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Background: Mild cognitive impairment in Parkinson’s disease (PD-MCI) is associated

with faster cognitive decline and conversion to dementia. There is uncertainty about the

role of β-amyloid (Aβ) co-pathology and its contribution to the variability in PD-MCI profile

and cognitive progression.

Objective: To study how presence of Aβ affects clinical and cognitive manifestations as

well as regional brain volumes in PD-MCI.

Methods: Twenty-five PD-MCI patients underwent simultaneous PET/3T-MRI with

[18F]flutemetamol and a clinical and neuropsychological examination allowing level II

diagnosis. We tested pairwise differences in motor, clinical, and cognitive features with

Mann–Whitney U test. We calculated [18F]flutemetamol (FMM) standardized uptake value

ratios (SUVR) in striatal and cortical ROIs, and we performed a univariate linear regression

analysis between the affected cognitive domains and the mean SUVR. Finally, we

investigated differences in cortical and subcortical brain regional volumes with magnetic

resonance imaging (MRI).

Results: There were 8 Aβ+ and 17 Aβ- PD-MCI. They did not differ for age,

disease duration, clinical, motor, behavioral, and global cognition scores. PD-MCI-Aβ+

showed worse performance in the overall executive domain (p = 0.037). Subcortical

ROIs analysis showed significant Aβ deposition in PD-MCI-Aβ+ patients in the right

caudal and rostral middle frontal cortex, in precuneus, in left paracentral and pars

triangularis (p < 0.0001), and bilaterally in the putamen (p = 0.038). Cortical regions

with higher amyloid load correlated with worse executive performances (p < 0.05).

Voxel-based morphometry (VBM) analyses showed no between groups differences.
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Conclusions: Presence of cerebral Aβ worsens executive functions, but not motor and

global cognitive abilities in PD-MCI, and it is not associated with middle-temporal cortex

atrophy. These findings, together with the observation of significant proportion of PD-

MCI-Aβ-, suggest that Aβ may not be the main pathogenetic determinant of cognitive

deterioration in PD-MCI, but it would rather aggravate deficits in domains vulnerable to

Parkinson primary pathology.

Keywords: Parkinson’s disease, mild cognitive impairment, amyloid-β, atrophy, cognition, executive functions,

dementia, PET

INTRODUCTION

Cognitive alterations in Parkinson’s disease (PD) are among
the most disabling non-motor symptoms, and they impact

negatively on patient’s and caregiver’s quality of life and can be

present already in early stages of disease. Parkinson’s disease

with mild cognitive impairment (PD-MCI) have up to six-
fold higher risk to develop dementia (PDD) (1). However, the
characteristics and the severity of the cognitive profile as well
as the rate of progression to dementia are heterogenous (2, 3).
Factors contributing to variability in PD cognitive performance
are: (a) presence of specific genetic mutations or variants
(4), (b) characteristics of phenotypic manifestations including
dominant akinetic rigid form or early occurrence of postural
instability and hallucinations, (c) variable expression of synuclein
pathology, in particular presence of cortical Lewy bodies, (d)
presence of misfolded β-amyloid (Aβ), and in some cases of tau
neurofibrillary tangles, which are considered typical Alzheimer
hallmarks. Magnetic resonance imaging (MRI) studies in PD-
MCI have reported variable structural and functional patterns
without clarifying the underlying mechanisms (5–7). Some
studies have suggested contribution of Aβ cortical and subcortical
depositions to cognitive decline in PD particularly in association
with attentive and executive deficits, while others indicated an
increased risk of dementia in the late disease stages (8–13). These
differences may be related to the heterogeneous methodology
adopted including variability in age and sex as well as poorly
characterized cognitive diagnosis in relatively small cohorts (11,
14–17). In a recent PET/MRI study (18) in cognitively well-
characterized Lewy Body disease (LBD) patients, we observed
an integral role of brain amyloidosis in cognitive profile and
progression, affecting mainly global cognition (MoCA, MMSE),
attentive/executive, and semantic recall abilities. Our study also
confirmed the Aβ contribution to cognitive dysfunction in a
significant proportion of our Lewy body dementia subjects,
although half of the demented patients were Aβ-. However,
we did not explore whether and at which extent presence of
amyloid deposition contributes specifically to MCI status in PD
patients. Considering MCI established heterogeneity as well as its
greater vulnerability to dementia, the purpose of this analysis is to
investigate whether amyloidosis distinguishes a specific PD-MCI
profile across the various and heterogeneous patterns and if so
its contribution to dementia development. Hence, in the current
study, we expanded previous analysis of PET/MRI data and
focused specifically on the quantification of [18F]flutemetamol

(FMM) deposition in the PD-MCI cohort, and in their related
cognitive, clinical, and brain structural correlates.

