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Abstract: Sensors are tools for detecting, recognizing, and recording signals from the surrounding
environment. They provide measurable information on chemical or physical changes, and thus are
widely used in diagnosis, environment monitoring, food quality checks, or process control. Polymers
are versatile materials that find a broad range of applications in sensory devices for the biomedical
sector and beyond. Sensory materials are expected to exhibit a measurable change of properties in
the presence of an analyte or a stimulus, characterized by high sensitivity and selectivity of the signal.
Signal parameters can be tuned by material features connected with the restriction of macromolecule
shape by crosslinking or folding. Gels are crosslinked, three-dimensional networks that can form
cavities of different sizes and forms, which can be adapted to trap particular analytes. A higher
level of structural control can be achieved by foldamers, which are macromolecules that can attain
well-defined conformation in solution. By increasing control over the three-dimensional structure,
we can improve the selectivity of polymer materials, which is one of the crucial requirements for
sensors. Here, we discuss various examples of polymer gels and foldamer-based sensor systems.
We have classified and described applied polymer materials and used sensing techniques. Finally,
we deliberated the necessity and potential of further exploration of the field towards the increased
selectivity of sensory devices.

Keywords: polymer gels; hydrogels; foldamers; sensing; biosensing

1. Introduction

Sensing is a very important division in applied sciences, present in several sectors
such as diagnosis and treatment [1,2], environment monitoring [3], processes control [4],
and food quality analysis [5]. Quickly developing medicine requires tools for rapid, cost-
effective, and reliable diagnosis to provide proper patient treatment. This need has distinctly
become evident in the crisis of the COVID-19 outbreak, generating a huge necessity for
widespread testing. Besides medicine, effective sensors are needed for security reasons,
e.g., to be able to detect illegal explosives. Moreover, facing climate changes, environmental
monitoring has become crucial to mitigate harmful effects. However, there is a lack of ap-
propriate tools. The World Health Organization (WHO) has warned about the importance
of water quality monitoring to control the level of bioactive substances. However, suitable
methods have not been developed so far [6]. The need for sensors is huge and unsatisfied
due to the insufficiency of affordable and practical devices suitable for common use.

A typical sensor is a device able to receive signals and stimuli from the environment
and deliver output data about changes in its surroundings [7,8]. In other words, the function
of a sensor is to detect events or changes in the environment and provide information
about these alterations. The crucial component of the sensor is a probe material, sensitive
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to particular changes (e.g., temperature, presence of an analyte, pH), able to transduce
information to a readable physical signal [9,10]. Usually, the probe material determines
the sensing parameters, such as detection limit, selectivity, specificity, and appropriate
detection method. Several ways to transduce such signals have been established and
classified according to various detection techniques. Among them, we can distinguish
optical sensing (absorbance, reflectance, luminescence, fluorescence, index of refraction,
opto-thermal and scattering effects); electrochemical sensing (voltammetry, amperometry,
potentiometry and field-effect); mass sensing (piezoelectricity and surface acoustic wave
effects); thermometric sensing (heat effects derived from chemical reaction or absorption);
and radiation sensing (based on the absorbance of radioactive species) [11]. Apart from
this classification, sensors can be classified by their probe elements (such as polymer,
ionophore, enzymes, antigens/antibodies, cell, protein and membrane receptors, tissues,
oligonucleotides, specific ligands, etc.) and by the sensed analyte (such as glucose, DNA,
enzymes, toxins, drugs, etc.). Sensing and biosensing have progressively become crucial for
various applications, e.g., process regulation, quality control, environmental monitoring,
and diagnosis.

Polymers are versatile materials that represent a broad range of properties and stimuli-
responsiveness, thus very attractive for sensors construction [12–16]. These materials can
be adapted to specific tasks through their synthesis or modification [17–19] and may be
used as solid membranes, gels, nanoparticles, or thin films [20–23]. Polymer gels are
three-dimensional networks that can form cavities of different sizes and shapes, which can
be adapted to trap particular analytes. Those features have been used to obtain various
sensory materials [7,23–26]. Gels can be formed by covalent or non-covalent bonds, e.g.,
ionic and hydrogen bonds [27]. Gel materials in sensing can be generally classified into
hydrogels formed by natural [28–31] or synthetic [16,32,33] polymers [22,25]. Gels coupled
with other types of materials, e.g., gold nanoparticles [34–38] and quantum dots [39,40],
can be distinguished as a hybrid group of hydrogel materials [31]. An interesting materials
in the context of sensing applications are foldamers [41–43]. These materials can attain
particular secondary structures, similarly to natural peptides and proteins, thus they are
very attractive as sensory materials. The foldamer-based sensors have been described in a
separate section of this review article. Another type of crosslinked polymer material widely
applied in sensing is molecularly imprinted polymers [44]. The principle of molecular
imprinting is based on the self-assembly of a crosslinked polymer matrix in the presence of
a template molecule. In these materials, monomers should be carefully chosen to present a
proper functional group to interact covalently or non-covalently with a template molecule.
The assembled structure is covalently stabilized by a polymerization reaction and the
template analyte is removed, leaving a cavity fitted to the analyte. Molecularly imprinted
polymers are a subject of several review articles [45–48] and are not discussed in this article.

Here, we discuss various examples of polymer gel-based sensor systems. This article
briefly classifies gels with an emphasis on the chemical structure based on examples
from the last decade. We discuss applied detection techniques and sensing parameters
used for polymer gel systems. Finally, we deliberated the necessity and possibility of
further exploration of the field towards the increased selectivity of polymer materials. We
mention some recent advances in the field of gels, along with unsolved issues, and suggest
possible solutions.

2. Hydrogel Materials in Sensing

Polymeric hydrogels are viscoelastic networks resembling deformable solid-state
materials made of hydrophilic polymers, but due to the crosslinked structure they are
not soluble in water, yet highly absorbent [49,50]. The water-uptake capability of the
hydrogel provides a suitable environment for biomolecules. Thus, they maintain long-
term bioactivity [51,52]. Hydrogel structures can be formed by covalent or non-covalent
interactions, forming interconnections called crosslinks, among the polymer backbone
parts [53,54]. The nature of the crosslinks may be either chemical, via covalent bonds, or
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physical, via weak interactions such as coordinative, electrostatic, hydrophobic and dipole-
dipole or chain entanglements between the segments of the network [23,55]. The capacity
to retain a high content of water imparts to the hydrogels the ability to swell and be soft
materials stable in aqueous media [56,57]. The properties of the hydrogels can be easily
modulated by structure modification to induce responsiveness to external stimuli [58,59] or
sensitivity to particular analytes [60]. Hydrogels can undergo volume-phase transitions
when they are exposed to a stimulus or molecular interactions with the analyte. Such phase
transition results in changing hydrogel properties, e.g., swelling, collapse, or solution-
to-gel transition, transparency, and conductivity, which can be exploited to construct
sensor probes [7,24,56]. They can change their properties under external inputs, e.g., the
presence of particular ions [61] or bioactive molecules, pH [62–64], temperature [65], light
radiation [66], electric [67,68] or magnetic [69,70] fields, etc. [71]. For example, pH-sensitive
hydrogels contain carboxylic or amine groups in their chains which can respond to the
change of pH and ionic strength in the medium [63]. Depending on pH, the hydrogel
displays reversible swelling/de-swelling properties [26,72]. Another method to derivatize
the hydrogels is to attach (bio)molecules that can recognize selectively particular ligands.
For instance, Wei et al. developed a microfluidic device that incorporates an aptamer-based
hydrogel for the detection of cocaine [56,73]. Hydrogels, thanks to the aforementioned
characteristics, such as the ability to retain molecules of water and swell in media, softness,
and ease of derivatization, have gained interest as transducer materials in sensing and
biosensing technologies [7,9,12].

Examples of hydrogel sensing and biosensing applications are listed in Tables 1 and 2
and classified according to the detection method. The detection methods used in gel-
based sensors can be considered into two main categories: electrochemical or optical tech-
niques. Hydrogels for optical detection methods contain fluorophores or chromophores
in their chains, which interact through various mechanisms with the target molecules.
The interaction with the analyte alters measured optical property, e.g., color [74], ab-
sorbance [75], fluorescence emission [76], or volume [77]. For example, Haldar and Lee [78]
developed a polymeric chemosensor for the detection of Hg2+ ions in aqueous media.
N,N-dimethylacrylamide hydrogel chains were decorated by thiosemicarbazide modified
BODIPY fluorogenic groups. Hydrogel itself did not display fluorescence. However, in the
presence of Hg2+ ions, it showed a noticeable fluorescence emission enhancement at 545 nm.
The change in optical properties was due to the restricted isomerization of the C=N bond of
the thiosemicarbazide unit caused by complexation with Hg2+ ions. Besides devices with
optical detection, polymer gels are used as electrochemical (bio)sensors. They are built into
a three-electrode electrochemical cell, consisting of a working electrode (WE), a counter or
an auxiliary electrode, and a reference electrode. Different materials are used as WEs, e.g.,
glassy carbon electrodes, carbon paste electrodes, pencil graphite electrodes, indium tin
oxide electrodes, pyrolytic graphite electrodes, gold or platinum electrodes, and carbon or
gold screen-printed electrodes [12,79]. The WE presents the electroconductive materials
which are responsible for biorecognition event with the targeted species, causing the change
of the electrochemical signal, recorded as impedance, current, or voltage. To achieve con-
ductive properties, gels are doped with conducting materials, e.g., polymers [80], carbon
materials [81], metal nanoparticles [82], or quantum dots [39]. For example, Çevik et al. [79]
developed a label-free biosensor for detecting the prostate-specific antigen (tPSA) in serum
samples. A conductive layer of poly(amidoamine) dendrimers crosslinked by glutaralde-
hyde, containing ferrocene units was assembled on gold electrode. The capture antibody
for tPSA was covalently attached to the dendrimer terminal groups. Once the antibody
captures the tPSA present in the serum, ferrocene undergoes a redox transition. The change
in the redox state of ferrocene induces an alteration in the voltage, read as a differential
pulse voltammetry signal [79].

