) and its antioxidant, anti-inflammatory,
and amyloid Aβ binding properties have been highlighted in in vitro and in vivo investigations of
different neurodegenerative disease models [33–42]. Curcumin has been found to increase the levels
of glutathione (GSH) and malondialdehyde (MDA), as well as the antioxidant enzyme [superoxide
dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT)]
activities in the rat brain, thus preventing the stress-induced oxidative damage of brain [37,39].
The anti-inflammatory properties of curcumin have been characterized by the inhibition of the
inflammatory chemokines, by increased levels of the anti-inflammatory cytokines, and by enhanced
expression levels of induced nitric oxide synthase (iNOS) and the transcription factor NF-Kb [39].
Curcumin has been shown to prevent the fibrillation of α-synuclein at the earliest stage of the
aggregation process, as well as the fibrillation of the globular protein hen egg-white lysozyme
(HEWL) [40]. Both proteins are known to form amyloid-like fibrils. These results have suggested that
curcumin might be a potential therapeutic agent for preventing protein aggregation in Alzheimer’s,
and Parkinson’s diseases [40]. Recent in vitro and in vivo investigations of curcumin’s activities in
neurodegenerative disease models [41–50] are summarized in Table 2.
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Table 2. Recently reported curcumin (CU) activities in in vitro and in vivo models of neurodegenerative
diseases [41–50].

Disease Model/Administration
Route Mechanism Outcomes

AD

In vitro: human
neuroblastoma
SH-SY5Y and IMR-32
cells

Enhancement of the expression
of DNA repair enzymes (APE1, pol β, and
PARP1 1) to halt the oxidative DNA base
damage via base excision repair (BER) pathway;
Activation of the antioxidant response
element (ARE) via Nrf2 upregulation

Revitalization of the neuronal
cells from Aβ 2 induced
oxidative stress [41].

AD

In vitro: mouse
hippocampal clone
neuronal cell line HT-22
cells treated with Aβ
1-42,
In vivo: mice with
APP/PS1 transgenes

Decrease of the autophagosomes number,
Increase of the lysosomal Ca2+

regulation of PI(3,5)P2
and Transient Receptor Potential
Mucolipin-1 Expression (TRPME)

Neuronal cell growth,
Protective role of CU on
memory and cognition
impairments [42].

AD In vivo: rat,
oral supplementation

Increase of GPx 3, CAT 4, GSH 5 activities and
Ach 6 levels

Improving memory and
cognitive abilities [43].

PD
In vivo: Drosophila
model of PD with
dUCH 7 knockdown

Effects on dUCH 7 knockdown, a homolog of
human UCH-L1

Decrease of ROS levels,
Improved locomotive abilities,
Reduction of dopaminergic
neurons degeneration [44].

PD

In vivo: male
Sprague-Dawley rats
injured by 6-OHDA 8 in
the left striatum

Activation of the Wnt/β-catenin signaling
pathway,
Higher Wnt3a and β-catenin mRNA and
protein expressions,
c-myc and cyclin D1 mRNA expression,
enhanced SOD 9 and GPx 3 contents, decreased
MDA 10 content and elevated mitochondrial
membrane potential

Protective effect of CU against
oxidative stress-induced injury,
Enhanced viability, survival,
and adhesion, attenuated
apoptosis of deutocerebrum
primary cells [45].

PD

In vivo: MPTP 11 mice,
intranasal mode of
administration of CU
(mucoadhesive system)

Increase of dopamine concentration in brain,
which improves muscular coordination and
gross behavioral activities of the test animal,
Significant reduction of the MPTP11-mediated
dopamine depletion

Improvement in motor
performance,
Symptomatic neuroprotection
against MPTP-induced
neurodegeneration in the
striatum [46].

HD
In vivo: CAG140 mice,
a knock-in (KI) mouse
model of HD

Decreased huntingtin aggregates, increased
striatal DARPP-32 and D1 receptor mRNAs

Partial improvement of
transcriptional deficits, partial
behavioral improvement [47].