METHODS

Participants
Data of 25 PD-MCI were analyzed from the cohort recruited
in the context of a previously published study (18). Patients
were recruited at the Parkinson’s Disease and Movement
Disorders Unit of Neurology Clinic in Padua from 2016 to
2020. Parkinson’s disease diagnosis was based on the most recent
MDS clinical diagnostic criteria (19), confirmed by abnormal
DaTscan SPECT imaging. Exclusion criteria included deep brain
stimulation, atypical Parkinsonian disorders, severe psychiatric
or neurological comorbidity, presence of pathogenic genetic
mutations, and clinically relevant cerebrovascular disease on
MRI. All participants underwent a complete neuropsychological
evaluation, simultaneous PET/MRI with FMM, and a genetic
assessment. A customized genetic panel (more than 90 genes
associated to Movement Disorders) was used to analyze patients’
DNA, and only individuals without genetic mutations were
further included in this study. Regarding genetic variability as a
possible confounding factor, we excluded from this study subjects
carrying known PD genetic mutations and variants, but we
did not screen for apolipoprotein E (APOE) ε4. In particular,
mutations of the glucocerebrocidase (GBA) gene have been
associated with more rapid cognitive decline in PD-MCI, with
subsequent α-synuclein deposition enhancement as well as effects
in proteins implicated in dopamine production, metabolism, and
signaling (20).

The study was approved by the Ethic Committee of the
University of Padua (4340/AO/17). All patients gave written
informed consent according to the Declaration of Helsinki.

Clinical and Neuropsychological
Examination
Demographic and clinical characteristics were collected by
expert neurologists (AA, ACC). The severity of extrapyramidal
symptoms was assessed with the motor Unified Parkinson’s
Disease Rating Scale (21) as well as with the Hoehn and Yahr
score “on” medication. Levodopa Equivalent Daily Dose and
Dopamine Agonist Equivalent Daily Dose were calculated for
each patient (22). Patients’ age at disease onset was defined
as the age at which they noticed the first motor symptom
suggestive of PD. All participants underwent a comprehensive
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neuropsychological evaluation, in line with the MDS task force
level II PD-MCI diagnostic criteria (23) [for further details
on cognitive tests adopted, see Fiorenzato et al. (24)]. In all
patients the evaluation of functional and instrumental activities
of daily living was performed independently of the impairment
ascribable to motor or autonomic symptoms. Regarding the
behavioral evaluation, the Beck Depression Inventory (BDI-II),
Starkstein Apathy Scale, and the State-Trait Anxiety Inventory
(STAI-Y1 and Y2) were used to detect the presence of eventual
depression, apathy, state and trait anxiety, respectively. Patients
were evaluated in “on” medication state. The cognitive tests were
administered by trained neuropsychologists, in the morning, on
two separate occasions within 3–5 days.

PET/MRI Acquisition and PET/FMM
Images Classification
Parkinson’s disease patients in accordance with the amyloid
imaging procedure guidelines (25) received an intravenous
injection of about 185 MBq FMM (performed manually over
10 s and flushed with 30ml of saline over about 15 ± 5 s)
directly in an integrated 3T PET/MRI system (Biograph mMR;
Siemens, Erlangen, Germany). Images were acquired between 0–
10 and 90–110min after injection according to Cecchin et al. (26).
Anatomical volumetric data via T1-weighted-3D magnetization-
prepared rapid acquisition gradient echo sequence (TR 1.900ms,
TE 2.53ms, slice thickness 1mm, matrix 256 × 256, FOV
250mm) were simultaneously acquired. Additionally, a 1 mm-
isotropic T2-weighted-3D, and Two-Dimensional Susceptibility-
Weighted Imaging, were acquired for clinical evaluation,
excluding secondary parkinsonisms, the presence of vascular
brain damage, and allowing visual rating scales assessment.

Visual assessment of FMM images is a robust and reliable
method for detection of brain neuritic Aβ plaques (25). A binary
visual classification was performed by an expert nuclear medicine
physician (DC, with both in-person and e-training), blinded to
cognitive status and diagnosis, who rated each scan as amyloid-
positive (Aβ+) or negative (Aβ-).

For further details about PET reconstruction and PET/FMM
images classification procedures see Biundo et al. (18).