Polymeric materials used for sensors are divided into natural hydrogels, derived from
natural polymers, e.g., proteins (collagen [76,80,83], elastin [84,85], gelatin [86–88], albu-
min [29,89]), polysaccharides (hyaluronic acid [90], alginate [91–95], chitosan [82,96–101],
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cellulose [74]), and synthetic hydrogels [39,102–106], based on laboratory-made polymers.
Hydrogels in sensing applications are often used as a hybrid material, blend of polymers
or in composition with inorganic materials, e.g., graphene, graphene oxide, or silica [31]. In
hybrid hydrogel systems, each of the components has a function [107]. For instance, carbon
additives provide material conductivity that enables the application of amperometric de-
tection techniques. Hydrogels can be used in diverse forms, suitable for final applications,
e.g., hydrogel films, self-standing substrate, or nano and microparticles [55,88,92,108].

2.1. Sensors Based on Natural Hydrogels

Natural hydrogels are derived from naturally occurring polymers that are cross-linked by
covalent or supramolecular bonds [109]. The classification of the natural hydrogels includes
two main groups, based on their derivation. The first group is represented by protein-based
materials [76,80,83–89] which include collagen, elastin, fibrin, gelatin, and skin fibroin. The
second group is constituted of hydrogels derived from polysaccharides [74,82,90–93,96–98]
such as glycosaminoglycans, alginate and chitosan. Such hydrogels are suitable for most
biological applications attributable to their biocompatibility and bioactivity. If needed,
the properties of natural hydrogels can be adjusted by chemical modification [28] or the
preparation of composite polymers with synthetic hydrogels [100]. Natural hydrogels have
been used for the sensing of glucose [80,93,97,98,100], dopamine [83], antioxidants [82],
pH [74,88,89], explosives [39,85–87,96], biomarkers [76,84,90–92], and body signals [29,30]
using electrochemical and optical detection methods (Table 1).

Table 1. Natural hydrogel-based sensors.

Hydrogel Sensing Analyte Characteristics Ref.
Electrochemical Methods

Polyacrylic
acid-lignosulfonate-alginate-Ca2+ Resistance Strain

Resistance changes vs. time when monitoring
different body joints motions, responsive

performance up to 500 cycles.
Compression stress—835 kPa

Tensile fracture stress—357 kPa
Stretching strain—1144%

[28]

BSA crosslinked by cysteine
disulfide bridges Amperometry Physiological signals

Electrocardiography (ECG) for heart activity,
electroencephalography (EEG) for brain activity, and

electrooculography (EOG) for eye activity,
conductivity = 5.3 mS cm−1

[29]

Chitosan/cationic guar gum Amperometry Human body motions 0.296 kPa pressure sensitivity when
pressure was lower than 1.25 kP [30]

Methacrylated-collagen,
polypyrrole and glucose oxidase Amperometry Glucose

LOD = 2 mM, PBS buffer (pH = 7.4)
LOD ∼= 200 mM in porcine meat

Linear range: 0–4 mM
High selectivity in vivo

[80]

Collagen from grass carp skin,
graphene oxide and aptamer

Linear Sweep
Voltammetry (LSV) Dopamine

LOD = 0.75 nM,
PBS buffer (pH = 7)

Linear range: 1–1000 nM
[83]

Alginate copper oxide with
glucose oxidase Amperometry Glucose

LOD = 1.6 µM in human serum
Linear ranges: 0.04–3 mM and 4–35 mM

Sensitivity: 30.443 and 7.025 µA mM−1 cm−2

Selectivity among ascorbic acid, uric acid,
acetaminophen and phenylalanine

[93]

Chitosan crosslinked with silver
ions

Linear Sweep
Voltammetry (LSV)

Antioxidants (ascorbic
acid)

Linear range: 0.04 µM–36 µM
0.1 mM H2O2 solution (pH = 4.5)

Selectivity among glucose and sucrose
[82]

Chitosan crosslinked with
genipin, amino-derived osmium

redox complex and glucose
oxidase

Amperometry Glucose Linear range: ~0.1–20 mM
in PBS buffer (pH = 7) [97]

Laponite-chitosan with lactate
oxidase on glassy carbon

electrode
Amperometry L-lactate

LOD = 3.8 µM in alcoholic beverages
Sensitivity: 0.326 A M−1 cm−2

LOQ = 12.6 µM
Linear range: 10–70 µM

[98]

Chitosan, oxidized
dextran, and CeO2/MnO2 hollow

nanospheres
Amperometry Glucose

LOD = 32.4 µM in PBS buffer (pH = 7.4)
Sensitivity: 176 µA mM−1 cm−2

Linear range: 1–111 mM
[99]

3-
aminopropyltriethoxysilane/chitosan

with glucose oxidase
Amperometry Glucose

LOD = 0.2 µM, 0.10 M PBS buffer (pH = 7.0)
Linear range: 0.2 µM–8.2mM and

0.2 µM–5.5 mM
Sensitivity: 69.5 and 65 µA mM−1 cm−2

[100]
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Table 1. Cont.

Hydrogel Sensing Analyte Characteristics Ref.

Chitosan-carbon nanotubes
(Chitosan-CNTs) Cyclic Voltammetry (CV) Dopamine

LOD = 2.00 vs. 1.00 µmol L−1

Sensitivity: 3.00 vs. 0.01 µA L µmol−1

(CNT loading 1.75% vs. 1%)
Linear range: 0–10 µM for both

in 300 µmol L−1 uric acid solution

[101]

Pectin/reduced graphene oxide
Cyclic Voltammetry
(CV), Linear Sweep
Voltammetry (LSV)

Dopamine, Paracetamol

LOD = 1.5 nM (Dopamine)
LOQ = 0.4 nM (Dopamine)

Linear range (LSV): 0.003–90.206 µM
(Dopamine)

LOD = 1.8 nM (Paracetamol)
LOQ = 0.6 nM (Paracetamol)

Linear range (LSV): 0.003–91.04 µM
(Paracetamol)

Both were performer in PBS (pH = 7.0)

[110]

Optical methods

Pyrophosphate ion-alginate with
carbon dots and Cu2+ Fluorescence Alkaline phosphatase

(ALP)

LOD = 0.55 mU/mL
Linear range: 0–100 mU/mL

λem = 513 nm
gel-sol transition

[61]

Collagen-lysyl oxidase Fluorescence/Imaging Biomarkers Lysyl
oxidase

Turn-on fluorescence probe
Extracellular matrix

Before binding—φF = 0.09
λabs = 360 nm, λem = 395 nm

After binding—φF = 0.89
λabs = 310 nm, λem = 455 nm

[76]

Human elastin-like polypeptide
and bilirubin-binding protein

UnaG
Fluorescence Biomarkers, detection of

bilirubin

Linear range: 0–100 nM
in PBS buffer pH = 7.4

cell culture media; λem = 528 nm,
λexc = 485 nm

[84]

Silk/Elastin-like recombinamers
with fluorescent proteins

(SELR-FPs)
Fluorescence protein eqFP650

λex = 475 nm, λem = 636 nm
FRET pairs–fluorescent proteins AcEGFP and

eqFP650, potential use as a biosensor
[85]

Gelatin methacryloyl Tactile sensing Pressure change

LOD = 0.1 Pa
Sensitivity: 0.19 kPa−1

Durability up to 3000 cycles
Suitable for wearable biosensing application

[86]

Gelatin-tannic acid Volumetric Mechanical change

Elongation 1600%
Self-healing—0.65 s

Self-healing efficiency—95%
(Hydrogel combined with a resistor)

[87]

Gelatin crosslinked with carbon
dots Photoluminescence (PL) pH

Increasing pH in range 3–10,
Linear range: 5–7 pH

PL quenching at λem = 431 nm, λex = 350 nm
[88]

Human serum albumin
(HSA)-manganese complex

Magnetic resonance
imaging (MRI) pH HSA-Mn2+ hydrogel capsule for in situ monitoring of

gastric pH [89]

Hyaluronic acid (HA) Fluorescence Hyaluronidase (HAse)

FRET-based quenching mechanism (FITC-donor,
AuNPs–acceptor). Binding to HAse prevents FRET

fluorescence quenching.
LOD = 0.14 U/mL

Linear range: 0.5–100 U/mL
Selectivity among different ions (NaCl, KCl, MgSO4,

CaCl2, small molecules (glutathione, glucose,
glutamine and ascorbic acid), BSA, and enzymes

(alkaline phosphatase, trypsin, papain).