Diazepam-induced
cognitive
impairment

In vivo:
diazepam-treated rats,
oral supplementation

Downregulation of the extracellular
signal-regulated kinase (ERK 1/2)/nuclear
transcription factor-(NF-)κB/pNF-κB pathway
in the hippocampus and the iNOS 12 expression
in the hippocampus and frontal cortex

Improvement of the cognitive
performance, Decrease of
blood and brain oxidative
stress levels [48].

Alcohol-induced
neurodege
neration

In vivo: rat,
oral supplementation

Decrease of the reduced form of GSH 5, SOD 9,
GPx 3, GR 13, change in the Bcl-2 levels,
Activation of the CREB-BDNF signaling
pathway

Neuroprotection against
alcohol-induced oxidative
stress, apoptosis
and inflammation [49].

Nicotine-induced
neurodege
neration

In vivo: rat,
oral supplementation

Activation of the CREB-BDNF signaling
pathway

Neuroprotection against
nicotine-induced
inflammation, apoptosis and
oxidative stress,
Reduction of the motor
activity disturbances [50].

1 Poly [ADP-ribose] polymerase 1; 2 Aβ-amyloid; 3 Glutathione Peroxidase; 4 Catalase; 5 Glutathione;
6 Acetylcholine; 7 Ubiquitin carboxy-terminal hydrolase; 8 6-Hydroxydopamine; 9 Superoxide dismutase;
10 Malondialdehyde; 11 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 12 Induced Nitric Oxide Synthase; 13

Glutathione Reductase.

3.2. Clinical Trials and Curcumin Limits

A serious obstacle to the pharmaceutical application of curcumin has arisen from its limited
water-solubility and low bioavailability. In addition, this compound is chemically instable, which may
cause a loss of biological activities. The failure of free curcumin in clinical trials is likely due to its
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limited bioavailability. For instance, curcumin has been delivered in doses between 1 and 4 g/per
day as capsules or as powder mixed with food in trials for treatment of Alzheimer’s disease patients.
The performed 6-month treatment study found no differences in the Aβ-amyloid levels between the
treatment groups or in the Mini Mental State Examination (MMSE) scores [51]. Similarly, oral curcumin
in a 24-week, randomized, double blind, and placebo-controlled study for AD treatment has shown no
detectable differences in the measured biomarkers from the different treatment groups [52]. A clinical
study with three single cases of patients receiving curcumin (100 mg/day) reported that only one
patient increased his MMSE score from 12/30 to 17/30 after 12 weeks of treatment (improved
calculation, concentration, transcription of the figure, and spontaneous writing). Two of the patients
were on donepezil treatment before starting the curcumin trial [53]. Based on all performed trials
with AD patients, it was, however, difficult to conclude if curcumin has positive effects on the AD
symptoms [54].

In fact, the major fraction (35–89%) of orally-administered curcumin can be lost due to
its low bioavailability. The intestinal mucosa and mucus form a physical barrier to curcumin
adsorption. The drug cannot reach the circulation in a bioactive form as it undergoes reduction and
metabolism/conjugation in the liver. Reductases enzymatically reduce curcumin to dihydrocurcumin,
tetrahydrocurcumin, and hexahydrocurcumin. Furthermore, curcumin may be conjugated to sulfates
and glucuronides [55–57]. Thus, most of the circulating curcumin is in a conjugated form.

The necessity of the development of a delivery system for the protection of curcumin from rapid
metabolism and for the improvement of its bioavailability has become evident [58]. A randomized,
double-blind, placebo-controlled clinical trial examined the acute administration (effects 1 h and 3 h
after a single dose application), chronic (4 weeks) administration, and acute-on-chronic (1 h or 3 h
after a single dose followed by a chronic treatment) effects of solid-lipid-nanoparticle (SLNP) loaded
by curcumin. The results of the SLNP formulation of curcumin (400 mg in capsules Longvida®) on
cognitive function, mood, and blood biomarkers were obtained with 60 healthy adults (aged 60–85).
SLNP-loaded curcumin significantly improved the performance in sustained attention and working
memory tasks one hour after its administration (as compared to placebo). Working memory and mood
(general fatigue and change in the calmness state, contentedness, and fatigue induced by psychological
stress) were essentially improved following chronic treatment. A significant acute-on-chronic treatment
effect on alertness and contentedness was also observed [59].