PET Quantification
The PET frames were realigned, averaged, and co-registered
with their respective MRI scans with the Freesurfer v7.01
(http://surfer.nmr.mgh.harvard.edu/). Since realignment might
bias standardized uptake value ratios (SUVRs) comparison and
partial volume correction (PVC) estimation (27), in order to
improve the reliability of the realignment process, both T1w3d
and PET were first manually z-cropped including medulla and
cerebellum and rigidly realigned to the anterior commissure-
posterior commissure line (AC-PC line) using the Freeview
Freesurfer tool. We performed voxel-based three-compartment
PVC to the MRI coregistered PET images using the PETSurfer
tool in FreeSurfer (28, 29). Standardized uptake value ratios were
computed to address intersubject effects using cerebellar gray
matter (GM) as the reference region.

PET SUVR Subcortical ROIs
Fourteen subcortical striatal and extra striatal regions ROIs
(nucleus accumbens, caudate, putamen, amygdala, globus
pallidus, thalamus, and hippocampus) were extracted in the
nativeMRI space using Freesurfer v7.01 Desikan/Killiany atlas 11
segmentations (30). Standardized uptake value ratio maps were
then projected to the subcortical regions to extract the mean
value for each PD patient.

PET SUVR Cortical Surface-Based Analysis
Vertex-wise general linear model (GLM) (between group
comparisons) comparing cerebral cortical SUVR of the PD-MCI
Aβ+/– was run using Freesurfer. Standardized uptake value
ratio maps of each subject were sampled onto the left and
right surfaces via the individual subject’s surface, and a surface-
based smoothing of 8-mm full width at half maximum was
applied. Surface areas of significant amyloid load, which survived
a cluster-wise Monte Carlo correction for multiple comparisons
after running 10,000 permutations, were considered for the
following steps.

PET SUVR Subcortical Analysis
Mean subcortical SUVR values were compared between
hemispheres using the Wilcoxon test and tested for Left-Right
hemisphere correlation using the non-parametric Spearman
test. Subcortical regions with an inter-hemisphere difference p
> 0.2 and a correlation significance of p < 0.001 were averaged,
to reduce the degrees of freedom in multiple comparisons
testing as well as to increase the statistical power. The obtained
values were compared between PD-MCI-Aβ+ and Aβ- with a
non-parametric Mann–Whitney U test for amyloid load.

Voxel Based MRI Cortical Analyses
The Brain Anatomical Analysis using Diffeomorphic
deformation (BAAD 4.31—http://www.shiga-med.ac.jp/
$\sim$hqbioph/BAAD/Welcome_to_BAAD.html) (31) and
Statistical Parametric Mapping tool (SPM12, https://www.fil.
ion.ucl.ac.uk/spm/software/spm12/) were used to calculate the
cortical alteration patterns. This tool includes a Computational
Anatomy Toolbox (CAT12)-based (http://www.neuro.uni-
jena.de/cat/), T1-weighted-3D diffeomorphic segmentation
after inhomogeneity correction, T1-weighted-3D quality check
assessment, and Total Intracranial Volume (TIV) estimation.
T2-weighted-3D was included in the multimodal segmentation
to correct brain atrophy estimation for the presence of white
matter lesions. Brain Anatomical Analysis using Diffeomorphic
deformation integrates CAT12 tool for the normalization to the
standard MNI space (31). Moreover, it provides at subject level
a voxel-wise non-parametric statistical map of GM and white
matter alterations, comparing each participant’s normalized
and segmented brain MRI images to the age- and sex-matched
normative data with the SnPM13 tool (http://warwick.ac.
uk/snpm), as previously described (31). See first level maps
comparison, PD-MCI subgroups vs. healthy population, in
Supplementary Figure 1; in addition, further methodological
details are reported in our previous work (18).
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TABLE 1 | Demographical, clinical, motor, and behavioral characteristics of PD-MCI Aβ+ vs. Aβ-.