[90]

Alginate crosslinked
with Cu2+

Fluorescence
Immunoassay

Alkaline phosphatase
(ALP)

LOD = 0.24 ng/mL (serum)
Linear range: ~0–2 ng/mL

Hepatis B surface antigen (HBsAg)
Selectivity among Na+, K+, HAS, lysozyme,

thrombin, glucose oxidase
Gel-sol transition

[91]

Alginate-in-alginate with
palladium

tetracarboxyphenylporphyrin
Optical Glucose

(low O2)
Linear Range: 0.026–3.5 g/L
Sensitivity: 97 ± 5.4 µs L/g

(ambient O2)
Linear Range: 0.87–3.5 g/L;
Sensitivity: 7.5 ± 1.3 µs L/g

[92]

Alginate-based microfibres with
mesoporous polyester beads Optical pH of epidermis

pH range: 4–9
(range for skin disorders and

wounds variation)
[94]

Titanium oxide
nanotubes/alginate hydrogel Colorimetric assay Biomarkers

LOD = 0.069 mM (lactate)
Linear ranges: 0.1–1.0 mM
LOD = 0.044 mM (glucose)
Linear range: 0.1–0.8 mM

[95]
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Table 1. Cont.

Hydrogel Sensing Analyte Characteristics Ref.

Fluorescent chitosan Fluorescence Nitrocompounds,
p-nitrophenol

Nitrocompounds quench
Fluorescence,

LOD = 0.35–2.30 µM
(2,4,6-trinitrophenol)
LOD = 0.90–5.30 µM

(p-nitrophenol)

[96]

Extract grape skin/tara gum,
cellulose nanocrystal

Absorbance (Color
change) pH

Intensity decreases when pH increases
pH range: 1–11

pH in range 1–5 λmax = 528 nm.
pH in range 6–10 λmax = 618 nm

[74]

Abbreviations: AuNPs—gold nanoparticles; LOD—limit of detection is defined as the lowest concentration of an
analyte in a sample that can be consistently detected with a stated probability (typically at 95% certainty) [111];
LOQ: limit of quantification is defined as the concentration that can be measured with a defined accuracy and
precision [111]; PBS—phosphate-buffered saline, FRET—Förster resonance energy transfer, FITC—fluorescein
isothiocyanate; BSA—bovine serum albumin.

2.1.1. Proteins

• Collagen

Collagen is a protein found in the extracellular matrix of mammals’ bodies [112] that
provides mechanical support against action forces to avoid repetitive plastic deformation.
In addition, the different forms and orientations of fibers determine the diverse disposition
of cells in the tissue [109]. The three-dimensional structure of collagen is defined by
four levels (Figure 1) [113]. The primary structure consists of a sequence of -(Gly-X-Y)n-,
where glycine represents 30% of the total amino acid content, X and Y are proline and
hydroxyproline, respectively. Triplets of amino acid units define the secondary structure
of the collagen. A left-handed helix, containing around 1000 amino acids, forms the
third level of the organization [109]. The quaternary structure of collagen is defined by
the formation of fibers, assembled by intra- and intermolecular interactions of collagen
molecules [109,114]. Thanks to biocompatibility and mechanical strength, collagen has
taken part in the development of novel sensors and biosensors. Despite resembling the
structure and properties of native soft tissues, collagen is difficult to manipulate, and thus
its derivatization before use is often required.

Figure 1. Atomic-scale of type I collagen found in skin, tendon and bones [113]. Reprinted with
permission from reference [113]. Copyright 2021 from Frontiers in Bioengineering and Biotechnology.

Ravichandran et al. proposed a proof-of-concept of a collagen-based electroconductive
sensor for glucose detection in vitro and in tissue for monitoring patients with diagnosed
diabetes [80]. This device was formed by methacrylated collagen, used as a scaffold, polypyr-
role representing the electroconductive polymer, and glucose oxidase, which catalyzes the
oxidation of the glucose and produces the amperometric signal (Figure 2). The proposed
conductive hydrogel was used to detect different concentrations of glucose in a phosphate-
buffered saline solution at pH = 7.4. The sensor response of the material was assessed in
porcine meat, which showed a reliable measure of glucose in this living matter at up to five
days of the experiment [80].
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Figure 2. Methacrylated collagen hydrogel with polypyrrole and glucose oxidase for the detection
of glucose in vitro and in tissues. Reprinted with permission from reference [80]. Copyright 2018
American Chemical Society.

Another example is a collagen-based biosensor proposed by Wei et al. [83]. They con-
structed an electrochemical biosensor for dopamine composed of collagen from grass carp
skin, graphene oxide, and an aptamer. The composite collagen-graphene oxide represents
the transducer, while the aptamer is the recognition element. The biosensor showed high
sensitivity and a wide linear range in the determination of dopamine. In addition, it also pre-
sented good selectivity among other biomolecules, such as L-l-3,4-dihydroxyphenylalanine
(L-DOPA), homovanilic acid, ascorbic acid, and tyramine. The peculiar characteristic of
such a novel collagen-based sensor was the robustness in human blood serum, thanks to the
biocompatibility and properties of the collagen [83].

Aronoff et al. developed imaging and targeting dual sensor for lysine oxidase based
on a collagen scaffold. Lysine oxidase is important in forming crosslinks in the extracellular
matrix proteins such as collagen and elastin [76]. Its inhibition can produce osteolathyrism,
affecting bones and connective tissues [76,115,116]. On the other hand, the upregulation
of lysine oxidase may promote the pathogenesis of fibrotic and musculoskeletal diseases
and ultimately some forms of cancer [76,117]. Such a fluorescent collagen-based biosensor
was highly sensitive to measure the lysine oxidase activity and interacted selectively with
the endogenous aldehydes formed by lysine oxidase. The dual-modality of this biosensor
allowed the targeting and imaging of extracellular collagen with high specificity and spatial
resolution within in vivo and ex vivo tissues [76].

• Elastin

Elastin is a protein found in connective tissues and provides elasticity to organs. It is
an insoluble polymer that presents its soluble precursor, tropoelastin, as a crosslinker [109].
Elastin is mainly formed by glycine, proline, alanine, leucine, and valine. This protein is
generally organized in a repeated sequence of 3–9 amino acids which render the structure
flexible and dynamic [118]. Tropoelastin and elastin-based peptides are capable to self-
assemble in physiological conditions and thanks to their remarkable elasticity, biocompati-
bility and biodegradability, they have raised interest as scaffolds in different applications,
such as 3D cell cultures, drug and gene deliveries [109]. In addition, elastin-based hydrogels
have been demonstrated to be suitable for developing sensors and biosensors.

Bandiera et al. developed a human elastin-like polypeptide fusing UnaG, an expressed
protein in eel that can emit fluorescence after a high-affinity binding with bilirubin. Bilirubin
is a modulator of oxidative stress and chronic inflammation processes, therefore its sensing
and evaluation of concentration in biological organisms are crucial. The functionalization
of elastin hydrogel with UnaG showed an affinity with bilirubin in a concentration below
100 nM, detectable using fluorescence analysis [84].
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Another example is represented by two silk/elastin-like recombinants (SELRs) with
fluorescent characteristics, given by two different fluorescent proteins (FPs): AcEGFP and
eqFP650 [85]. The group of Ibáñez-Fonseca studied the Förster resonance energy transfer
(FRET) generated between the two silk/elastin-like recombinants. This study of FRET
was performed by spectroscopy and confocal microscopy which gave information on the
interactions between molecules at different concentrations (Figure 3). They found that the
silk/elastin-like recombinants and fluorescent proteins can self-assemble, forming particles
and hydrogels. The use of FRET as a sensory tool demonstrated by this work may increase
the interest in using this material as a biosensor for different biotargets such as glucose,
lipopolysaccharide, or metal ions [85].

Figure 3. Silk/elastin-like recombinants (SELR) with fluorescent proteins hydrogel formed by
silk/elastin-based network, linking two different fluorescent proteins which undergo FRET when
they target biomolecules. Reprinted with permission from reference [85]. Copyright 2017 American
Chemical Society.

• Gelatin

Gelatin is obtained by the denaturation of the triple helix of collagen in which, depend-
ing on the treatment, two types of gelatin are formed: type A (processed by acids) and type
B (processed by alkaline solutions) [109]. These natural polymers are composed of proteins
(98–99%), lacking in tryptophan and deficient in isoleucine, threonine, and methionine [119].
Hydrolyzed gelatin contains 19 amino acids which are predominately glycine (26–34%),
proline (10–18%), and hydroxyproline (7–15%). Other amino acids such as alanine (8–11%),
arginine (8–9%), aspartic acid (6–7%), and glutamic acid (10–12%) contribute to the structure
of gelatin [120]. Such a natural polymer presents minimal immunogenicity, degradability,
gel foaming, thickening, emulsifying, and foaming properties [109]. Such characteristics
have been exploited in different fields, from tissue engineering to sensing/biosensing.