4. Nanocarrier-Mediated Curcumin Delivery

Nanotechnology for nanomedicine development employs functional materials with appropriate
nanoscale organization that can interact with biological systems and induce desired physiological
responses while minimizing undesirable side effects [60]. Nanotechnology-based delivery systems
can influence drug capacity to cross the biological barriers (e.g., the BBB) and reach the targeted brain
regions [58–61]. Therefore, nanocarriers are promising for the development of personalized medicines
for the treatment of neurological disorders [62–67].

Lipid-based nanoparticles, including solid lipid nanoparticles (SLNPs), nanostructured lipid
carriers (NLC), liposomes and liquid crystalline nanocarriers (LCN), as well as polymer-based
nanoparticles (Figure 3), have been developed to overcome the poor solubility, stability,
and bioavailability of curcumin, and to promote its utilization as a drug in disease treatments [68–124].
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Lipid-based nanoparticles have the advantage of being the least toxic carriers for in vivo
applications. The lipids used to prepare biocompatible and biodegradable nanoparticles are usually
naturally-occurring molecules with low acute and chronic toxicity. In the case of polymeric
nanoparticles, the in vivo degradation of the polymer matrices might cause toxic effects [94].
The biocompatibility and the physico-chemical diversity of lipids and their capacity to enhance
the oral bioavailability of drugs have made this kind of nanocarriers very attractive systems for drug
delivery. As a matter of fact, lipid-based formulations may positively influence drug absorption in
several ways, e.g., by influencing the solubilization properties, preventing the drug precipitation
upon intestinal dilution, increasing the membrane permeability, inhibiting the efflux transporters,
reducing the CYP enzymes, or enhancing the lymphatic transport [94,122].

Among the lipid-based nanoparticles, SLNPs have been intensively developed because they
combine the advantages of different carrier systems like liposomes and polymeric particles. Similarly to
liposomes, SLNPs are composed of physiologically-biocompatible excipients (lipids and fatty acids).
In the same way to polymeric NPs, their solid matrix core can efficiently protect the loaded active
pharmaceutical ingredient against chemical degradation under the harsh conditions of biological
milieux. Therefore, SLNPs provide controlled release profiles of the encapsulated drugs [95].

In addition to the above advantages, liposomes can encapsulate and transport both lipophilic
and hydrophilic drugs. They have a high degree of similarity to cell membranes in terms of
lipid composition and organization, which facilitates the bioavailability of the pharmaceutical
compounds [102]. Liquid crystalline nanocarriers (LCN) such as cubosomes and hexosomes
(Figure 3) involve multiple compartments for encapsulation of either lipophilic or hydrophilic
drugs. They display structural advantages which enable high encapsulation efficacy for molecules
of various sizes and hydrophilicity [113,116]. LCNs are formed by self-assembly of lyotropic lipids
such as unsaturated monoglycerides, phospholipids, glycolipids, and other amphiphilic molecules.
For example, monoolein, which is a nontoxic, biodegradable, and biocompatible lipid, is classified as a
GRAS (Generally Recognized As Safe), and ω-3 polyunsaturated fatty acids (n-3 PUFA) have been
shown to be highly beneficial in various disease models of neurodegeneration [123,124].

In the following section, we summarize recently reported works on curcumin delivery to in vitro
and in vivo models of neurodegenerative diseases.
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4.1. Curcumin Delivery by Polymeric Nanoparticles

Polymeric nanoparticles of a biocompatible and biodegradable nature are of essential interest
as drug delivery nanocarriers. The release of the encapsulated drug can be modulated by altering
the polymer composition and amphiphilicity. Poly(lactic-co-glycolic acid) (PLGA) is one of the most
commonly-used biodegradable synthetic polymers. It is a FDA- (US) and EMA-approved platform
for the delivery of drugs to humans. PLGA-derived nanoparticles have been successfully used for
the encapsulation of different hydrophobic compounds (such as curcumin) by nanoprecipitation or
by single emulsion techniques [71]. Hydrophilic molecules can be encapsulated by means of double
emulsions or by two-step nanoprecipitation methods. On the other site, polymeric micelles have been
studied towards site-specific drug delivery [68–70].