PD-MCI Aβ+ PD-MCI Aβ− Mann-Whitney U Test/Fisher Test

Mean (SD)/Frequency Mean (SD)/Frequency

Demographics Sex (male/female) 7/1 9/8 0.182

Age (years) 72.75 (3.69) 68.82 (7.36) 0.074

Education (years) 11.25 (3.95) 8.47 (3.60) 0.111

Clinical characteristics Disease Duration (years) 8.63 (2.61) 10.58 (5.78) 0.578

Age at motor symptoms’ onset (years) 64.75 (4.26) 58.76 (9.42) 0.091

LEDD (mg tot/die) 886.875 (405.80) 887.88 (429.60) 1.000

DAED (mg tot/die) 115 (125.47) 124.27 (123.62) 0.816

Motor characteristics MDS-UPDRS I 11 15.29 (10.77) 1.000

MDS-UPDRS II 10 19.43 (7.76) 0.250

MDS-UPDRS III 27.33 (15.70) 29.4 (15.27) 0.815

MDS-UPDRS IV—fluctuation 2.4 (2.88) 3.91 (3.78) 0.600

MDS-UPDRS IV—dyskinesia 0 1.18 (2.13) 0.245

MDS-UPDRS total score 34 65.43 (23.07) 0.250

H&Y 2.58 (0.91) 2.37 (1.00) 0.837

Functional independence and global

cognitive status

ADL 5.4 (0.51) 5.52 (0.62) 0.447

IADL 4.25 (1.40) 4.82 (2.30) 0.406

PD-CFRS 5.875 (4.48) 7.31 (5.50) 0.538

MMSE (corrected score) 24.71 (1.84) 24.67 (1.81) 0.884

MoCA (corrected score) 19.18 (2.00) 20.31 (2.57) 0.391

Behavioral measures PDQ-8 8.57 (7.63) 11 (5.81) 0.270

APATHY 14.57 (2.44) 18.77 (6.44) 0.130

STAI-Y1 35.25 (5.70) 41.13 (9.07) 0.154

STAI-Y2 39.71 (10.24) 45.53 (8.60) 0.157

BDI-II 11.00 (6.34) 9.93 (6.89) 0.657

BIS-11 60.80 (10.60) 65.78 (10.43) 0.479

QUIP-RS 8.14 (7.73) 6.33 (8.52) 0.590

Mann–Whitney U test was run to test between-group differences. Fisher Exact test was used for the sex variable. ADL, activities of daily living; BDI-II, Beck Depression Inventory-II; BIS-11,

Barratt Impulsiveness Scale; DAED, dopamine agonist equivalent dose; HC, healthy controls; IADL, Instrumental activities of daily living; LEDD, levodopa equivalent daily dose; MDS-

UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; PD-CFRS, Parkinson’s

Disease -Cognitive Functional Rating Scale; PDQ-8, Parkinson’s Disease Questionnaire; QUIP-RS, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease–Rating

Scale; STAI (Y-1, Y-2), State-Trait Anxiety Inventory.

Statistical maps of GM alterations were then included in a
second level GLM analysis comparing PD-MCI-Aβ+ vs. PD-
MCI-Aβ- subgroups to assess for possible GM differences.
Areas of shared alterations were tested with a conjunction
analysis including the two subgroups as factors. To reduce false
positives (32), a Bayesian Probabilistic Threshold-Free Cluster
Enhancement (TFCE) method was used to define GM patterns
differences in PD-MCI subgroups. A significant threshold family-
wise error (FWE) corrected of p < 0.001 was adopted. The atlas
(AAL3v1, http://www.gin.cnrs.fr/en/tools/aal/) provided with
the automated anatomical parcellation tool was used for results.

Statistical Analyses
Pairwise differences between the two subgroups (PD-MCI-Aβ+

vs. PD-MCI-Aβ-) in demographic, motor, clinical, cognitive, and
behavioral characteristics were assessed with Mann–Whitney U
test or Fisher’s exact test for categorical variables. Each cognitive

raw score was converted to z-score using the Italian normative
data, considering as pathologic a performance below the −1.5
SD cut-off. The z-compound (mean z-score among tests of each
cognitive domain) was also calculated. Moreover, we tested the
hypothesis that increased amyloid load might alter a cognitive
domain performance, by running a univariate linear regression
analysis between the significantly affected cognitive domains and
the mean SUVR, extracted from each cluster/subcortical region
with a marked amyloid deposition. Statistical analyses were
run with “R software” (R version 3.6.2 (2019-12-12)—Copyright
(C) 2019).

RESULTS

Clinical Characteristics
Seventeen out of 25 PD-MCI patients were classified as Aβ- and
8 Aβ+. The two groups did not differ in demographic, clinical,
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TABLE 2 | Comparison of the neuropsychological scores between PD-MCI subgroups (Aβ+ vs. Aβ-).