Recently, a self-powered strain sensor, based on a gelatin hydrogel, was fabricated
with the blending of gelatin and tannic acid (TA) (Figure 4) [87]. Such a hydrogel was able
to efficiently convert chemical energy, in the form of small pressure or stretching stimuli,
into electrical energy, as a voltage signal without an external power supply. Thanks to the
doping of the gelatin-TA material with Ag nanowires, the conductivity of the hydrogel was
effectively improved, converting efficiently pressure and stretching stimuli into a resistance
signal. In addition, Zn and an air electrode were introduced into the hydrogel which was
connected to a fixed resistor, obtaining a self-powered sensor system. The self-healing
and self-powered abilities of the device, in addition to durability and reliability, made
this hydrogel-based strain sensor a valid candidate for the fabrication of a portable and
wearable electronic device [87].
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Figure 4. Scheme of the formation of the gelatin-tannic acid hydrogel. Tannic acid (TA) interacts
with the gelatin chains through hydrogen bonds and hydrophobic interactions, forming crosslinks
to the hydrogel network. Reprinted with permission from reference [87]. Copyright 2019 American
Chemical Society.

Li et al. developed a gelatin methacryloyl (GelMA) hydrogel, conjugating gelatin, di-
rectly derived from the bovine skin, with methacrylic anhydride (MA). This system was able
to monitor human physiological signals, pulse, and vocal cord vibration. The device was
composed of layers of polydimethylsiloxane (PDMS) and GelMA (PDMS/GelMA/PDMS),
used as a dielectric medium and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS), used as an electrode. Such sensors demonstrated several benefits, includ-
ing being processable in solution, their ability to reduce water evaporation, present high
stability, good reproducibility, and high transparency in the visible range of the light. In
addition, it showed great biocompatibility, a peculiar characteristic for potential use as a
medical wearable [86].

Recently, gelatin crosslinked with carbon dots (CDs) was used as a chromophore,
to form a gelatin nanocomposite (GNC) as a drug delivery system and pH sensor for
the gastrointestinal tract (Figure 5) [88]. This pH-sensitive system showed remarkable
photoluminescence characteristics in the near-neutral pH range of the gastrointestinal tract
and also can bypass the strongly acidic environment of the stomach, releasing loaded
therapeutics in the intestine. In addition, these hydrogels showed cytocompatibility and
non-toxicity in the cellular environment. These results demonstrated that such GNC can
be a valuable candidate for in vivo imaging, biosensing applications, and the quantitative
measurement of pH in the digestive system [88].

Figure 5. Formation of the gelatin nanocomposite crosslinked with carbon dots and loaded with a
drug that is released in the gastrointestinal tract. The gelatin nanocomposite (GNC) hydrogels show
fluorescence properties for biosensing and measuring the pH of the digestive system. Reprinted with
permission from reference [88]. Copyright 2020 American Chemical Society.
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2.1.2. Polysaccharides

• Hyaluronic acid

Hyaluronic acid (HA) is found mainly in the extracellular matrix, present in the
connective tissue in mammals, acting as a lubricant, as well as a signaling molecule involved
in mammalian biological processes [109]. HA is synthesized by integral membrane proteins
and formed by alternating units of glucuronic acid and N-acetylglucosamine which are
bonded by β-(1-4) and β-(1-3) glycosidic bonds [121].

Modified HA hydrogels were used as a fluorescent sensor to detect hyaluronidase
(HAase), an enzyme that degrades HA and plays an important role in tumor develop-
ment and treatment [122]. The biosensor consisted of fluorescein isothiocyanate and gold
nanoparticles coupled in the network of the HA hydrogel. The material was acting as a
transducer forming a donor-acceptor pair that exploits FRET. The hydrogel is capable to
interact with HAase, thanks to the crosslinks of HA derivatives, causing a FRET effect in
the hydrogel, increasing the fluorescence intensity which is proportional to the concentra-
tion of the HAase. This system presented a wide response range, high sensitivity, good
anti-interference, and excellent biocompatibility [90].

• Alginate

Alginic acid is a polysaccharide found in the walls of the cells of brown algae [123]. It
is hydrophilic and when hydrated forms a viscous gum. Commonly, alginic acid forms
salts of calcium or sodium. In the structure of alginates, β-D-mannuronate and α-L-
guluronate are linked together in different sequences or blocks by either α- or β-(1-4)
bonds, where the latest can form ionic bridges, conferring mechanical properties [109]. An
important characteristic of alginates is the capacity to interact with multivalent cations,
which results in crosslinking, to form a hydrogel that is highly water-soluble, biocompatible,
and nontoxic [124].

Zheng et al. proposed an alginate hydrogel used for naked eye quantification of the
immune assay. This alginate hydrogel, crosslinked by Cu2+ ions, is responsive to pyrophos-
phate. Thanks to the incorporation of the fluorescent carbon nanodots, such hydrogel
can effectively quantify alkaline phosphatase, which at a high level, is responsible for a
malfunction to the liver, gall bladder or bones [125]. In the presence of pyrophosphate, the
material, Cu2+ crosslinked alginate, underwent a gel-sol transition, allowing the detection
of alkaline phosphatase in serum samples with hepatitis B virus surface antigen (Figure 6).
The sensitivity, linear response, and quantitative determination of alkaline phosphatase
with naked eye readout demonstrated a rapid and instrument-free device that can be
suitable for point-of-care tests of biomarkers for disease diagnosis, even in remote areas
and temporary testing stations [91].

Another example of an alginate-based biosensor is given by Bornhoeft et al. [92].
Their device consisted of an alginate-in-alginate material that embeds a nanofilm-coated
phosphorescent microdomain, palladium tetracarboxyphenylporphyrin (optical indicator),
glucose oxidase (model enzyme) and layer-by-layer deposited polyelectrolyte multilayers
(PEMs), acting as a diffusion barrier (Figure 7). This composite hydrogel was used as a real-
time optical biosensor for monitoring biomarkers, useful in precision medicine. This system
responds to the changes in concentration of both glucose and oxygen due to the reactions
of the glucose oxidase. When concentrations of both species decrease, the phosphorescence
of the porphyrin dye is quenched by molecular oxygen. The phosphorescence intensities
and lifetimes are inversely proportional to the concentration of the local oxygen. Once the
concentration of oxygen decreases, the phosphorescence of the porphyrin is less quenched,
therefore their lifetime increase that is in correlation with the concentration of glucose.
Such a biosensor proved able to provide a controlled tuning of sensitivity and dynamic
range, long-term stability, and accurate sensing at the physiological concentration range
of oxygen. This approach can be useful for monitoring different oxidoreductase enzymes,
crucial for chronic condition monitoring [92].
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Figure 6. (A) Scheme of the quantitative immunoassay based on alginate hydrogel crosslinked with
Cu2+ ions. (B) Recognition of the alkaline phosphatase (ALP)-labeled antibody. Reprinted with
permission from reference [91]. Copyright 2020 MDPI.

Figure 7. (a) Illustration of a microparticle of alginate consisting of Pd-meso-tetra(4-carboxyphenyl)
porphyrin (PdTCPP), glucose oxidase (GOx) and catalase (Cat). Such microparticles are coated with
10 bilayers of poly(allylamine hydrochloride) (PAH) and poly(sodium-4-styrene sulfonate) (PSS).
(b) AnA hydrogel with an embedded polyelectrolyte multilayer (PEM) coated alginate particles; (c)
Photograph of alginate-in-alginate (AnA) hydrogel next to a penny. Reprinted with permission from
reference [92]. Copyright 2017 MDPI.

Tamayol et al. produced alginate-based microfibers incorporating luminescent meso-
porous polyester beads for monitoring the pH level of the wounds on the epidermis [94].
This hydrogel was prepared in flexible patches, proving a ready and responsive point-of-
care system for monitoring the progress of wound healing. The monitoring of the pH of
wounds is important because it is correlated to angiogenesis, protease activity, bacterial
infection, etc. In healthy skin, the pH is slightly acidic (pH = 4–6), while when the skin is
wounded, the pH is alkaline. Hence, the monitoring of the pH of the epidermis is crucial
to obtain useful information on the healing status. In this work, authors have chosen
luminescent sensing due to its robusticity and easy-to-read system without the need for
integrated electronics. Alginate microfibers gave the material flexibility, permeability, and
tendency to be shaped. On the other hand, mesoporous polyester beads are the sensing part
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of the material, sensitive to pH changes, and give different luminescent outputs depending
on the pH. During the real-time measurement of pH of wound skin, images of the hydrogel
were captured with a smartphone camera, providing quantitative pH maps during the skin
recovery period.

