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skin fibroblasts- transcriptomic
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reveals molecular signatures of
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Alexandros Grivas1,2, Maria Grigoriou1,3, Nikos Malissovas1,
George Sentis1, Anastasia Filia1, Sofia Flouda2,
Pelagia Katsimpri2, Panayotis Verginis4,5

and Dimitrios T. Boumpas1,2*

1Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and
Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece,
24th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian
University of Athens Medical School, Athens, Greece, 3Immunohematology Laboratory, Democritus
University of Thrace (DUTH), Alexandroupolis, Greece, 4Institute of Molecular Biology and
Biotechnology, Foundation for Research and Technology, Heraklion, Greece, 5Laboratory of
Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School,
Heraklion, Greece
Background: An interplay between immune cells and resident skin and joint

stromal cells is implicated in psoriatic arthritis (PsA), yet themechanisms remain

elusive with a paucity of molecular biomarkers for activity and response.

Combined transcriptomic and immunophenotypic analysis of whole blood

and skin fibroblasts could provide further insights.

Methods: Whole blood RNA-seq was performed longitudinally in 30 subjects

with PsA at the beginning, one and six months after treatment, with response

defined at six months. As control groups, 10 healthy individuals and 10 subjects

with rheumatoid arthritis (RA) were recruited combined with public datasets

from patients with psoriasis (PsO) and systemic lupus erythematous (SLE).

Differential expression analysis and weighted gene co-expression network

analysis were performed to identify gene expression signatures, while

deconvolution and flow cytometry to characterize the peripheral blood

immune cell profile. In a subset of affected and healthy individuals, RNA-seq

of skin fibroblasts was performed and subjected to CellChat analysis to identify

the blood-skin fibroblast interaction network.

Results: PsA demonstrated a distinct “activity” gene signature in the peripheral

blood dominated by TNF- and IFN-driven inflammation, deregulated

cholesterol and fatty acid metabolism and expansion of pro-inflammatory

non-classical monocytes. Comparison with the blood transcriptome of RA,
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PsO, and SLE revealed a “PsA-specific signature” enriched in extracellular

matrix remodeling. This was further supported by the skin fibroblast gene

expression profile, displaying an activated, proliferating phenotype, and by

skin-blood interactome analysis revealing interactions with circulating

immune cells through WNT, PDGF and immune-related semaphorins. Of

note, resistance to treatment was associated with upregulation of genes

involved in TGFb signaling and angiogenesis and persistent increase of non-

classical monocytes. Differentially expressed genes related to platelet

activation and hippo signaling discriminated responders and non-responders

as early as one month after treatment initiation.

Conclusion: Transcriptome analysis of peripheral blood and skin fibroblasts in

PsA reveals a distinct disease activity signature and supports the involvement of

skin fibroblasts through their activation and interaction with circulating

immune cells. Aberrant TGFb signaling and persistently increased non-

classical monocytes characterize treatment-resistant PsA, with pro-

inflammatory pathways related to platelet activation and Hippo signaling

predicting early response to treatment.
KEYWORDS

Psoriatic arthritis, transcriptome, molecular signatures, skin fibroblast, response
to treatment
Introduction

Psoriatic arthritis (PsA) is a chronic, musculoskeletal disease

that develops in up to one-third of patients with cutaneous

psoriasis (PsO) (1, 2). PsA manifests with inflammation of the

peripheral joints, the entheses and the spine, and is uniquely

characterized by synchronous bone erosions and new bone

formation (3). PsA patients also display a wide spectrum of

extra-articular features such as uveitis and colitis, and an

increased risk of cardiometabolic comorbidities, including

obesity and hyperlipidemia (4). These comorbid conditions

increase the overall disease burden leading to poor function

and quality of life (5).

The advent of biological disease-modifying anti-rheumatic

drugs (bDMARDs) targeting T cells, TNFa and IL-17/-23 axis

has revolutionized PsA management, highlighting the role of

these cells and cytokines in disease propagation (6). Despite this

progress, approximately 40% of patients fail to optimally

respond to these treatments (7, 8). This lack of efficacy

highlights the molecular heterogeneity among PsA patients

and the significant gap in our knowledge regarding

mechanisms of treatment resistance in PsA. The myeloid cell

compartment has been relatively understudied in PsA, although

emerging evidence suggests an important role for these cells in

driving joint and skin inflammation (9). Likewise, stromal cells,

such as skin and synovial fibroblasts, have not yet been
02
sufficiently characterized in PsA, despite standing at the

forefront of research in other inflammatory arthritides

(10, 11). Elucidating the role of these cells in disease

pathophysiology along with identifying biomarkers of

diagnostic and prognostic potential represent significant

unmet needs in PsA.

Gene expression studies have provided significant insights

into the complex pathogenetic mechanisms of autoimmune

diseases and have paved the way towards precision medicine

in the field of rheumatology (12). Transcriptomic studies in PsA

have revealed signatures related to TNFa and IL-17 axis in

peripheral blood and target tissues. Nevertheless, these studies

have been performed using microarray technology and are

limited in number, thus leaving the transcriptomic profile of

PsA still underexplored (13).

In this study, we utilize high-throughput mRNA sequencing

technology coupled with immunophenotyping to investigate the

molecular landscape of blood cells and skin fibroblasts in PsA.