Micelles are formed by amphiphilic macromolecules, which self-assemble into nano-sized
(10–100 nm in diameter) core/shell structures in excess aqueous media (Figure 3, top). The core-shell
organization facilitates the incorporation of curcumin inside the hydrophobic core, while the water
solubility of the nanocarriers is ensured by their hydrophilic corona [68]. Amphiphilic co-polymers
self-assemble into micelles in aqueous solutions due to the hydrophobic interactions among their
water-insoluble segments. Curcumin-loaded polymeric micelles have received attention due to various
features (Table 3), like (i) the enhanced solubility of the drug; (ii) the sustained CU release profile;
and (iii) the small size of the PEG-decorated carriers (<200 nm), which stabilizes them in biological
fluids [64–66]. Micelles formed by the PLGA-PEG-PLGA synthetic copolymer have shown potential in
modifying the pharmacokinetics and tissue distribution of curcumin. Evaluation of pharmacokinetics
and biodistribution has demonstrated a prolonged half-life of the CU-micelles and a more efficient
drug delivery to brain areas as compared to the carrier-free CU administration [71].

Table 3. Curcumin-loaded polymeric nanoparticles studied in in vitro and in vivo models of
neurodegenerative diseases.

Disease Nanoformulation Type Model/Administration
Route Outcomes

AD PLGA 1 nanoparticles
In vitro: SK-N-SH human
neuroblastoma cells

Protection against H2O2-induced oxidative
damage [70].

AD PLGA nanoparticles

In vitro: Neural stem cells,
In vivo: Aβ 2-amyloid
induced rat model of
AD-like phenotypes

Expression of genes involved in neuronal
proliferation and differentiation,
Reverse learning and memory
impairments [73].

AD
PLGA nanoparticles
conjugated with Tet-1
peptide

In vitro
Anti-amyloid activity unchanged, decrease
of aggregates size [74], Diminution of
anti-oxidant activity.

AD
PLGA nanoparticles
functionalized with
glutathione

In vitro: in SK-N-SH cells Neuronal uptake,
Enhanced curcumin action [75,76].

AD PLGA nanoparticles In vivo: Rat, IV, oral Increased CU bioavailability and plasma
concentration [77].

AD PLGA nanoparticles In vivo: Rat Prolonged CU retention time in cerebral
cortex and hippocampus [78].

AD

Apolipoprotein
E3-mediated
poly(butyl)cyano
acrylate nanoparticles

In vitro: SH-SY5Y cells Protection against Aβ-induced
cytotoxicity [79].

AD

Pegylated poly(alkyl
cyanoacrylate)
nanoparticles with
anti-Aβ 1–42 antibody at
the surface

In vitro Inhibition of Aβ aggregation [80].
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Table 3. Cont.

Disease Nanoformulation Type Model/Administration
Route Outcomes

AD

Spherical (SPNs) or
Discoidal (DPNs)
polymeric nanocontructs
PLGA, DSPE-PEG 3

In vitro: Raw 264.7 cells
In vitro production of Aβ
fibers

Decrease of the pro-inflammatory cytokines
in macrophages stimulated via Aβ
fibers [81]

AD Polymeric nanoparticles
(NanoCurcTM)

In vitro: SK-N-SH
differentiated cells
In vivo: Mice, parenteral
injection

Protection against H2O2-induced
oxidative stress,
Downregulation of caspase 3 and 7
activities, mediators of the
apoptotic pathway,
Increased glutathione levels [82].

AD

Nanocurcumin
CU within polyethylene
glycol-polylactide
diblock polymer micelles

In vitro
In vivo: AD model Tg2576
mice

Higher curcumin concentration in plasma,
6 times higher area under the curve and
mean residence time in brain than ordinary
CU, Improved memory function [83].

AD Nanoemulsion In vitro: SK-N-SH cell line,
Sheep nasal mucosa

Safe for intranasal delivery for brain
targeting, Higher flux and permeation
across sheep nasal mucosa [84].