• Chitosan

Chitosan is a polysaccharide consisting of D-glucosamine and N-acetyl-D-glucosamine,
connected via β-(1-4), randomly distributed in its molecular structure. It is obtained by
the partial deacetylation of chitin, the main component of the exoskeleton of the arthro-
pods [109]. Physical and mechanical features of chitosan are imparted by its molecular
weight and the degree of its deacetylation. Among the main advantages of the use of chi-
tosan hydrogels are antibacterial properties, easy sterilization, low costs, biocompatibility,
and the tuning of its biodegradability due to the diverse level of deacetylation [109].

Fu et al. fabricated a hydrogel based on chitosan using silver ions as a crosslinking
agent. The hydrogel was evaluated for sensing antioxidants. The redox properties of
silver incorporated into the hydrogel decreased due to its complexation (Figure 8). In the
presence of hydrogen peroxide, which easily forms hydroxyl radicals and disrupts the
glucoside bonds, the redox properties of silver can be restored. This phenomenon is used
as a mechanism for the evaluation of the antioxidant capacity of the hydrogel. In fact, the
depolymerization of the chitosan, induced by hydroxyl radicals, releases the silver ions
which can diffuse to the electrode surface and consequently give a signal correlated to
the antioxidant capacity. The analytical performance of the hydrogel was evaluated using
ascorbic acid as an antioxidant model. This device proved to be low cost, portable, and free
of modification of the electrode [82].

Figure 8. (a) Scheme of chitosan chelating silver ions and its redox property during the hydrogel
depolymerization in the absence and presence of antioxidants. (b) DPV curves of the oxidation
response in presence of hydrogen peroxide at various concentrations of ascorbic acid. Reprinted with
permission from reference [82]. Copyrights 2017 Published by Elsevier B.V.

In another example, chitosan was used as a matrix for a fluorescent sensor for nitroaro-
matic compounds, such as 2,4,6-trinitrophenol which have strong biological toxicity and
explosive risks [96]. In this work, functionalized chitosan gels with naphthalimide, used as
a fluorophore were investigated. The presence of 2,4,6-trinitrophenol and/or p-nitrophenol
produced a notable fluorescence quenching of the hydrogels. The obtained results provided
the selective and sensitive sensing of nitro compounds with ease of synthesis and low
cost [96].
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2.2. Synthetic Hydrogels

Synthetic hydrogels are man-made polymers that can present desirable mechanical
properties, selective chemical reactivity and controllable molecular structure, suiting the
proper fields of application [25,126]. The greatest advantage of synthetic hydrogels is the
possibility to program material properties by a proper choice of building blocks [22,33]. For
instance, carboxylic, hydroxylic, amino, amide, or sulfonic groups, present in the network
of the hydrogel, are the driving force for the retention of water [127]. Tuning the synthetic
hydrogels with such hydrophilic groups can help to introduce different content of water
in the network, conferring particular properties in the polymers. The differences between
natural and synthetic polymers rely on the biocompatibility, biodegradability, and the
content of biologically recognizable units. Yet, natural hydrogels do not have mechanical
properties, which can be an asset for the applicability in different fields of research. On
the other hand, synthetic hydrogels can be tuned to obtain desired mechanical properties
and other favorable properties for being employed in several applications, such as drug
delivery, sensing, and self-healing materials.

Synthetic hydrogels can display different characteristics, such as the nature of crosslink-
ing, the type of the constituent polymers, method of preparation, physical structure, e.g.,
degree of crosslinking, and charge [33]. A hydrogel can be originated from either chemical
or physical interactions. Crosslinking via non-covalent interactions can be reversible. Syn-
thetic hydrogels are often formed by copolymerizing multifunctional monomers forming
covalent bonds. Covalent crosslinking can be obtained either via the application of high
energy [128], producing radicals in the polymer chain or via chemical reactions, such as
free radical polymerization [129]. Alternatively, polymers having functional groups can
be crosslinked in a post-polymerization manner using, e.g., click chemistry [130–132] and
Schiff base [133] crosslinking. The physically crosslinked hydrogels are formed by physical
interactions, such as weak interactions, e.g., hydrogen bonding, ionic interactions, van der
Waals forces, etc. [134].

The methodology of the preparation method of hydrogels classifies them into three
categories as homopolymers, copolymers, and interpenetrating networks (Figure 9). Ho-
mopolymers are constituted of only one type of monomer in their chains, while copolymers
are formed by two or more kinds of monomers. These two types of polymers form only one
form of a polymer chain. In contrast, the polymer chains in interpenetrating networks are
different and crosslinked with each other [33]. Synthetic hydrogels can be classified based
on the status of their charges which includes anionic, cationic, non-ionic and ampholytic
polymers. All such ionic polymers are sensitive to pH changes, thanks to the presence of
pH-sensitive groups. The preparation of the ampholytic hydrogels involves the copolymer-
ization of cationic and anionic monomers or the embedding of a zwitterionic unit to the
network [33]. Another system of classification of hydrogels is based on their crystal status
and can be recognized in three groups: amorphous, crystalline, and semi-crystalline. The
amorphous hydrogels present a random network structure, whereas semi-crystalline and
crystalline hydrogels consist of almost or perfectly tight-packed networks [33].

Considering the wide range of characteristics that can be achieved by tuning in both
molecular and structural levels and the ability to respond to external stimuli, such as
temperature [58,65], light [66], pH [58,94], ionic strength [62,127,135], and the presence
of (bio)molecules [104,136–139], synthetic hydrogels have become important materials
for the design and construction of sensors and biosensors in various fields of applica-
tions. Different types of synthetic polymer-based hydrogels have been used in sensing,
e.g., poly(acrylic acid) [40,105,140], poly(ethylene glycol) [36,39,141,142], poly(ethylene
glycol) methacrylate [143], poly(acrylic acid-co-dimethylaminoethyl methacrylate) [144],
poly(methyl methacrylate-co-methacrylic acid) [145], polyacrylamide [35,37,77,103],
poly(acrylamide-co-acrylic acid) [146], poly(N,N-dimethylacrylamide) [78], poly
(N,N-dimethylacrylamide-co-2-(dimethylmaleimido)N-ethyl-acrylamide-co-vinyl-4,4-
dimethylazlactone) [102,106], poly(N-isopropylacrylamide-co-2-acrylamido-2-methylpropane
sulfonic acid) [147], poly(vinyl alcohol) [81], poly(2-hydroxyethyl methacrylate) [75], and
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poly(diallyldimethyl ammonium chloride) [75]. Polymer materials are functionalized with
fluorophores, chromophores, or conducting elements to enable readout using relevant
detection techniques (Table 2).

Figure 9. (a) Representation of different types of synthetic hydrogels with the methods of preparation
for each type. (b) Different ways of crosslinking between polymer chains in a hydrogel which are
between horizontal and vertical polymer chains. Reprinted with permission from reference [33].
Copyrights 2020 Wiley Periodicals LLC.
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Table 2. Synthetic hydrogel-based sensors.

Hydrogel Sensing Analyte Characteristics Ref.
Electrochemical Methods

Poly(vinyl alcohol), cellulose
nanofibers and graphene Electrochemical Strain

Air
Linear range: 0–500% strain

Variations for light-emitting diode (LED)
illumination vs. different resistance

[81]

TEMPO-oxidized cellulose in
poly(acrylic acid) hydrogel, with

ferric ions and polypyrrole
Amperometry Mechanical change

(strain)

Elongation ~890%
Max storage modulus: 27.1 kPa

Self-healing efficiencies (electrical and mechanical):
~99.4%

electro-conductibility: ~3.9 S m−1.

[105]

Dendritic
polyglycerol-poly(ethylene

glycol) with aldehyde
oxidoreductase

Amperometry Benzaldehyde (BA)

LOD = 0.8 µM
Linear range: 0.8–400 µM
Max response at pH = 4.0

Signal of BA decreases with
increase of pH

[141]

Optical Methods

Polyacrylamide-phenylboronic
acid

Surface plasmon
resonance, Transmittance

attenuation
Glucose

PBS buffer (pH = 7.4)
LOD = 0.75 mM

Linear range: 0–40 mM
Sensitivity 0.05–0.13 dB/mM

[35]

Au nanoparticles-poly(ethylene
glycol) diacrylate

Absorbance, Surface
plasmon resonance,

refractive index
Biotin

PBS buffer (pH = 7.4)
Linear range: 25Mm–0.5 mM
Sensitivity 70–110 nm/RIU

Fluorescence λmax shift

[36]

Polyacrylamide-DNA hydrogel
containing Au nanoparticles Visual detection Glucose

PBS buffer pH = 7.4
LOD = 0.44 mM

Sensitivity: 1 mM
Linear range: 0 to 15 mM glucose-boronic acid

derivatives bind aptamer to disrupt the hydrogel,
leading to

the release of AuNPs

[37]

Supramolecular poly(ethylene
glycol)-poly(ε-caprolactone) with

CdTe quantum dots
Optical pH, ions, biomolecules,

chemicals, temperature
Emission of CdTe QD shifts from λem = 499 nm to

λem = 549 nm [39]

Poly(acrylic acid)-gum tragacanth
nanoparticles with CdTe

quantum dots (QDs) and glucose
oxidize

Optical Glucose

Enzyme-catalyzed oxidation of glucose produce
H2O2 and quench fluorescence

Linear range: 0–1 mM
Blood samples media

LOD-tunable

[40]