We first identify an activity signature in blood characterized by

TNF- and Interferon-mediated inflammation, lipid-related

metabolic aberrancies, and expansion of non-classical

monocytes (NCM). We also define a “PsA-specific gene set”

related to extracellular matrix (ECM) metabolism, which is

distinct in PsA compared to other autoimmune rheumatic

diseases, such as Rheumatoid Arthritis (RA), Psoriasis (PsO),

and Systemic Lupus Erythematosus (SLE). We perform
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longitudinal analysis in a subset of PsA patients delineating

signatures of resistance to treatment associated with TGFb
signaling and angiogenesis as well signatures of early response

to treatment pertaining to platelet activation and Hippo

signaling. Finally, combined blood and skin fibroblasts’

network analysis identifies increased interactions between

blood immune cells and skin fibroblasts, suggesting a novel

role for these cells in disease pathophysiology. These findings

have implications regarding our understanding of PsA

pathogenesis as well as suggesting molecular biomarkers of

diagnostic and prognostic potential.
Materials and methods

Experimental design and
study participants

This is a prospective, longitudinal study of subjects with PsA

recruited through the Rheumatology and Clinical Immunology

Department of the Attikon University Hospital in Athens,

Greece. Subjects with PsA were diagnosed according to the

Classification Criteria for Psoriatic Arthritis (CASPAR). They

displayed the polyarthritic phenotype of the disease and

presented with moderate to high disease activity based on the

DAPSA score (DAPSA >15) (14, 15). Subjects either started or

switched treatment at baseline and were followed-up for a period

of 6 months, when response to treatment was determined

according to the ACR50 response and/or “75% change of

DAPSA” (16). Blood samples were collected at baseline, 1-

month, and 6-month time points and were used for peripheral

blood mononuclear cell (PBMC) isolation and whole blood RNA
Frontiers in Immunology 03
isolation. Skin biopsies were obtained from the lesional skin of

three PsA patients for fibroblast isolation. Blood from Healthy

Individuals (HI, n=10) and subjects with Rheumatoid Arthritis

(RA, n=10) was also collected. Individuals with RA were

diagnosed according to the 1987 American College of

Rheumatology (ACR) criteria and had severe disease activity

(DAS28 > 5.1) according to the disease activity score based on

the 28 joint counts. Written informed consent was obtained

from all study participants and protocols for the procedures were

approved by the hospital’s research ethic committee. All studies

were conducted in accordance with ethical guidelines of the

Declaration of Helsinki. The demographic and clinical

characteristics of all participants are summarized in Table 1.

An overview of the study workflow is outlined in Figure 1A.
Cell isolation

Peripheral blood mononuclear cells (PBMCs) were isolated by

Ficoll (Lymphosep #L0560, Biowest) density gradient

centrifugation and were cryopreserved in freezing medium.

Skin fibroblasts were isolated from samples of lesional skin

from three subjects with PsA, obtained with a 4mm-punch

biopsy. The subjects were two men and one woman who had

active plaque psoriasis, diagnosed clinically by an expert

dermatologist. Psoriasis severity was assessed using the PASI

(Psoriasis Area and Severity Index) score (mean 2.4) and BSA

(Body Surface Area) (mean 5%). Patients had received no topical

treatment for two weeks before the procedure. Two subjects were

on biologic treatment (anti-IL17, anti-IL-12/23 antibody,

respectively) and one was treatment-naive at time of

procedure. Skin biopsies were collected also from three age-
TABLE 1 Demographic and clinical characteristics of healthy individuals, PsA and RA patients.

Characteristics* HI(n=10) PsA(n=30) RA(n=10) P value

Female (%) 7 (70%) 22 (73%) 8 (80%)

Age, years 41.7 (13) 51.1 (10) 54.2 (10) 0.047

Duration of arthritis, years - 6.2 (5.8) 4 (3.5) 0.58

Duration of psoriasis, years – 20.3 (12.1)

Disease activity, indices - DAPSA
46 (15.3)

DAS28
5.8 (0.4)

Enthesitis, n (%) – 11 (36%) –

Dactylitis, n (%) - 3 (10%) -

ESR, mm/hr – 23.1 (18.5) 33.6 (13.4) 0.2

Current treatment, n

Naïve - 11 0

DMARDs (methotrexate, leflunomide, apremilast) 5 3

Biologic (TNFi, secukinumab, ustekinumab) 14 4

Immuno-suppressants (rituximab) 2
front
*All values are presented as ‘mean (SD)’ unless otherwise stated. All variables had <20% missing data. HI, Healthy Individuals; PsA, Psoriatic Arthritis; RA, Rheumatoid Arthritis; DAPSA,
Disease Activity Score for Psoriatic Arthritis; DAS28, Disease Activity Score in 28 joints; ESR, Erythrocyte Sedimentation Rate; DMARD, Disease Modifying Anti-rheumatic Drug; TNFi,
Tumor Necrosis Factor inhibitors.
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FIGURE 1

Subjects with PsA display widespread transcriptome perturbations in peripheral blood compared to healthy individuals. (A) Schematic
representation of the study design. Subjects with active PsA were followed up for 6 months after treatment initiation being classified as R or NR.
Blood samples were collected at baseline (0-), 1- and 6-month time points. A subset of three PsA patients donated skin biopsy samples for
fibroblast isolation. RNA from whole blood and skin fibroblasts was analyzed with RNA sequencing to determine signatures of activity and
response to treatment. Flow cytometry analysis of PBMCs was performed in parallel. RA patients and HI were also included in the study. (B) PCA
of blood gene expression profiles from PsA patients (n=23) and HI (n=7). The two first principal components (PC1, PC2) are plotted. (C) Volcano
plot and (D) heatmap of DEGs between PsA and HI. The up- and down-regulated genes are denoted by red and blue points, respectively. Gray
points indicate genes with no significant difference. (E) Dot plot of GSEA analysis representing biological pathways associated with the Hallmark
v7.5 database. The figure shows the positively and negatively enriched pathways in PsA. The size of the dots represents the number of genes
included in each enriched term. (F) WGCNA analysis of blood gene expression data: Gene dendrogram obtained by average linkage hierarchical
clustering and (G) dot plot demonstrating functional annotation of the gene modules. Gene ratio represents the ratio of gene count to term
size. PsA, Psoriatic arthritis; R, Responders; NR, Non-responders; PBMCs, Peripheral blood mononuclear cells; RA, Rheumatoid arthritis; HI,
healthy individuals; PCA, Principal component analysis; DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; WGCNA,
weighted gene co-expression network analysis; FC, fold change; NES, normalized enrichment score.
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and sex- matched healthy individuals. Following excision, skin