Mitochon drial
dysfunction in

brain aging
Micelles

In vitro: PC12 cells In vivo:
NMRI mice; Ex vivo:
isolated mouse brain
mitochondria

Improved bioavailability of native
curcumin around 10- to 40-fold in plasma
and brain of mice, Prevention of
mitochondrial swelling in isolated mouse
brain mitochondria, Protection of PC12
cells from nitrosative stress as compared to
free CU [85].

PD Alginate nanocomposites In vivo: Drosophila, oral Reduction of oxidative stress and apoptosis
in the brain [86].

1 Poly(lactic-co-glycolic acid); 2 Aβ-amyloid; 3 Distearoy phosphatidylethanolamine-Polyethylene glycol.

4.2. Curcumin Delivery by Lipid Nanoparticles

4.2.1. Solid Lipid Nanoparticles (SLNPs) and Nanostructured Lipid Carriers (NLCs)

Solid lipid nanoparticles (SLNPs) are submicron colloidal lipid carriers (from 50 nm to 1000 nm in
diameter) which maintain a solid, spherical shape at room temperature. They possess a solid lipid core
matrix stabilized by emulsifiers that can solubilize lipophilic molecules. The CU-SLNPs are usually
small, ranging from 100 to 300 nm in diameter. The total drug content can reach up to 92% when the
SLNPs are manufactured using the micro-emulsification technique [87]. In an experimental rat model of
cerebral ischemic reperfusion injury, animals fed with CU-loaded SLNPs have had a 90% improvement
in their cognitive function along with a 52% inhibition of the acetyl cholinesterase activity [88].
The investigated formula has been shown to increase the levels of superoxide dismutase (SOD),
catalase (CAT), glutathione (GSH), and the activities of mitochondrial enzymes, while decreasing the
lipid peroxidation and the peroxynitrite levels. Furthermore, this formulation showed a 16.4 to 30-fold
improvement in the bioavailability of CU in the brain upon oral and intravenous (IV) administrations,
respectively [88]. The product Longvida® (Verdure Sciences Inc.) is a SLNP-formulation of curcumin
which can yield from 0.1 to 0.2 µM plasma levels of CU with associated 1–2 µM brain levels of free CU
in animals [89–91]. This formula was later optimized as “lipidated Cur”, which can yield more than
5 µM CU in mouse brain [93]. Other formulations of CU-loaded SLNPs, tested in Alzheimer’s disease
models, are outlined in Table 4.
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Table 4. Curcumin-loaded lipid nanoparticles studied in in vitro and in vivo models of
neurodegenerative diseases.

Disease Nanoformulation Type Model/Administration Route Outcomes

AD Solid lipid nanoparticles
In vitro: Mouse
neuroblastoma cells after Aβ 1

exposure

Decreased ROS production,
Prevented apoptotic death,
Inhibition of Tau formation [89,90].

AD Solid lipid curcumin particle
(SLCP), Longvida®

In vitro: lipopolysaccharide
(LPS)-stimulated RAW 264.7
cultured murine macrophages.

Improved solubility over unformulated
curcumin,
Decreased LPS induced pro-inflammatory
mediators NO, PGE2, and IL-6 by
inhibiting the activation of NF-kB [92].

AD Solid lipid particleswith CU
(SLCP)

In vivo: one-year-old
5xFAD-and age-matched
wild-type mice,
intraperitoneal injections of
CU/SLCP

Decrease in Aβ plaque loads in dentate
gyrus of hippocampus,
More anti-amyloid, anti-inflammatory, and
neuroprotective [91].

AD Solid lipid nanoparticles In vivo: Rat, oral Effective delivery across the BBB 2 [88].

HD Solid lipid nanoparticles
(CU-SLNs)

In vivo: (3-NP)-induced HD in
rats

Restored glutathione levels and superoxide
dismutase activity,
Activation of nuclear factor-erythroid 2
antioxidant pathway,
Reduction in mitochondrial swelling, lipid
peroxidation, protein carbonyls and
reactive oxygen species [89].