Sodium alginate, and
poly(2-hydroxyethyl

methacrylate) and
poly(diallyldimethyl ammonium

chloride)

Optical,
Absorbance pH

Water, acetic acid, sodium hydroxide
Changing colors
pH range 6.0–7.6

[75]

Morpholino/oligonucleotide-
polyacrylamide Optical, volumetric ssDNA

LOD = 10 pM,
PBS buffer (pH = 7.4)

Gel imaged using OnePlus 5t camera, Selective
swelling caused by competitive displacement of

morpholino crosslinks

[77]

Poly(N,N-dimethyl acrylamide–
co-2-(dimethylmaleimido)-N-
ethyl-acrylamide-co-vinyl-4,4-

dimethylazlactone)
(P(DMAAm-co-DMIAAm-co-

VDMA)

Surface plasmon
resonance

Lysophosphatidic acid
(LPA)

Cancer biomarker

LOD = 2 µM
Linear range: 2–30 µM

Selectivity in the presence of blood components
(NaCl, urea, glucose,

GPA, LPC)

[102]

Phenylboronic acid
functionalized polyacrylamide Optical Glucose

Operating concentration range:
0–100 mM (in PBS, pH = 7.4)

Linear range: 0–50 mM
Sensitivity: 11.6 µW mM−1

pH operating range: 6–9

[103]

Azlactone
terpolymer P(DMAAm-co-

DMIAAm-co-VDMA)

Surface plasmon
resonance Streptavidin

Linear range: 0.5–200 µM
Monitoring of layer thickness

of the hydrogel
[106]

Poly(ethylene glycol) diacrylate
(PEGDA) Fluorescence mRNA,

miRNA

LOD ∼= 6 amol (atto—10−18)
(in vitro-transcribed

model target).
For quantification of full-length large mRNAs to

small miRNAs

[108]

Poly(acrylic acid) with
immobilized urease Optical, volumetric pH, urea

pH 2–12 range,
1.9–7.5 mM (urea),

LOD = 40×mM (urea in blood)
Change of volume and color

[140]
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Table 2. Cont.

Hydrogel Sensing Analyte Characteristics Ref.
Poly(ethylene glycol)
methacrylate, methyl

methacrylate and maleimide
Fluorescence

Biotin-streptavidin
(proteins pair model),

DNA

Electrospunned nanofibers aligned into
micropatterned array, that can be customized with

probe that will interact with desired bioanalyte
[143]

Poly(acrylic
acid-co-dimethylaminoethyl

methacrylate)
pH-sensitive Urea

LOD~1 mmol/L
Linear range: 1–10 mmol/L

PBS buffer pH = 7.4
Selectivity among urea, thiourea,

N-methylurea and
N,N,N′ ,N′-tetramethylurea

[144]

Poly(vinyl alcohol) with
carboxyfluorescein
and poly(methyl

methacrylate-co-methacrylic acid)
(Eudragit S100)

Optical Urea

Infection-responsive coating for
urinary catheters.

pH > 7 dissolves the Eudragit layer,
releasing the dye—

visual change

[145]

Poly(acrylamide-co-acrylic acid)
functionalized with urease

Particle spacing change,
Debye diffraction

measurement

Urea, urease inhibitor
phenyl

phosphorodiamidate
(PPD)

LOD = 1 mM (urea)
and 5.8 nM (PPD),

both in water
Linear range: 1–10 mM

Selectivity in presence of formamide,
N-methylurea, acetamide and

N,N′-dimethylurea

[146]

Poly(N-isopropylacrylamide-co-2-
acrylamido-2-methylpropane

sulfonic acid)
Volumetric Glucose Operating concentration:

0–300 mg dL−1 [147]

Abbreviations: BSA—bovine serum albumin; FRET—Förster resonance energy transfer, FITC—fluorescein isothio-
cyanate; GPA—glycerophosphoric acid; LOD—limit of detection, is defined as the lowest concentration of an
analyte in a sample that can be consistently detected with a stated probability (typically at 95% certainty) [111];
LOQ—limit of quantification is defined as the concentration that can be measured with a defined accuracy and
precision [111]; LPC—lysophosphatidylcholine; PBS—phosphate-buffered saline.

Elsherif et al. proposed a synthetic glucose-sensitive hydrogel in which phenylboronic
acid was incorporated into the structure of polyacrylamide hydrogel [103]. It is well-known
that phenylboronic acid derivatives can reversibly bind to cis-diols and therefore glucose
molecules [148,149]. The binding process of the phenylboronic acid moieties with glucose
resulted in a change of the volume of the hydrogel matrix proportional to the concentration
of glucose (Figure 10). Such a hydrogel was irradiated with a laser beam and the intensity
of transmitted light generated by the sensor was measured to assess the variation of
the concentrations of glucose at physiological conditions. It was demonstrated that the
hydrogel can be attached to contact lenses and the intensity of the light can be measured
using a smartphone. A smartphone app can convert the intensity of the incident light
into values of glucose concentration. Such a sensing device allowed the creation of a low
cost, rapidly fabricated, and easy detection system for glucose concentration monitoring in
real-time [103].

Another example of a synthetic hydrogel was introduced by Chen et al. [105].
Such a sensing hydrogel consisted of a triple-network structure based on a 2,2,6,6-
tetrametylpiperidine-1-oxyl (TEMPO)-oxidized cellulose dispersed in a polyacrylic acid
hydrogel with ferric ions as crosslinkers (Figure 11). Polypyrrole was incorporated in the
matrix of the hydrogel as a conductive network element. Thanks to the interlocked structure
created by hydrogen bonds, ionic coordination interactions, and physical entanglements,
the composite hydrogels showed a homogeneous structure, high mechanical stretchability,
high viscoelasticity, and ability to self-heal. The hydrogel sensor was able to detect both
small and large scale human movements with a sensitive, fast, and stable current response.
This result demonstrated that such a sensing hydrogel can be promising for applications as
a wearable electronic device [105].
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Figure 10. (a) Illustration of the binding process of glucose with the boronic acid portion, causing the
swelling of the hydrogel matrix. (b) Illustration of the volumetric transition of the hydrogel when
glucose is introduced or depleted in the matrix. Reprinted with permission from reference [103].
Copyright 2018 American Chemical Society.

Figure 11. (a) Process of fabrication of the composite hydrogels. (b) Chemical and physical inter-
actions are responsible for the formation of the triple network of the hydrogel. (c) Presentation
of mechanical properties, self-healing characteristics and conductivity of the composite hydrogels.
(Chen). Reprinted with permission from reference [105]. Copyright 2019 MDPI.
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Recently, Zheng et al. proposed a hybrid hydrogel for strain sensing composed of
cellulose nanofibers (CNF) and graphene (GN), which incorporates poly(vinyl alcohol)
(PVA) and borax, used as a crosslinker (Figure 12) [81]. In this work, cellulose in the form
of nanofibers was introduced in the hydrogel matrix to improve mechanical properties
and strong interactions into the network. The presence of PVA confers crosslinks to the
hydrogel network. Thanks to blending with the nanocellulose, the hydrogel shows intrinsic
hydrophilicity, biocompatibility, biodegradability, and high crystallinity. Graphene was
introduced in the hydrogel matrix to confer mechanical strength and electrical conductivity.
Cellulose nanofibers promoted graphene dispersion in the hydrogel. The formation of the
hydrogel composite was achieved thanks to the graphene-cellulose nanocomplexes, the
hydrogen bonding system created with PVA, and the crosslinks formed by borax resulted in
an electroconductive, elastic and mechanically strong material. This material was tested to
monitor human movements in a wearable device, which demonstrated excellent sensitivity,
repeatability, and stability in the signals. The hydrogel can be a promising strain sensor for
intelligent wearable devices [81].

Figure 12. (a) Schematic representation of the preparation of graphene-cellulose nanofibers with
poly(vinyl alcohol) (GN-CNF@PVA) hydrogels; (b) representation of the mechanism of the formation
of the hydrogel network with borax; (c) illustration of malleability and electroconductivity of the
hydrogels. Reprinted with permission from reference [81]. Copyright 2019 MDPI.

Recently, the work of Kertkal et al. showed the preparation of two types of hy-
brid hydrogels [75]. The first hybrid hydrogel consisted of a blend of a natural polymer,
sodium alginate, and synthetic polymers poly(2-hydroxyethyl methacrylate) (PHEMA)
and poly(diallyldimethyl ammonium chloride) (PDADMAC). The other hybrid hydrogel
was obtained by mixing the synthetic polymers with inorganic silica nanoparticles. Bro-
mothymol blue was added in both types of hydrogels as a pH indicator due to its color
changes, depending on the acidic/basic environment. Such hybrid hydrogel systems can
be used as a chemical sensor for monitoring pH changes in different application fields,
such as the food industry, environment, and urine overflowing in diapers. The presence
of PDADMAC, sodium alginate, and silica influenced the optical and swelling properties
of the hydrogels mixed with bromothymol blue. In addition, the content of PDADMAC
affected the brightness of the colors of the hydrogels. Such a system proved to be an easy
and sensitive tool for the monitoring of pH changes in different conditions.