tissue was washed in sterile PBS and sliced in 4-5 pieces. Tissue

fragments were incubated at 37°C for two hours in a 15-ml

falcon containing enzymes for digestion (DNAse 0.25mg/ml,

dispase 40mg/ml, collagenase 1mg/ml). After incubation, the

mixture was pipetted through a 70mm mesh cell strainer,

cultured in vitro with DMEM (Dulbecco’s Modified Eagle

Medium, Thermo Fischer Scientific), supplemented with 10%

fetal bovine serum (Thermo Fischer Scientific) and penicillin/

streptomycin (50 µg/mL, Thermo Fischer Scientific), in a

humidified atmosphere of 5% CO2 at 37°C. Proliferating

fibroblasts between passages 4-5 were used for the

transcriptomic analysis.
Flow cytometry

Flow cytometry was performed using a BD FACS-Aria-III

(Becton Dickinson Biosciences) and analyzed using FlowJo v10

Software (BD Life Sciences, RRID : SCR_008520). To assess the

frequency of cells of interest among the PBMCs, specimens were

stained with the following conjugated antibodies (Biolegend)

(clone, catalogue number): HLA-DR (L243, #307618, RRID :

AB_493586), CD14 (M5E2, #301804, RRID : AB_314186),

CD16 (3G8, #302012, RRID : AB_314212), CD33 (WM53,

#303404, RRID : AB_314348), CD15 (W6D3, #323018, RRID :

AB_893256), CD123 (6H6, #306017, RRID : AB_10900244),

CD4 (OKT4, #317428, RRID : AB_1186122), CD8 (SK1,

#344714, RRID : AB_2044006), CD127 (A019D5, #351316,

RRID : AB_10900804), CD25 (BC96, #302604, RRID

: AB_314274).
RNA isolation and RNA
sequencing pipeline

Total RNA from blood was extracted using the Tempus Spin

RNA Isolation Reagent Kit (#4378926, Thermo Fischer), while

RNA isolation from skin fibroblasts was performed using the

NucleoSpin RNA Isolation Kit (#740955.250, Macherey-Nagel).

RNA was purified as per the manufacturer’s protocol. For library

preparation, we performed mRNA selection using NEBNext®

Poly(A) mRNA Magnetic Isolation Module (New England

Biolabs) and subsequently prepared the libraries using

NEBNext® Ultra II Directional Library Preparation kit (New

England Biolabs). Sequencing was performed on Illumina

NextSeq 500 with single-end 75-bp reads. Quality of

sequencing was assessed using FastQC (RRID : SCR_014583)

(17). Raw fastq sequencing reads were aligned against the human

reference genome sequencing (version hg38) using the STAR 2.6

algorithm (RRID : SCR_004463) (18). Gene quantification was

performed using HTSeq 0.11 (RRID : SCR_005514) with -s

reverse option and gencode v29 annotation file (19). Raw counts
Frontiers in Immunology 05
were corrected for sequencing batch effect using ComBat-seq in

R (20). Differential expression (DE) analysis was performed

using the edgeR software (qlmQLFtest function, RRID :

SCR_012802) in R (21). Genes with fold change |FC|≥1.5 and

P value<0.05 were selected as significantly DE genes (DEGs).

Heatmaps and volcano plots were created with R using in-house

developed scripts based on ggplot2 package (RRID :

SCR_014601). Venn diagrams were created using Venny 2.1.0

(RRID: SCR_016561) (22)
Enrichment analysis

To explore the function of DEGs, we performed pathway

and gene ontology (GO) enrichment analysis using the g:Profiler

web-server (RRID : SCR_006809) (23), identifying enriched

pathways among the significant DEGs. Enriched pathways

with Benjamini-Hochberg corrected P value ≤ 0.05 were

considered statistically significant. Gene Set Enrichment

Analysis (GSEA, RRID : SCR_003199) was also performed to

reveal enriched signatures in our dataset. As a reference gene set

we used the Molecular Signatures Database (MSigDB v7.5) (24).

All expressed genes were ranked by descending value of the

product of –log10(P-value) and FC. Highly upregulated genes

were at the top and highly downregulated genes were at the

bottom of the ranked list. GSEA pre-ranked analysis was then

performed using the default settings. Gene set enrichment was

considered significant when False Discovery Rate (FDR) <25%.
Deconvolution of blood gene
expression data

We used the CIBERSORTx deconvolution algorithm

(RRID : SCR_016955) (25) to determine the proportion of

immune cell subsets in blood. This algorithm uses the

normalized gene expression values and a signature matrix to

calculate the cell type frequencies of a sample. BAM alignment

files, as derived from STAR algorithm, were used as input in

Cufflinks 2.2.2 (RRID : SCR_014597) (26) using Ensembl v94

annotation file, and Fragments Per Kilobase Million (FPKM)

expression values were generated. FPKM expression data was

used as input to the CIBERSORTx web portal, along with the

LM22 signature matrix to identify 22 infiltrating immune cell

components, including: subsets of macrophages (M0, M1, and

M2), T cells (CD8+, naïve CD4+, memory resting CD4+, memory

activated CD4+, Tfh cells, regulatory T cells, and gamma delta T

cells), natural killer (NK) cells (resting and activated NK cells),

mast cells (resting and activated mast cells), B cells (naïve and

memory B cells), dendritic cells (resting and activated dendritic

cells), monocytes, plasma cells, neutrophils, and eosinophils.