PD-MCI Aβ+ PD-MCI Aβ− Mann Whitney U Test

Cognitive domains Cognitive tests Median IQR 25–75 Median IQR 25–75 p-values

Attention/working memory TMT A 42.50 35 to 69.8 72.50 54.3 to 91 0.076

TMT B 355 229 to 367 248 198.5 to 330.3 0.542

TMT B-A 314.50 188 to 336 174.50 130.5 to 238.3 0.553

DSS (WAIS-IV) 8 8 to 10.5 9.50 8 to 11 0.635

z-compound −0.22 −0.6 to 0.1 −0.63 −1.4 to 0.1 0.124

Executive domain Phonemic fluency 30.50 27.5 to 33.5 30 23 to 35 0.944

Stroop/color task-Time 48.12 14.2 to 73 35.80 21.1 to 47.8 0.759

Stroop/color task-Errors 4.40 1.7 to 8.1 0.38 0 to 2.3 0.092

Similarities (WAIS-IV) 8 7.5 to 9 7.50 6.8 to 10 0.761

CDT 11 10.5 to 12 12 10 to 13 0.797

z-compound −1.48 −1.9 to −1.1 −0.60 −1 to −0.5 0.037

Memory domain Prose memory test 6 5 to 6.5 4.50 1.8 to 7.3 0.545

Prose memory test delayed 8 5 to 10 6.50 4.5 to 9.25 0.500

ROCF delayed 8.40 6.8 to 11.8 9.9 7.4 to 11.4 0.806

WPAT 11.50 11.3 to 16.3 10.50 8 to 11.6 0.105

z-compound −1.07 −1.3 to 0.8 −1.60 −1.9 to −0.9 0.140

Visuospatial domain ROCF copy 19.40 12.6 to 25 24.50 20.8 to 28.7 0.178

VOSP—incomplete letters subtask 16.50 13 to 18 17 15 to 18 0.747

Benton—JLO 18 16 to 22.5 19 9.5 to 22 0.806

z-compound −2.80 −3.4 to −2 −2.21 −2.6 to −1.6 0.344

Language domain Category fluency 30 30 to 34.5 31 28 to 39 0.679

Naming Task 28.30 27 to 29.2 29.50 28.4 to 30.4 0.211

z-compound −0.83 −1.1 to −0.6 −0.94 −1.5 to −0.3 1.000

Apraxia Apraxia 19.25 19 to 20 19 17.8 to 19.8 0.253

IQR, interquartile range; WAIS IV, Wechsler Adult Intelligence Scale—Fourth Edition; VOSP, Visual Object and Space Perception; TMT, Trail Making Test; WPAT, Word paired associated

task; JLO, Judgement of Line Orientation; ROCF, Rey-Osterrieth complex figure test; CDT, Clock drawing task; DSS, Digit Span Sequencing. Statistically significant results are in

bold type.

motor, and behavioral variables including global cognition scales
scores (MMSE and MoCA) (see Table 1).

Looking at the performances in each single cognitive test,
the two cohorts showed no differences in any individual test
of the five investigated cognitive domains. However, PD-MCI-
Aβ+ showed worse performance (z-compound) in the overall
executive domain than PD-MCI-Aβ- (p= 0.037, see Table 2).

Cortical and Subcortical β-Amyloid
Distribution in PD-MCI-Aβ+

Cortical surface analysis showed significant (cluster-wise Monte
Carlo corrected) bilateral amyloid depositions in the caudal
and rostral middle frontal cortices, in the right precuneus and
in left paracentral and pars triangularis areas, in PD-MCI-
Aβ+ compared with Aβ- (see Figure 1A and Table 3). Given
that values of FMM SUVR in subcortical regions (nucleus
accumbens, caudate, putamen, amygdala, pallidum, thalamus,
and hippocampus) were highly correlated between hemispheres
(p< 0.0001), we analyzed the right-left averaged ROIs scores. The
only subcortical region showing significant amyloid deposition
was the putamen (p = 0.038), despite this result was no

more significant following multiple comparisons correction (see
Table 4).

Cortical Gray Matter in PD-MCI-Aβ+

Cortical voxel-based morphometry (VBM) analysis showed a
similar pattern of brain atrophy in PD-MCIAβ+ and PD-
MCIAβ-. Conjunction analysis showed that PD-MCI subgroups
shared a similar pattern of atrophy in bilateral orbitofrontal,
middle frontal, superior middle frontal regions, rostral and
middle cingulate cortex, and fusiform regions and orbicular and
superior temporal region on the right hemisphere (see Figure 1B
and Table 5).