Poly(ethylene glycol)-based hydrogels are popular materials for sensing applica-
tion [36,39,141]. For example, poly(ethylene glycol) diacrylate with embedded gold
nanoparticles was used as an optical sensor for biotin [36]. The gel environment pro-
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vided the stability of the trapped colloidal Au nanoparticles solution compared to water
solution, presenting an opportunity to use the plasmonic effect as a biotin indicating signal.
Biotin, used as a model molecule, has been captured and optically detected with a transmis-
sion mode customized setup using cysteamine modified Au nanoparticles (Figure 13). The
developed device can be used for the detection of other types of biomolecules in water.

Figure 13. Biotin detection with poly(ethylene glycol)-based embedded with gold nanoparticles
(PEGDA/AuNPs). (a) The preparation process of hydrogel PEGDA/AuNPs, modification of gel
trapped nanoparticles involves the citrate displacement with a cysteamine modification of Au and
the biotin grafting on the available amino groups of cysteamine. (b) Absorbance spectra of the
hydrogel as a function of cysteamine concentration. (c) Shift of λmax as a function of the cysteamine
concentrations from 0:01 to 2 mM; (d) Absorbance spectra of the hydrogel as a function of biotin
concentration ranging from 25 µM to10 mM. (e) Shift of λmax as a function of the biotin concentration
(from 25µM to 10 mM). Reprinted with permission from [36]. Copyright 2021 AIP Publishing.

Xie et al. developed a preliminary fluorescent supramolecular hydrogel sensor con-
sisting of semiconductive CdTe quantum dots (QDs), stabilized with an amphiphilic block
copolymer, made of mercaptan derivatized poly(ethylene glycol)-poly(ε-caprolactone) [39].
The self-assembly of the supramolecular hydrogel was achieved thanks to the interaction
between the amphiphilic block copolymer and the QD. In addition, α-cyclodextrin (α-CD)
was added to the network of the hydrogel. Changing the amounts of the block copolymer,
α-CD, or QDs modulates the gelation kinetics, the mechanical strength of the hydrogel, and
most importantly, changes the fluorescence characteristics of the hydrogel. In addition, the
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fluorescence behaviour of the supramolecular composite can also be changed by external
factors, such as temperature and pH. Such features allowed the development of a promising
supramolecular hydrogel, biocompatible and responsive to external stimuli, useful as an
optical biosensor [39].

3. Foldamers in Sensing

Foldamers are synthetic molecules that adopt a conformationally ordered state in
solution, similarly to biopolymers such as proteins or nucleic acids [150–152]. Therefore,
foldamers gained popularity in light of the possibility of designing molecules in such a way
that they have defined functionalities similar to natural macromolecules [153]. Moreover,
the enormous number of properties possessed by biopolymers is encoded by relatively
small “alphabets” of monomers, namely 20 amino acids in proteins and four nucleobases
in nucleic acids. The great potential inherent in foldamers results from the possibility of
extending the alphabet with abiotic monomers. Furthermore, the development of preci-
sion polymer chemistry methods [154–156] leading to sequence-defined macromolecules
provides opportunities for new types of foldamers based on an abiotic backbone [157–161].

The tendency of foldamers to form diverse secondary structures makes them very inter-
esting objects in material sciences [162]. They can be exploited as peptidomimetics [43], e.g.,
an additional methylene unit in the β-peptides backbone generates a new stereogenic center
and substitution position. This makes them unrecognizable by traditional proteases, which
in turn means that they are intrinsically resistant to degradation [42,163]. They can form 8-,
10-, 12-, and 14-helices, depending on the monomer structure guided by the formation of the
hydrogen bonds, responsible for structure formation [150,164,165]. The secondary structure
of foldamers can be fitted to particular molecules, forming capsules to size [166,167]. The
improved structural stability of foldamers can be achieved by intramolecular side-chain
crosslinking, providing good material stability [168]. Among foldamers, we can identify
amide-based macromolecules (α-γ-peptides [169], peptoids [170,171]), oligoureas [172],
and oligoaryls [173]. The large library of structural motifs of foldamers enables the design of
countless functions and applications [174–176], including sensing [151,177]. Thanks to the
structural control of foldamers, they can be designed to bind complementary guests [178],
e.g., cations [179–186], anions [186–192], or non-charged molecules [164,193–209]. They
have been applied in the detection of metal ions [210–213], explosives [214], biomark-
ers [215], pH [216,217], membrane curvature [218], and fructose [198] (Table 3).

Liu et al. proposed a hexameric oligophenol foldamer to detect Cu2+ ions [210]. They
confirmed that metal ions can induce folding by stabilizing polymer conformation. The
linear, a more fluorescent form of the oligomer in the presence of ions folds into a curved
structure of smaller fluorescence intensity. The copper-induced change in intensity makes it
possible to detect bound metals and even selectively detect copper ions. This approach is
promising in the context of the selective detection of metal ions using analogous compounds,
in which the change of conformation occurs under the influence of particular ions [210].

Davis et al. constructed water-soluble foldamers for non-Faradaic capacitive anion
detection [211]. In this approach, they have synthesized halogen (XB) and hydrogen
bonding (HB) anion receptors. The addition of perrhenate anions, iodide, and thiocyanate
induced an increase in the capacitance of the material. Interestingly, the exposure of XB and
HB to perchlorate, nitrate, or bromide did not generate any notable change in capacitance,
indicating the selective binding of charge-diffuse anions by the foldamer. The detection
limit for XB was the lowest for iodide ions, while the HB foldamer turned out to be about
three times less sensitive, emphasizing the advantage of the halogen-bonding interface.
This new strategy should enable the detection of each anion using the suitable anion
receptor [211].
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Table 3. Foldamer-based sensors.

Foldamer Sensing Analyte Characteristics Ref.

Methionine-cholate hexamer Fluorescence Hg2+
Organic solvents

Linear range 0–0.24 µM
Dansyl fluorescent dye

[182]

Hexameric oligophenol Fluorescence Cu2+
THF with 1% DMSO solution
90% fluorescence quenching

λex = 351 nm
[210]

Tetratriazole Impedance-derived
capacitance spectroscopy

ReO4
−

I−
SCN−

LOD:
28 µM (XB), 80 µM (HB)
14 µM (XB), 47 µM (HB)
42 µM (XB), 113 µM (HB)

H2O with 100 mM NaCl solution

[211]

Tri-pillar[5]arene (FSOF)
FSOF-Cr
FSOF-Fe

Fluorescence Ions

LOD:
1.18 nM Fe3

1.86 nM Cr3+

0.94 nM Hg2+

1.78 nM H2PO4−

2.12 nM CN−

[212]

Dithiocarbamate Fluorescence Hg2+
LOD = 3 10−13 M

λex = 278 nm, λem = 326 nm and 339 nm.
Selectivity in presence of other ions

[213]

Tetraphenylethylene with
hairpin linkers Fluorescence 2,4,6-trinitrotoluene

(TNT)

LOD = 0.88 fg/L of air
Fluorescence quenching
with increasing of TNT

[214]

β-peptide Immunoassay Aβ-oligomers LOD = 5 pM
Linear range: 10–500 pM [215]

Bis(urea)oligo(phenylene)ethylene Circular dichroism Carboxylic acids

λmax = 370 nm
Linear correlation for CD
amplitude: −100–100 %ee

%ee of tartaric acid: 0.2–6.4 %error

[216]

Dinuclear macrocycle-based
copper complex

Fluorescence,
colorimetry Citrate

LOD = 0.45 ± 0.02 µM
in water (pH = 7)

Linear range: 1.25–8.60 µM
λex = 470 nm, λem = 536 nm

[217]

Bis-cholate Fluorescence Membrane curvature

PBS buffer (pH = 7.4)
λexc = 470 nm

λem = 521–550 nm
The binding affinity defined as
Kp (103 M−1), max. = 77 ± 10

4-fold when liposome size change

[218]

Thioether linked biochromatic
squarine Fluorescence Oxalate

LOD = 5.2 nM
Before binding:

λabs = 627–622 nm,
λem = 657–687 nm

After binding: Decrease λabs = 635 nm, shifted band
λabs = 565 nm

Decrease λem = 652 nm

[219]

Aromatic oligoamide Conductivity
L-tartaric acid

tetrafluorosuccinic acid,
2,2-difluorosuccinic acid

80-fold variation of its conductance upon binding
was detected by AFM [220]

Abbreviations: AFM—atomic force microscopy; BSA—bovine serum albumin; DMSO—dimethyl sulfoxide; Kp:
apparent molar partition coefficient; LOD—limit of detection, is defined as the lowest concentration of an analyte
in a sample that can be consistently detected with a stated probability (typically at 95% certainty) [111]; PBS—
phosphate-buffered saline, FRET—Förster resonance energy transfer, FITC—fluorescein isothiocyanate;. THF:
tetrahydrofuran.