Results with CIBERSORTx Pvalue<0.05 were reserved for the

following analysis.
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Construction of weighted gene co-
expression network analysis

Weighted gene co-expression network analysis (WGCNA,

RRID : SCR_003302) (27) was used to identify clusters of co-

expressed genes in our blood gene expression dataset. The

WGCNA package in R was utilized to construct a co-

expression network based on the normalized expression data.

A soft-threshold power of 7 was selected to achieve approximate

scale-free topology (R2 ~ 0.79). Network was constructed using

the blockwiseModules function. The function uses average

linkage hierarchical clustering for the dendrogram

construction and the Dynamic Hybrid tree-cutting method for

module identification. Modules of co-expressed genes were

labeled by color coding for illustration purposes, while genes

that did not fall within a specific module were assigned the color

gray. We performed functional annotation of the genes within

each module using the g:Profiler web-server (23).
Skin fibroblasts-whole blood
interaction network

We utilized CellChat (RRID : SCR_021946) (28) to examine

the crosstalk between blood cells and skin fibroblasts. CellChat is

a tool developed for single cell RNA-seq datasets, capable of

inferring communication networks by combining a curated

ligand-receptor database with statistical tests, mass action

models, and gene expression data. By employing our blood

and skin fibroblasts’ gene expression profiles, CellChat

software modeled the communication probability between

these two compartments. Bulk RNA-seq data were used, and

therefore only signals received or sent by fibroblasts were

identified without knowing which specific blood cell type they

interact with.
Data analysis and statistics

Results are presented as mean ± sd. Data between two

groups were compared using the two-tailed, Student’s t-test or

the two-tailed, Mann–Whitney U-test, as appropriate (after

testing for normality with the F test). Data between three

groups were compared using the ordinary one-way ANOVA

or the Kruskal-Wallis test, as appropriate. The specific statistical

tests performed are indicated in the figure legends. All statistical

analyses were performed on GraphPad Prism software (v9.0.0,

RRID : SCR_002798). P values <0.05 were considered as

statistically significant.
Frontiers in Immunology 06
Data availability statement

The RNA-seq data from blood and skin fibroblasts can be

found in the EGA repository under the accession

number EGAS00001006288.
Results

Transcriptomic profiling of PsA
peripheral blood identifies perturbations
related to inflammation, metabolism and
collagen biosynthesis

To identify genes and molecular pathways involved in the

pathogenesis of PsA, we first compared the blood gene

expression profile of subjects with PsA (n=23) and healthy

individuals (HI, n=7). Despite significant overlap in the PCA

(Figure 1B), differential expression analysis identified 466 DEGs

(|FC|>1.5, P value<0.05), of which 303 were up- and 163 were

down-regulated in PsA as compared to HI (Figure 1C, D). To

understand the biological differences between PsA and healthy

state, GO and pathway enrichment analysis were performed.

GSEA indicated positive enrichment in PsA for several biological

pathways related to inflammation and the immune system, such

as the inflammatory response, TNFa signaling via NFkB,
complement, IL2 signaling, IFNa and IFNg response. Metabolic

pathways including oxidative phosphorylation, adipogenesis,

fatty acid metabolism and signaling cascades related to WNTb
catenin, TGFb and MTORC1 were also positively enriched in

PsA. On the other hand, negative enrichment was identified in

pathways related to epithelial mesenchymal transition and

angiogenesis. (Figure 1E).

To further disentangle the transcriptomic profile of PsA

blood, we utilized Weighted Gene Co-expression Network

Analysis (WGCNA). Through this approach, DEGs were

classified into four statistically significant modules (Figure 1F).

Among them, the orange module was most closely associated

with PsA and included 110 genes related to extracellular matrix

(ECM) organization, cell adhesion, BMP- and WNT-mediated

signaling. The other three modules -lightcyan (251 genes), brown

(1569 genes), and plum1 (138 genes)- showed enrichment in

processes related to mRNA splicing, DNA repair, cellular

biosynthesis, and demethylation (Figure 1G). Collectively, these

findings suggest that the blood transcriptome in PsA is

characterized by TNF- and Interferon-driven inflammation,

metabolic perturbations and aberrant ECM remodeling,

indicating that these processes are critical to sustaining

disease activity.
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Immune profiling of peripheral blood
reveals expansion of non-classical
monocytes during active disease

To better characterize the cellular landscape of active PsA,

we performed phenotypic characterization of the blood immune

cell compartment in patients and healthy donors. First, we used

CIBERSORTx to analyze the immune cell fraction based on the

blood gene expression profile (Supplementary Figure 1A). The

result of the deconvolution analysis for 13 cell subsets indicated a

higher proportion of monocytes and a lower proportion of

neutrophils in PsA compared to healthy state. However, both

differences did not reach the statistically significant threshold.

Next, we performed flow cytometry analysis to characterize

specific myeloid and lymphoid cell subsets in the peripheral

blood of PsA (n=30) and HI (n=10) (Figure 2A, Supplementary

Figure 1B). An additional subset of 10 subjects with rheumatoid

arthritis (RA) was recruited as a disease control group. We found

increased frequency of the non-classical monocytes (NCM) in

PsA compared to healthy subjects, in line with the results of the

deconvolution analysis. Additionally, we observed lower
Frontiers in Immunology 07
frequencies of circulating pDCs and CD8+ T cells in PsA.