CNS
disorders

Solid lipid nanoparticles
(CU-SLNs) and
nanostructured lipid carriers
(CU-NLCs)

In vivo: male
Sprague−Dawley rats 6−8
weeks old, oral

Enhanced curcumin brain uptake,
Cur-NLCs enhance the absorption of brain
curcumin more than 4-folds in comparison
with Cur-SLNs [95].

AD

Lipoprotein (LDL)-mimic
nanostructured lipid carrier
(NLC) modified with
lactoferrin (Lf) and loaded
with CU

In vivo: Rat, oral

Cellular uptake mediated by the Lf receptor,
Permeability through the BBB and
preferentially accumulation in the brain,
Efficacy in controlling the damage
associated with AD [96].

AD Liposomes functionalized
with TAT-peptide In vitro Permeability across the BBB enhanced [98].

AD Liposomes containing
cardiolipin In vitro: SK-N-MC cells

Inhibition of the phosphorylation of p38,
JNK, and tau protein,
Protection against serious degeneration of
Aβ insulted neurons [101].

AD

WGA 3-conjugated and
cardiolipin-incorporated
liposomes carrying NGF 4 and
CU

In vitro: Human astrocytes
and to protect SK-N-MC cells
Apoptosis induced by
β-amyloid1–42 (Aβ 1–42)
fibrils

Increased entrapment efficiency of NGF
and CU, of NGF release and cell viability,
Decreased release of CU,
Permeability of NGF and CU across the
blood–brain barrier [102].

AD Liposomes
In vivo: Mice, stereotaxic
injection in the right
hippocampus and neocortex

Decrease in Aβ secretion and toxicity [97].

AD Liposomes decorated with
anti-transferrin receptor mAb

In vivo injection,
hippocampus and neocortex

Decrease in Aβ 1–42 aggregation,
Internalization in the BBB model [99].

AD
Liposomes functionalized
with a curcumin-alkyne
derivative TREG

Human biological fluids from
sporadic AD patients and
down syndrome subjects

Sequestration of Aβ 1–42 [100,101].

Neuronal
loss

Liquid-crystalline lipid
nanoparticles carrying
curcumin and DHA

In vitro: SH-SY5Y cells

Neuronal viability and neurite outgrowth
by activation of the TrkB receptor signaling,
and promotion of phosphorylated CREB
protein expression [118].

AD

Lipopeptide: a short
microtubule- stabilizing
peptide conjugated to a
hydrophobic palmitic acid
chain

In vitro: Neuro-2a cells,
PC-12 differentiated cells

Neurite outgrowth in absence of external
growth factors,
Neural cells morphology and health
amelioration [120,121].

1 Aβ-amyloid; 2 Blood-brain barrier; 3 Wheat germ agglutinins; 4 Nerve growth factor.
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Nanostructured lipid carriers (NLC) are referred to as the “second generation” of SLNPs. NLCs
are composed of mixtures of sterically different amphiphilic molecules. Often, mixtures of liquid-phase
lipids and solid-phase lipids yield matrices with imperfections, which may incorporate increased
quantities of drug molecules as compared to the SLNPs. Despite of the presence of the liquid-phase
lipid, the NLC matrix appears to be in a solid state at room and body temperatures. The solid state
is controlled by the fraction of the included liquid-phase lipid [94]. Sadegh-Malvajerd et al. have
reported an enhanced entrapment efficiency of curcumin in NLCs (94% ± 0.74) as compared to
SLNPs (82% ± 0.49). The pharmacokinetic studies, performed after intravenous (IV) administration of
4 mg/kg dose of curcumin in rats, have indicated that the amount of curcumin available in the brain
was significantly higher for curcumin-loaded NLCs (AUC0–t = 505.76 ng/g h) as compared to free
curcumin (AUC0–t = 0.00 ng/g h) and curcumin-loaded SLNs (AUC0–t = 116.31 ng/g h) (P < 0.005) [95].
The outcomes of other recent investigations of CU-loaded NLCs in models of neurodegenerative
diseases are summarized in Table 4.