Association Between β-Amyloid Load and
Cognitive Functions
Only the executive domain was affected by the amyloid presence
(see Table 2), and therefore only this domain was considered for
further analyses. There was a negative linear relationship between
cortical regions with significant amyloid load and worsening
in executive performance. Namely, we found a significant
association with the following regions: in the right hemisphere,
the caudal middle frontal gyrus (r = −0.53; p = 0.01), and the
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FIGURE 1 | β-Amyloid cortical deposition and brain atrophy in PD-MCI. (A) Surface based comparison between standardized uptake value ratios (SUVR) in

PD-MCI-Aβ+ vs. Aβ-. Areas that survived a cluster-wise Monte-Carlo correction (p < 0.05) adjusted for two-hemispheres are displayed. Cerebellum cortex was used

as reference region for partial volume correction. (B) Shared pattern of atrophy between PD-MCI-Aβ+ vs. Aβ- compared to healthy matched population at FWE pTFCE

p < 0.001. No areas survived after β-amyloid +/– at TFCE uncorrected p < 0.001 threshold. FWE, family-wise error; TFCE, Threshold-Free Cluster Enhancement.

TABLE 3 | Pattern of β-amyloid cortical deposition in PD-MCI.

Regions MNI MNI MNI Cluster-wise MC N of vertices Size Max –

X Y Z p-value (mm2) log10(p)

Rh Caudal middle frontal gyrus 26.5 18 41.8 0.0001 4,702 2429.8 3.408

Precuneus 11 −55.7 38.4 0.0001 5,647 2383.4 3.625

Lh Paracentral lobule −12.9 −28.6 47.2 0.0001 15,206 7136.8 4.962

Pars triangularis −38.7 30.4 −6.7 0.0001 4,339 2041.4 3.301

Rostral middle frontal gyrus −30.4 26.1 38.6 0.0031 2,577 1494.8 2.951

Cortical surface-based comparison between SUVR in PD-MCI β-Amyloid+/–. Areas that survived a cluster-wise p< 0.05Monte-Carlo corrected threshold adjusted for two-hemispheres

values. Cerebellum cortex was used as reference region after partial volume correction in PETsurfer. Rh, right hemisphere; Lh, left hemisphere; MC, Monte Carlo correction. Coordinates

were displayed in MNI space.

precuneus (r = −0.56; p = 0.005); while in left hemisphere, the
rostral middle frontal (r = −0.49; p = 0.017), the paracentral
(r = −0.57; p = 0.005), and the pars triangularis regions (r =

−0.53; p = 0.01). By contrast, the subcortical L/R-putamen did
not show any significant correlation with the executive domain
dysfunctions (r =−0.33; p= 0.130) (see Figure 2).
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TABLE 4 | Pattern of β-amyloid striatal and extra-striatal subcortical deposition.

PD-MCI Aβ– (n = 16) PD-MCI Aβ+ (n = 7) Mann Whitney U test

Subcortical region (average L/R SUVR) Median 2.5 to 97.5 P Median 2.5 to 97.5 P p-value (uncorrected)

Nucleus accumbens −1.14 −3.32 to 1.72 −0.39 −2.63 to 1.51 0.423

Putamen 1.15 0.45 to 2.78 1.73 1.29 to 3.14 0.038

Caudate 0.38 0.08 to 3.03 0.98 0.56 to 2.14 0.161

Hippocampus 1.13 0.76 to 1.84 1.06 0.88 to 1.41 0.689

Globus pallidus 2.17 0.59 to 3.51 2.21 0.51 to 2.47 0.738

Amygdala 1.21 0.67 to 2.40 1.34 0.96 to 1.62 0.345

Thalamus 1.38 −0.06 to 1.89 1.7 0.32 to 2.16 0.204

Significant result (in bold) was not corrected for multiple comparison testing, following this correction, this difference was not statistically significant. Standardized uptake value ratios

(SUVR); L/H, left-right; P, percentiles; PD-MCI, Parkinson’s disease with mild cognitive impairment; Aβ, β-amyloid positive vs. negative.

TABLE 5 | Areas of gray matter atrophy in PD-MCI vs. controls.