Interestingly, PsA patients shared a similar blood immune

profile with RA patients (Supplementary Figure 1C). Together,

these data suggest expansion of the pro-inflammatory monocytic

subset in PsA blood during active disease and reduction of blood

pDCs and cytotoxic T cells, probably due to their selective

migration at the sites of inflammation.
PsA is characterized by a distinct blood
signature denoting ECM metabolism and
aberrant blood-skin fibroblasts cross-talk

We next investigated whether a specific transcriptomic

signature in blood could characterize PsA compared to other

inflammatory arthritides and autoimmune diseases. To this end,

we performed whole blood RNA-seq analysis in a group of

patients with active RA (n=8), a disease that shares many clinical

and molecular features with PsA (Figure 3A, Supplementary

Figure 2A, B). The intersection of DEGs in ‘PsA vs. HI’ and ‘PsA

vs. RA’ comparisons converged to a panel of 67 genes specific for
FIGURE 2

Immunophenotyping in blood of PsA patients and healthy individuals. Frequencies of monocyte subsets, pDCs, B cells, Tregs, CD4+ and CD8+
T cells in peripheral blood of PsA patients (n=26-30) and HI (n=8-10). Results are demonstrated as mean with SD. Statistical significance was
obtained by unpaired Student’s t-test and Mann-Whitney test. (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). PsA, Psoriatic arthritis; HI, healthy
individuals; pDCs, plasmacytoid dendritic cells; Tregs, T regulatory cells.
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FIGURE 3

PsA displays a disease-specific signature in blood related to enhanced ECM turnover. (A) PCA of blood gene expression profiles from PsA, RA
and HI. The two first principal components (PC1, PC2) are plotted. (B) Venn diagram showing the overlap between ‘PsA vs. HI’ and ‘PsA vs. RA’
DEGs, representing the “PsA-specific gene set”. Selected genes are listed at the bottom of the diagram. (C) Gene ontology analysis, based on g:
Profiler, for functional annotation of the “PsA-specific gene set”. (D) Venn diagram showing the overlap among ‘PsA vs. HI’ DEGs, ‘PsO vs. HI’
DEGs and the ‘PsA-specific gene set’. Selected genes related to integrin binding, ECM organization and ossification are depicted. (E) Bar plot
illustrating the interaction pathways between blood cells and skin fibroblasts in psoriatic and healthy samples. Significance is inferred based on
the relative information flow in each interaction pathway. Red denotes signaling pathways enriched in PsA, blue denotes signaling pathways
enriched in healthy state, while pathways depicted in black are equally enriched between the two states. (F) Plots showing selected signaling
pathways between blood cells and skin fibroblasts in PsA and HI. Lines originate from a cell type (blood cells or fibroblasts), indicating the
source of the ligand, and connect to the cell type (fibroblasts or blood cells, respectively) where the receptors are expressed. The width of each
line is proportional to the communication probability, inferred by the number of unique ligand-receptor interactions. Loops represent autocrine
circuits. ECM, Extracellular matrix; PsA, Psoriatic arthritis; HI, Healthy individuals; RA, Rheumatoid arthritis; DEGs, Differentially expressed genes;
PsO, Psoriasis.
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PsA, comprising the “PsA-specific gene set” (Figure 3B,

Supplementary Table 1). These genes were enriched in cell

adhesion, blood vessel development and pathways related to

ECM metabolism such as ECM organization, collagen fibril

organization and bone trabecula morphogenesis (Figure 3C).

Of note, most of these “PsA-specific gene set” were

downregulated in the ‘PsA vs. HI’ comparison, probably

implying the efflux of circulating mesenchymal-like cells from

the blood to affected tissues during a PsA flare.

Given that PsA is the most common and severe

complication of psoriasis (PsO), we next sought to investigate

whether this “PsA-specific gene set” could also discriminate

arthritis from cutaneous psoriasis. To address this, we utilized a

publicly available gene expression dataset derived from the blood

of subjects with well-characterized general pustular PsO

(Catapano et al) (29). Comparing the ‘PsA-specific gene set’

with the ‘PsA vs. HI’ and ‘PsO vs. HI’DEGs, we identified 66 out

of the 67 “PsA-specific genes” remaining related only to PsA

(Figure 3D). A similar analysis utilizing publicly available data

from patients with Systemic Lupus Erythematosus (SLE) (30)

resulted in 57 genes being uniquely represented in PsA

(Supplementary Figure 3). Hence, these findings suggest that a

blood signature related to ECM metabolism and remodeling is

highly specific to PsA.

Following the identification of a specific ECM-related

signature in PsA blood, we next examined the contribution of

stromal cells –the primary ECM regulators- to disease activity

signature. Skin is an easily accessible target tissue in PsA, and

thus we focused our analysis on skin fibroblasts. Specifically, we

performed RNA-seq in skin fibroblasts obtained from three

subjects with PsA and three HI. PsA fibroblasts demonstrated

a distinct gene expression profile compared to healthy fibroblasts

(Supplementary Figures 4A), being enriched in oxidative
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phosphorylation and cell cycle-related processes such as G2M

checkpoint and E2F targets (Supplementary Figures 4B).

Integrating the blood and skin transcriptomes through

CellChat we inferred, the signaling networks between the

blood immune cells and skin fibroblasts. Interaction networks

were increased in number and strength in PsA compared to

healthy state and included signaling cascades regulated by

immune related semaphorin (SEMA7), ncWNT, PDGF and

NOTCH (Figure 3E, F, Supplementary Figure 4C). Altogether,

these findings suggest that skin stromal cells display an activated,

proliferating phenotype in PsA, supporting a network of

interactions with circulating immune cells.
Longitudinal immunophenotypic and
transcriptomic analysis reveals distinct
signatures associated with early response
and resistance to treatment

To explore molecular biomarkers of prognostic potential in

PsA, we performed longitudinal assays in a subset of patients

(n=20) and investigated differences between responders (R, n=7)

and non-responders (NR, n=13) at different time points after

initiation of treatment (Supplementary Table 2). Both patient

groups showed similar clinical manifestations at baseline and 1-

month, suggesting the absence of clinical predictors of response

to treatment in our cohort (Table 2). Immunophenotypic

analysis revealed increased frequency of non-classical

monocytes in NR at the ‘6- month vs. 1-month’ time

point, indicating a persistence of these cells despite

treatment (Figure 4A).