4.2.2. Liposomes

Liposomes are lipid bilayer-based, self-assembled, closed colloidal structures, typically 25 nm
to 5 µm in diameter [97]. They usually have a spherical shape comprising an aqueous core
surrounded by a hydrophobic lipid membrane (Figure 3). The lipid bilayer can be loaded with
hydrophobic or amphiphilic molecules, whereas the hydrophilic molecules can be encapsulated
in the aqueous reservoir of the liposomes. Often, liposomes are composed of phospholipids
(e.g., phosphatidylcholines) or mixtures of phospholipids with co-lipids. Various liposome
architectures can form depending on the preparation methods; for instance, multilamellar vesicles
(MLV, involving a stack of several lipid bilayers), small unilamellar vesicles (SUV, constituted by a
single lipid bilayer), large unilamellar vesicles (LUV), tubular vesicles, and cochleate vesicles.

Curcumin encapsulated in liposomes has been proven to be a safe formulation, which enhances
the CU solubility and its cellular uptake [97–101]. Liposomes deliver CU into the cells via membrane
fusion or endocytosis process. Liposomal formulations with a PEG surface coating provide a longer
circulation time for the encapsulated drug. Biomolecular ligands can be anchored to the liposome
surface in order to enhance the receptor targeting capacity, and hence, the permeability across the
brain-blood barrier (BBB) [102,103]. The outcomes of the investigated CU-loaded liposomes in models
of neurodegenerative diseases are summarized in Table 4.

4.2.3. Liquid Crystalline Nanoparticles (LCNPs) with Internal Structure

Liquid crystalline nanoparticles (LCNPs) are self-assembled architectures of lyotropic lipids,
co-lipids (surfactants or oils), and water. They are typically formed upon dispersion and fragmentation
of bulk lyotropic liquid crystalline phases (e.g., bicontinuous cubic, sponge, or inverted hexagonal
phases) [104–106]. The amphiphilic molecules spontaneously organize into compartments with
hydrophobic and hydrophilic domains (Figure 3), which can encapsulate lipophilic or hydrosoluble
guest compounds. The structures formed by this self-assembly process are thermodynamically stable.
The initial liquid crystalline phases are usually viscous and have a short-range order in comparison to
solids, but long-range order in comparison to liquids. A typical example of a lyotropic liquid crystalline
phase is the inverted bicontinuous cubic phase formed upon mixing of unsaturated monoglyceride
lipids with water [105]. Cubosomes are produced upon dispersion of the bicontinuous cubic liquid
crystalline phases in excess aqueous medium. Their periodic structures comprise folded bicontinuous
lipid bilayer membranes and periodic networks of aqueous channels (Figure 3). The latter enable high
encapsulation capacity for hydrophilic guest macromolecules [106–111]. Lipid nanocarriers of liquid
crystalline internal structures have received considerable attention as delivery vehicles through the
BBB [111,112].

Curcumin has been successfully entrapped into monolein-based LCNPs with almost 100%
encapsulation efficiency [113]. LCNPs dispersion was very stable in terms of nanocarrier sizes
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and surface charge upon storage. LCNPs were efficiently taken up by cultures cells following the
sustained release of curcumin. In addition, they provided inhibition of the cell proliferation and
apoptosis induction in an anticancer study [113]. A recent investigation of an inverse hexagonal (HII)
liquid crystalline phase encapsulating curcumin has demonstrated that the release of curcumin was a
concentration-diffusion controlled process in the early stages, whereas multiple diffusion mechanisms
coexisted in the later stages of drug release. Radical scavenging experiments have shown that
curcumin-loaded LCNPs exert the desired antioxidant activity [114]. Thus, curcumin-loaded LCNPs
may be promising for neurodegenerative disease treatments using sustained-release nanoformulations
for combination therapies [115,116]. Further results obtained with lipid-based LCNPs in models of
neurodegenerative disease are presented in Table 4.