AAL3 atlas Cluster Cluster Peak Peak Peak

MNI (X) MNI (Y) MNI (Z) N voxels P (FWE-corr) P (FWE-corr) T Z

Medial OFC-L −9 51 −21 64,435 0.0000 0.0000 Inf Inf

Medial OFC-R 13.5 52.5 −18 0.0000 Inf Inf

Medial OFC-R −15 24 −16.5 0.0000 Inf Inf

Frontal superior L −26 38 44 0.0000 17.05 7.21

Frontal superior medial L 8 42 53 0.0000 14.19 6.75

Fusiform R 45 −37.5 −16.5 6,815 0.0000 0.0000 19.0372 7.4730

Fusiform R 40.5 −45 −15 0.0000 15.0621 6.9023

Temporal inferior R 54 −24 −21 0.0000 14.8525 6.8672

Precuenus R 7.5 −64.5 64.5 11 0.0001 0.0001 11.1572 6.1303

Precuenus L −4.5 −49.5 42 392 0.0000 0.0001 10.8696 6.0611

Precuenus L −6 −49.5 55.5 0.0002 10.6720 6.0124

Cingulate middle–L −12 −39 36 0.0002 10.6214 5.9998

Precuenus R 16.5 −66 28.5 243 0.0000 0.0002 10.5749 5.9881

Fusiform R 34.5 −7.5 −36 29 0.0000 0.0006 9.7211 5.7626

Caudate L −9 13.5 3 21 0.0000 0.0008 9.5086 5.7029

DISCUSSION

In the present study, we used simultaneous PET/MRI imaging
study to investigate howAβ burden affects cognitive performance

in PD-MCI patients, diagnosed with a comprehensive
neuropsychological assessment, allowing a level II diagnosis.

We found that in our PD-MCI cohort, 8/25 (31%)
patients were Aβ+, corroborating previous data on brain

amyloid prevalence in non-demented PD (20). While all
demographic, clinical, behavioral, and motor variables did

not differ, PD-MCI-Aβ+ showed a trend for higher age
of motor’s symptoms onset, suggesting that extracellular

β-amyloid deposition is an age-related pathological
marker (33).

From a neuropsychological point of view, PET amyloid

positivity was associated with worse performance in the executive

domain, supporting previous PD literature on the contribution of

Aβ on attentive and executive dysfunctions (10, 34, 35).

Interestingly, brain Aβ did not impact other cognitive
domains such as visuo-spatial and semantic memory, which are
considered highly sensitive in detecting the deterioration and
progression to severe impairment and dementia (1, 2, 18, 23, 36–
38). These results seem to suggest that PD-MCI-Aβ+ cognitive
pattern does not share the typical cognitive profile of MCI due to
Alzheimer’s disease (AD).

The observation of a significant proportion of PD-MCI-
Aβ- can possibly suggest that Aβ is not the main pathogenetic
cause of cognitive deterioration in PD (10, 11, 18, 34). Instead,
amyloidosis may enhance early deficits in those cognitive
domains already vulnerable to PD primary pathology (2, 18),
possibly indicating that in PD concomitant conditions may
aggravate cognition and herald dementia (39–41). In this regard,
in a recent longitudinal study performed in a large PD de
novo cohort, we concluded that amyloid burden together with
asymmetric dopaminergic loss (in the left hemisphere) and
aging exhibited independent and interactive contributions to
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FIGURE 2 | Correlation between β-amyloid load in cortical and subcortical areas and cognitive performance. Univariate linear regression model between the executive

domain (z-compound) and the mean standardized uptake value ratios (SUVR) of each significant cortical and subcortical ROIs.

PD-cognitive progression (namely, involving attentive/executive
alterations) (42).

One of the strengths of our study is the quantification of
cortical Aβ load using a surface-based approach and SUVR
measures, not reported in our previous work (18).

We found increased Aβ uptake in the cortical areas, mostly
located in the frontal (i.e., caudal and rostral middle frontal
cortices and pars triangularis) as well as in the parietal regions
(i.e., paracentral lobule and precuneus), which overall correlated
with a poor executive performance.

From a cognitive perspective, the involvement of these areas
as well as their key role within the fronto-striatal circuit is
well-established. They subserve a wide range of cognitive tasks,
such as executive functions and working-memory abilities,
involving information monitoring and manipulation, planning
and organization of complex behaviors, and attention shifting
(43), with frontal striatal network alterations underlying early
changes in PD, and predicting cognitive decline as well as
dementia (44, 45). Noteworthy, the present findings corroborate
our previous PET-amyloid evidence in a PD de novo cohort
(10), showing that increased cortical and subcortical amyloid
was associated with a worse performance in attentive/executive
domains. Yet, this reinforces the concept of cortical and
subcortical amyloid accumulation as an additional biomarker
contributing to cognitive impairment in PD (10, 12, 46).