Longitudinal gene expression profiling revealed significant

transcriptomic differences in the blood between R and NR
TABLE 2 Baseline clinical characteristics of PsA patients according to ACR50/DAPSA75% response at 6 months after treatment.

Characteristics* All patients(n=30) Complete follow up (n=20) P Value

Responders
(n=7)

Non- Responders
(n=13)

Female (%) 22 (73%) 5 (71%) 8 (61%)

Age, years 51.1 (10) 49.4 (9.5) 51.6 (9) 0.6

Duration of arthritis, years 6.2 (5.8) 7.2 (7.8) 7 (1.2) 0.9

Duration of psoriasis, years 20.3 (12.1) 27 (10) 19.3 (10.5) 0.1

Baseline disease activity by
DAPSA

46 (15.3) 45.7 (17.5) 46.8 (15.5) 0.8

ESR (mm/hr) 23.1 (18.5) 25.4 (19.6) 20 (15) 0.4

Baseline treatment, n

Naïve 11 2 4

DMARDs 5 2 1

Biologics 14 3 8
fron
*All values are presented as ‘mean (SD)’ unless otherwise stated. All variables had <20% missing data. PsA, Psoriatic Arthritis; DAPSA, Disease Activity Score for Psoriatic Arthritis; ESR,
Erythrocyte Sedimentation Rate; DMARDS, Disease Modifying Anti-Rheumatic Drugs.
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FIGURE 4

Longitudinal immunophenotypic and transcriptomic analysis in Responders and Non-Responders. (A) Frequencies of immune cell populations in
R and NR (myeloid subsets–up, lymphoid subsets–down) at baseline (0-), 1- and 6-month time points. Results are demonstrated as mean with
SD. Statistical significance was obtained by two-way ANOVA test. (B) Schematic diagram of the molecular changes over the course of the
follow-up period. Venn diagram (left) represents the DEGs between baseline (0-) and 6-month in R and NR, respectively. The bar plots (right)
show the corresponding changes in molecular pathways in NR (up) and R (down). (C) Venn diagram representing DEGs between R vs. NR at
baseline (0-), 1- and 6-month after treatment initiation. (D) Dot plot representing pathway analysis of DEGs from R vs. NR at 1-month time point
after treatment initiation based on g:Profiler database. R, Responders; NR, Non-Responders; DEGs, Differentially expressed genes. *p ≤ 0.05.
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(Supplemental Figure 5A). Specifically, after the initiation of

treatment, responders demonstrated downregulation of

pathways related to inflammation, such as TNFa signaling via

NFkB, KRAS signaling, complement, IFNa and IFNg response

(Figure 4B, Supplemental Figure 5B). On the other hand, NR

showed upregulation of genes associated with angiogenesis,

TGFb signaling and mitotic spindle. Notably, genes involved in

MYC signaling were overexpressed in both patient groups

(Figure 4B, Supplemental Figure 5B). Additionally, comparison

of the gene expression profile of R and NR at the different time

points revealed significant differences as early as 1-month after

treatment implementation (Figure 4C). Specifically, 651 DEGs

enriched in cellular macromolecule metabolic process, MST1-

mediated signaling, platelet activation and degranulation

comprised a gene signature that could differentiate the two

groups according to their response early during their

treatment course (Figure 4C, D, Supplemental Figure 5C).

Collectively, these findings highlight the molecular

heterogeneity of PsA and suggest a novel molecular

stratification of patients based on their gene expression profile.
Discussion

In this study, we use next-generation RNA sequencing

in PsA blood and skin fibroblasts to characterize the

transcriptomic landscape of the disease. We define molecular

signatures associated with disease activity and early response

to treatment, using longitudinal transcriptomic and

immunophenotypic analysis. Additionally, our data are

suggestive of a dynamic cross-talk between blood immune

cells and skin fibroblasts, highlighting novel pathways of

pathophysiologic relevance.

We identified an ‘activity signature’ in PsA blood pertaining

to the regulation and response of the immune system. The TNFa
signaling pathway was enriched in PsA patients compared to HI,

confirming the role of this cytokine in disease pathophysiology

and the importance of its therapeutic targeting (31, 32).

Furthermore, an IFN response signature related to both type-I

and type-II interferon was also identified in PsA blood,

corroborating the findings of a former microarray study (33).

IFN-a is a crucial effector molecule that bridges innate with

adaptive immunity and its overexpression has been identified as

a key driver in many systemic autoimmune diseases (34). Of

note, excessive type-I IFN activity was recently revealed in the

blood of patients with general pustular PsO (29) suggesting a

systemic activation of the IFN system in psoriatic disease.

Intriguingly, we did not observe a signature directly related to

the IL-17/IL-23 axis, despite its key role in PsA pathogenesis (35,

36). Nevertheless, we observed an overexpression of transcripts

related to TGFb signaling, which could indirectly lead to

activation of this pathogenic cytokine axis, given its crucial

role in promoting Th17 cell differentiation (37).
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Phenotypic analysis of blood also revealed aberrancies in the

immune cell profile of subjects with active PsA. Specifically, we

observed significantly increased NCM in affected compared to

HI at baseline, and persistent increase of these cells in patients

who failed to respond to treatment. NCM display a highly pro-

inflammatory phenotype (38) and enhanced antigen presenting

capacity that may sustain effector immune responses in

treatment-resistant PsA. These cells have vascular-patrolling

features (39) and may contribute to PsA-related vascular

comorbidities such as atherosclerosis and cardiovascular

disease (40). A recent study using high-throughput techniques

demonstrated enrichment of the CD14+ monocytic population

in PsA joints, corroborating the role of these cells as drivers of

inflammation in PsA through the secretion of pro-inflammatory

mediators (9). Our immunophenotypic analysis also revealed

decreased frequency of circulating pDCs and cytotoxic T cells,

consistent with former observations suggesting recirculation of

these cells between blood and PsA target tissues (41, 42).