5. Conclusions

The naturally occurring compound curcumin is increasingly studied in neurodegenerative
disease models due to its neurogenesis-stimulating properties and its anti-amyloid and anti-tau
potential. Nanotechnology-based delivery systems of curcumin have been developed with the
purpose of improving its solubility, stability, and bioavailability in potential treatment strategies
of neurodegenerative disorders. We summarized recent advances in research on safe liquid crystalline
lipid-based nanocarriers (cubosome, spongosome, hexosome, and liposome particles) and solid lipid
nanoparticles, as well as on selected biodegradable polymer-based nanocarriers. The emphasis is
given on the observed biological outcomes of the curcumin nanoformulations in in vitro and in vivo
models of the multifactor neurodegenerative diseases (AD, PD, HD and ALS). Despite the difficulty
of overcoming biological barriers, promising results on the enhancement of the permeability of the
BBB and receptor-mediated delivery across the BBB have been reported with liposome and cubosome
nanocarriers. Further investigations will be required in order to understand the involved mechanisms
of action of curcumin nanoformulations in the proposed neurodegenerative disease models, and to
optimize the delivery systems and strategies towards translation into clinics.
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Abbreviations

Aβ Amyloid βeta
ACh Acetylcholine
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
ApoE Apolipoprotein E
APP Amyloid beta precursor protein
ARE Antioxidant response element
BBB Brain blood barrier
BDNF Brain derived neurotrophic factor
Ca2+ Calcium ion
CAT Catalase
CHCHD2 Coiled-coil-helix-coiled-coil-helix domain 2
C9ORF72 Chromosome 9 open reading frame 72
COMT Catechol-O-methyltransferase
CREB cAMP (Cyclic adenosine monophosphate response) element-binding protein
CU Curcumin
CYP Cytochrome P450
DARPP Dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein
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DHA Docosahexaenoic acid
DNA Deoxyribonucleic acid acid
DNAJC13 DNA J heat shock protein family (Hsp40) member C13
DSPE Distearoy phosphatidylethanolamine
EIF4G1 Eukaryotic translation initiation factor 4 gamma 1
EMA European medicines agency
ERK Extracellular signal regulated kinase
FDA Food and drug administration
FUS RNA binding protein Fused in Sarcoma
GBA Glucocerebrosidase
GRAS Generally recognized as safe
GPx Glutathione peroxidase
GR Glutathione reductase
GSH Glutathione
HEWL Hen Egg White Lysozyme
HD Huntington disease
H2O2 Hydrogen peroxide
HTT Huntingtin
IL-6 Interleukin 6
iNOS induced nitric oxide synthase
IV intravenous
JNK Jun N-terminal kinase
LCNs Liquid crystalline nanocarriers
LDL Low density lipoprotein
Lf Lactoferrin
LPS Lipopolysaccharide
LRRK1 Leucine-rich repeat kinase 1
LUV Large unilamellar vesicles
MAO-B Monoamine oxidase type B
MDA Malondialdehyde
MLV Multilamellar vesicles
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MMSE Mini Mental State Examination
mRNA Messenger Ribonucleic Acid
NF-kb Nuclear Factor Kappa Beta
NGF Nerve growth factor
NLC Nanostructured lipid carriers
NO Nitric oxide
NPs nanoparticles
Nrf2 Nuclear factor erythroid 2–related factor 2
NSAIDs Non-steroidal anti-inflammatory drugs
OHDA 6 Hydroxydopamine
OPTN Optineurin
PD Parkinson disease
PEG Polyethylene glycol
PINK1 PTEN-induced putative kinase 1
PLGA Poly (lactic-co-glycolic acid)
PRKN Parkin
PSEN Presenilin
PUFA Polyunsaturated fatty acids
ROS Reactive oxygen species
SLCP Solid lipid curcumin nanoparticles
SLN Solid lipid nanoparticles
SOD1 Superoxide dismutase 1
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SNCA Synuclein alpha
SUV Small unilamellar vesicles
TARDBP TAR DNA binding protein (TDP-43)
TREG T regulatory cell
TRPME Transient Receptor Potential Mucolipin-1 Expression
TrkB Tropomyosin receptor kinase B
UBQLN2 Ubiquitin 2
UCH Ubiquitin carboxy-terminal hydrolase
VPS35 Vascular protein sorting
WGA Wheat-germ agglutinin
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