Increased FMM uptake in PD-MCI-Aβ+ was also present
in the right precuneus, which is anatomically and functionally
connected with subcortical striatal areas and implied in
functional abnormalities in PD-MCI (47). Our findings support
previous PET imaging studies in non-demented PD, despite the
fact that different Aβ-tracers were used (46, 48), showing a greater

amyloid burden particularly in the precuneus and frontal regions,
as well as their inverse correlation with cognitive performance
(46). Other evidence did not corroborate this pattern, reporting
no differences between PD-MCI and PD with normal cognition,
possibly due to the small sample size (34). Evidence of amyloid
deposition in the parietal regions seems to be consistent across
PET imaging studies (12, 48, 49). Of note, one reported an
association with visuospatial impairments (49) but no significant
correlations between amyloid and executive functions; however,
the entire Lewy bodies spectrum was analyzed.

Overall, previous studies in PD population yielded mixed
results, and as highlighted in the Petrous et al. review (13), there
is only a few published evidence about the role of Aβ in PD-MCI,
due to the heterogeneous nature of this clinical syndrome as well
as the high variability in the MCI-assessment between studies.

Further, PD-MCI-Aβ+ presented increased FBB uptake in
the putamen, but without significant correlation with executive
functions. In a previous analysis of the PPMI dataset, we had
reported a correlation between executive tests and putamen Aβ

accumulation, but this included only early de novo PD with
limited cognitive characterization, not allowing to diagnose MCI
(10). Another study reported a correlation but using a different
PET tracer and in a cohort with various cognitive alterations (50).
It is possible that lack of correlation in our cohort was related to
the limited number of PD-MCI-Aβ+, but future studies should
focus on this specific marker of PD-related amyloidosis exploring
also its relevance on the magnitude of levodopa response and on
motor complications.

Finally, we also evaluated GM volumetric changes at MRI.
Results showed similar atrophy patterns in right fronto-temporal
regions in both PD-MCI subgroups, replicating previous
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findings adopting different structural analysis methods (5, 7).
Interestingly, cortical VBM patterns were similar in PD-MCI
with and without Aβ deposition, and excluded the presence of
middle-temporal atrophy, a characteristic of early AD (51). This
supports our previous findings of absence of AD-atrophy pattern
in the LBD patients with dementia (18).

Our current work has limitations. Each subgroup (Aβ+

and Aβ-) included a relatively small number of PD-MCI
subjects, resulting in lower statistical power to detect differences.
However, results are aligned with previous evidence (18) of an
independent role of Aβ in shaping MCI-profile and accelerating
cognitive deficits in PD. Moreover, regarding the neuroimaging
analyses we acknowledge that the small sample size can possibly
affect the results; however, to reduce the false positive, we
adopted TFCE or Monte Carlo FWE corrections, while to
reduce the false negative an explorative uncorrected p < 0.001
was adopted.

Greater numerosity is needed to further explore the
relationship between Aβ deposition and increased dementia-
risk profiles. In particular, it would be worth exploring if low
concentration of Aβ, below AD-range thresholds, may also have
clinical relevance (13) in presence of an ongoing multisystem
neurodegenerative process like PD. In this regard, a further
limitation is that we did not screen our PD-MCI for APOE
genotype which is now considered the main risk factor for
cognitive decline in elderly patients with PD and Dementia with
Lewy Bodies (34, 52, 53).

Finally, we did not include a control group of healthy controls
and PD without cognitive deficits to assess age-related brain
amyloid distribution. However, a recent publication of elderly
individuals without cognitive deficits demonstrated areas of
cerebral amyloid deposition (i.e., prefrontal, precuneus) similar
to those observed in our Aβ+PD-MCI patients, suggesting that
PD-related amyloidosis somehow overlaps age-related amyloid
accumulation (54).

In conclusion, our study suggests that amyloid burden in the
fronto-striatal network may play a role in worsening executive
abilities in PD-MCI patients. Furthermore, the observation
of more than 60% Aβ- in our PD-MCI patients led us to
speculate about the independent role of amyloid load for
PD-MCI. Notably, amyloid accumulation in our cohort was
not associated with typical AD cognitive and brain atrophy
pattern nor with specific clinical features and demographic
characteristics, highlighting its potential unspecific contribution.

Considering that up to 80% of PD patients may ultimately
develop dementia with negative consequences on life quality and
expectancy, a better understanding of the involved predictors
is of key importance. We believe clarifying Aβ role in
cognitive impairment and progression is clinically relevant,
especially in the context of emerging applicability of amyloid-
related treatments.
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