Our data also suggested a contribution of aberrant lipid-

related metabolism to the PsA ‘activity signature’. PsA patients

show an increased prevalence of cardiovascular risk factors

(hypertension, obesity, insulin resistance) (5, 43) and an

aberrant blood lipid profile that favors immune-system

modulating mediators (COX-2, PGE1, LTB4) (44). In line with

these observations, we identified a deregulated lipidomic

signature in peripheral blood of PsA patients characterized by

upregulation of transcripts related to cholesterol and fatty acid

metabolism. We also identified enhanced signaling mediated by

mTOR, a primary regulator of metabolic reprogramming in T

cells and a key driver in T-cell mediated autoimmune

diseases (45).

PsA is uniquely characterized by synchronous bone erosions

and pathological new bone formation (46). Elevated extracellular

matrix (ECM) protein fragments in PsA serum reflect the

deregulated bone and cartilage turnover and bear the potential

to function as diagnostic biomarkers (46–48). In agreement with

these observations, our study also provided evidence of aberrant

collagen metabolism in PsA blood during the active phase of the

disease. By WGCNA analysis in PsA patients and HI, we

identified one gene module (orange) that was mainly enriched

in ECM structure and organization processes. Interestingly, this

module exhibited a negative correlation with PsA, implying the

possible efflux of circulating mesenchymal-like cells from the

blood to affected tissues. This finding is in accordance with a

recent study that highlighted the role of blood circulating

mesenchymal cells (PRIME cells) in mediating a RA flare (11).

Importantly, we identified that this ECM-related gene signature,

comprising 67 genes, was highly specific for PsA, after

comparisons with the blood transcriptome profile of subjects

who have RA, PsO and SLE.

Skin is an important target tissue in PsA and therefore, we

sought to explore the contribution of dermal fibroblasts -the

main regulators of ECM homeostasis- in disease pathogenesis.
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Our transcriptomic analysis revealed that PsA fibroblasts

exhibited greater proliferation and increased mitochondrial

respiration compared to fibroblasts from HI, which could

underpin their activated phenotype (49, 50). Notably, PsA

fibroblasts also displayed decreased expression of transcripts

involved in TNFa signaling and IFN response, possibly shaping

a counteracting immunosuppressive adaptation to the

inflammatory microenvironment of the psoriatic skin. This

finding comes in contrast to a recent proteomic study by

Gegotek et al. (51), who demonstrated increased production of

pro-inflammatory molecules such as TNFa and NFkB from

psoriatic fibroblasts. Nevertheless, this difference should be

considered with caution, given the different types of molecules

analyzed in the two studies. We also identified, for the first time,

an aberrant communication network between skin fibroblasts

and blood cells in PsA. This network included, among others,

enhancedWNT-mediated signaling from blood to skin as well as

enhanced autocrine NOTCH signaling in PsA fibroblast. Both of

these signaling pathways have a key role in promoting

myofibroblast differentiation in fibrotic diseases (52, 53), and

their identification has implications for PsA pathogenesis.

An interesting question raised by this study is whether there

are transcriptomic or immunophenotypic signatures in blood

that could predict response to treatment in PsA. Blood is an

easily accessible tissue that could serve as a valuable source of

prognostic biomarkers. Although serum levels of acute-phase

reactants and complement components have been described to

associate with the ACR50 response criteria in PsA (54), there are

no molecular biomarkers implemented in the routine clinical

care (55). Responders and non-responders in our study did not

present significant differences related to their baseline and 1-

month clinical characteristics. Both groups also did not show

significant differences in their blood immune profile at the

different time points. On the other hand, the longitudinal

immunophenotypic analysis revealed increased frequency of

NCM at the end of the follow-up (6-month) compared to the

1-month time point within the group of non-responders.

Additionally, the longitudinal transcriptomic analysis revealed

that implementation of treatment had significantly different

effect on the biological pathways in the two patient groups.

Specifically, we showed that pathways related to TGFb signaling

and angiogenesis were upregulated at 6-months compared to

baseline in non-responders. On the other hand, responders

demonstrated downregulation of biological processes related to

inflammation, such as TNFa signaling, IFNa and IFNg
response. These results support the notion that aberrant TGFb
signaling and the Ag-presenting capacity of NCM may sustain

Th17 effector cells in treatment-resistant PsA. This model is

consistent with the observations that TGFb is an important

activator of the IL-23/IL-17 pathway (56) and that NCM can

trigger the induction of the pro-inflammatory Th17 cells (57).

Finally, the blood transcriptomic profile of responders diverged

from that of non-responders at the 1-month time point,
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providing thus an early transcriptomic signature of prognostic

potential. This signature consisted of genes related to platelet

activation and MST1-mediated Hippo signaling. These findings

are of important pathophysiological relevance, given the central

role of Hippo pathway in regulating immune responses such as

NFkB signaling (58) and IFN production (59) as well as the

emerging role of platelets as pro-inflammatory mediators in

autoimmune diseases (60).

Our study has certain limitations. First, the sample size of

our study is small, pending validation of our findings in larger

cohorts. The molecular signature associated with response to

treatment should also be confirmed in an independent

longitudinal cohort. Secondly, both PsA and RA patients

displayed significant heterogeneity regarding their background

treatment at the time of blood collection. Although our initial

approach was to recruit homogeneous patient groups, difficulties

related to the COVID-19 pandemic made this endeavor

challenging. We recognize that our cohort heterogeneity may

represent a confounding factor limiting the replicability of our

results. Yet, as all participants had highly active disease at

enrollment, we believe that the molecular signatures of

‘activity ’ and ‘response to treatment ’ identified are

independent of the background therapy. Future studies

focusing on specific patient groups could provide more insight

into this issue. Of note, subgroup analyses comparing naive

patients, patients on DMARDs and patients on biologics at

baseline did not reveal significant differences among the

groups (data not shown). Finally, our study focused on

patients with chronic, established PsA, and thus, our findings

cannot be generalized to patients with early disease.

In summary, by the use of combined transcriptomic and

immunophenotypic analysis, we define an ‘activity signature’ in

PsA blood characterized by TNF- and IFN-driven inflammation,

lipid-related metabolic aberrancies and expansion of pro-

inflammatory non-classical monocytes. Our data also suggest

the presence of a “PsA-specific gene set” enriched in ECM

metabolism, supported by an enhanced communication

network between blood immune cells and skin resident

mesenchymal cells. Finally, we also provide evidence of

persistent TGFb signaling and angiogenesis in treatment-

resistant PsA, and propose a gene expression signature related

to platelet activation and Hippo signaling as potential biomarker

of early response to treatment. These findings highlight the

significant molecular heterogeneity of PsA and may open new

avenues, including a novel molecular characterization of

patients, better risk stratification strategies, and more efficient

tailoring of treatment.
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SUPPLEMENTARY FIGURE 1

Deconvolution, gating strategy and immunophenotyping in RA blood

samples. (A) Violin diagram illustrating the fraction of selected immune
cell subsets in the peripheral blood of PsA patients (n=23) and HI (n=7), as

inferred by CIBERSORTx. (B) Representative gating strategy for the
identification of myeloid and lymphoid cell subsets. Classical

monocytes were characterized as HLA-DR+CD14+CD16-, intermediate
monocytes as HLA-DR+CD14+CD16+, non-classical monocytes as HLA-

DR+CD14-CD16+ and pDCs as HLA-DR+CD14-CD16-CD123+. T helper

cells and T cytotoxic cells were identified as CD4+CD8- and CD4-CD8+,
respectively. CD4+ cells were further gated for CD25+ T regulatory cells.

B cells were identified as CD19+ cells. (C) Frequencies of monocyte
subsets, pDCs, B cells, Tregs, CD4+ and CD8+ T cells in peripheral blood

of PsA (n= 26-30), RA (n=8-10) and HI (n= 8-10). Results are
demonstrated as mean with SD. Statistical significance was obtained by

unpaired Student’s t-test and Mann-Whitney test. (*p ≤ 0.05, **p ≤ 0.01,

***p ≤ 0.001). RA, Rheumatoid arthritis; pDCs, Plasmacytoid dendritic
cel ls; Tregs, T regulatory cells; PsA, Psoriat ic arthrit is; HI,

Healthy individuals.

SUPPLEMENTARY FIGURE 2

Blood transcriptome analysis in RA samples. (A) PCA of blood gene

expression profiles from PsA, RA. The two first principal components

(PC1, PC2) are plotted. (B) Volcano plot (left) and heatmap (right) of DEGs
between PsA and RA. The up- and down-regulated genes are denoted by

red and blue points, respectively. Gray points indicate genes with no
significant difference in expression between PsA and RA. RA, Rheumatoid

arthritis; PCA, Principal component analysis; PsA, Psoriatic arthritis; HI,
Healthy individuals; DEGs, Differentially expressed genes.

SUPPLEMENTARY FIGURE 3

Comparison of PsA and SLE blood gene expression profile. (A) Venn

diagram showing the overlap among significant DEGs of ‘SLE vs. HI’, ‘PsA
vs. HI’, and ‘PsA-specific gene set’. 57 out of the 67 “PsA-specific gene set”

are uniquely represented in the ‘PsA vs. HI’ comparison. PsA, Psoriatic
arthritis, SLE, Systemic lupus erythematosus; DEGs, Differentially

expressed genes; HI, Healthy individuals

SUPPLEMENTARY FIGURE 4

Transcriptomic analysis of skin fibroblasts. (A) Heatmap (left) and volcano
plot (right) of DEGs between PsA (n=3) and HI (n=3). The up- and down-

regulated genes are denoted by red and blue points, respectively. Gray
points indicate genes with no significant difference in expression between

PsA and HI. (B) Dot plot of GSEA analysis (Hallmark v7.5) representing

biological pathways associated with PsA fibroblasts. The figure shows the
significantly positively and negatively enriched terms. (C) Bar plot

indicating the overall number and strength of communication
interactions between skin fibroblasts and blood cells in PsA and HI.
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DEGs, Differentially expressed genes; PsA, Psoriatic arthritis; HI, Healthy
individuals; GSEA, Gene set enrichment analysis; FC, Fold change.

SUPPLEMENTARY FIGURE 5

Transcriptomic analysis in Responders and Non-Responders during the
6-month treatment period. (A) Volcano plots of DEGs between baseline

(0-) and 6-month in R (left) and NR (right). (B) Volcano plots of DEGs (|FC|
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>1.5, P value<0.05) between R and NR at baseline (left), 1- (middle) and 6-
(right) after treatment initiation. The up- and down-regulated genes are

denoted by red and blue points, respectively. (C) Dot plot representing
pathway analysis of DEGs from PsA ‘R vs. NR’ at baseline (left) and at 6-

month time point (right) based on g:Profiler. DEGs, Differentially
expressed genes; R, Responders; NR, Non-responders; PsA,

Psoriatic arthritis.
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