Fu et al. described a chromogenic sensor based on squaraine foldamer controlled
by Ca2+ ions [219]. When the sensor is bound with calcium ions, it allows the binding of
oxalate and its detection with the “naked eye” based on changes in fluorescence. Emission
and absorption spectra of the foldamer itself and with the increasing amount of calcium
ions differs. Two dye molecules bind one calcium ion creating a sandwich dimer with
decreased intensity of absorption at 635 nm and a hypsochromic band formed at 565 nm,
quenching the fluorescence. Thus, the observed color of the solution changed from cyan to
blue. In the presence of oxalate ions, which bind calcium, the quenched fluorescence can be
restored. The removal of calcium ions from the complex and the unfolding of the polymer
is confirmed by the increase in the maximum absorption at 640 nm and emission at 660 nm.
Other metal ions, such as Li+, K+, Na+, Mg2+, Ba2+, or Sr2+, caused no changes in emission
and absorption. The material was used as a switchable fluorescent probe for the detection
of oxalate ions. This detection system may find application in food safety assessment,
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clinical diagnosis of irregular oxalate levels, or the detection of calcium-binding anions
present in the human body [219].

Gunasekara and Zhao demonstrated a bis-cholate foldamer applied as an effective
membrane-curvature sensor [218]. They investigated four foldamers in the presence of
liposomes of different sizes as model molecules, i.e., different membrane curvatures, using
fluorescence detection. The sensor with a non-ionic fluorescent label located on the α-face
of the attached cholate revealed the most advantageous properties. The foldamer displayed
the strongest emission enhancement, monotonous response to lipid curvatures, and the
strongest binding of lipid membranes. The change in the properties was related to the
foldamer conformation (Figure 14). The foldamer-based material is characterized by a
much simpler bis-cholate synthesis compared to the classically used sensors (proteins or
amphipathic α-helices), which makes them useful as biosensors [218].

Figure 14. Schematic representation of possible conformations of the foldamer 3 and 4 in the lipid
bilayer. The fact that 3 emitted at a significantly lower wavelength than 4 suggests that the former
was located in a more hydrophobic microenvironment than the latter. Reprinted with permission
from reference [218]. Copyright 2015 American Chemical Society.

Another example of a foldamer for selective sensing is a macrocycle-based dinuclear
foldamer constructed by Hossain et al. [217]. The dinuclear copper(II) complex in the
presence of eosin (EY), a fluorescent dye, was investigated as a system for the detection of
molecules. The fluorescence intensity of EY continuously decreased upon the increasing
addition of the complex to the solution of the dye, resulting in an almost absolute quenching
of the emission. The created adduct was tested in the detection of inorganic halides,
oxoanions, and carboxylates in water at neutral pH. The foldamer complex was the most
effective in detecting citrate followed by oxalate, glutamate and phosphate. These anions
caused the greatest restoration of fluorescence by displacing the dye from the complex. The
optical properties of the probe were also analyzed and a color change from magenta to pale
orange was observed after the addition of citrate, tartrate, and phosphate. Cytotoxicity
tests of the EY complex on human foreskin fibroblast cells confirmed the biocompatibility
of the compound up to a concentration of 100 µM. Therefore, the sensor can be used to
detect citrate ions in biological systems [217].

Wolf et al. developed an oligo(phenylene)ethynylene foldamer with peripheral
bis(trifluoromethyl)phenylurea units for the detection of chiral carboxylic acids [216]. The
effect of this chiroptic sensor is based on the CD measurement of analyte samples in the
presence of base in CHCl3 and acetone. The characteristic CD signals occur due to the
formation of a hydrogen bond complex between the foldamer and the enantiomeric form
of the analyte. The probe was tested for the quantitative analysis of non-racemic tartaric
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acid mixtures and the enantiomeric excess error was determined at the level of 0.2–6.4%.
Hence, this sensor can be successfully applied on a larger scale because of its simplicity
and short time of analysis adaptable to high-throughput screening technology [216].

Martinek et al. designed an ELISA-foldamer test for sensing Aβ-oligomers which
plays a key role in the pathogenesis of Alzheimer’s disease [215]. The scientists have created
a sandwich test consisting of a biotin-labeled foldamer immobilized on streptavidin-coated
plates. The foldamer captured Aβ-oligomers, which were optically detected by a mono-
clonal mouse antibody and an anti-mouse secondary antibody conjugated to horseradish
peroxidase. This optimized ELISA-foldamer was sensitive to Aβ-oligomers in the pico-
molar range. Studies have confirmed its selectivity for Aβ surface patterns transiently
present during the ongoing aggregation process. These results imply that protein mimicking
foldamers could be useful agents in biosensors and affinity assays [215].

A sensor-based on selective binding of dicarboxylic acids to an oligoamide foldamer
was recently reported by Huc et al. [220] (Figure 15). The structure of foldamer was designed
to recognize acids through multiple non-covalent interactions. The involved binding forces
were a combination of electrostatic protonation/deprotonation, hydrogen bonding, and
geometrical constraints. The foldamer with a thiol anchoring group was immobilized on a
gold surface and evaluated for sensing of L-tartaric acid, tetrafluorosuccinic acid, and 2,2-
difluorosuccinic acid. The foldamers underwent fast complexation of 2,2-difluorosuccinic
acid with deprotonation of one of the two carboxylic acid groups that showed a significant
difference (about 80-fold) in the charge transport. The conductivity change was measured
by AFM. Guest binding to an immobilized foldamer changes its electrical properties, which
is an important step towards the de novo design of electronic sensors that exploit molecular
recognition in signal transduction.

Figure 15. (A) Foldamer grafted to a gold surface constitute a probe for detection of diacids. Con-
ductive AFM assesses the effect on conductivity upon protonation of the foldamer backbone via the
recognition of an acidic guest. (B) Chemical structures of foldamer building blocks. (C) The guest is
shown in foldamer-filling representation. (D) Top view of the central part of the complex. Reprinted
with permission from reference [220]. Copyright 2021 the Royal Society of Chemistry.

Zhang et al. demonstrated tetraphenylethylene foldamers with double hairpin turn
linkers capable of detecting 0.88 fg TNT vapors per mL of air [214]. As the molecular weight
increased, the foldamers began to aggregate into hollow structures sensitive to the TNT-
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contaminated air. The TNT molecules bind to oligomer via N–π interactions and hydrogen
bonds between TNT nitro groups and aromatic rings. Thus, foldamer fluorescence is
quenched. This discovery will lead to the development of foldamers for the detection of
other explosives with nitro groups, such as nitramines and nitroalkanes [214].

Zhang et al. described sensors based on gel foldamers [212]. They developed a tri-
pillar[5]arene (FSOF) based xerogel foldamer for the detection of ions such as Fe3+, Hg2+,
and Cr3+. The sensors show aggregation-induced emissions that display fluorescence
quenching in the presence of metal ions. The formation of the gel allows metal ions to be
separated from their aqueous solution by absorption (for FSOF at the level of 92.39–99.99%),
while the addition of ions to FSOF made it possible to construct a foldamer (MSOF) for the
detection of CN− and H2PO4

− and their separation. The developed foldamers allow for
ultra-sensitive multi-analyte detection and highly effective separation of ions [212].

4. Conclusions and Future Outlook

Polymers are attractive materials for next-generation sensory materials. They offer a
wide range of available monomers that provide various properties. Polymer materials are
evolving with the development of precision synthesis tools. Accessible, easy approaches
for the preparation and modification of macromolecules enable improved control of their
properties. In turn, the facile modulation of the properties allows the fine-tuning of the
material functionalities in order to fabricate refined sensors, meeting the market needs.
Current requirements for sensors are low cost, feasibility, short analysis time, as well as
high sensitivity and selectivity. It is challenging to acquire all these parameters at the same
time. Having a high sensitivity and selectivity while maintaining simple use is not an easy
task. Therefore, sensory materials are mostly designed for cheap and accessible detection
techniques, usually amperometric or optical, that eliminate the barrier of having sophisti-
cated apparatuses. The use of a smartphone as a tool for the detection and quantification of
substances is becoming more and more common. The presented examples show that in
order to achieve the appropriate detection parameters, high sensitivity and selectivity of the
probe material are required. To reach satisfactory sensing parameters, we have to adjust the
chemical structure of the material and its morphology in the nanoscale. Proper adaptation
of the polymer material to the analyte is crucial for achieving high sensing parameters.
The challenge is a proper design of recognition elements to have a strong and selective
affinity to an analyte. This can be achieved by constraining the macromolecule shape by
crosslinking or monomer sequence control. Therefore, gels and foldamers are attracting
significant interest as sensor probe materials. Foldamers characterized by specific spatial
structures and cavities that can be fitted to target molecules are of particular interest. It is
expected that foldamers can display similar receptor functionalities as natural biopolymers.
Yet, the rational foldamer structure design is not a trivial task. Currently, little is known
about the structure–property relationship of abiotic macromolecules. Even for natural
proteins, built from a finite number of 20 amino acids, being the object of extensive studies
over the last 50 years, the sequence–property relationship is not fully understood. However,
significant progress has been made recently with the support of artificial intelligence tools.
Computational methods are highly abundant in biological science, and they should be
introduced to material science to accelerate the development of the field.

To fulfil current requirements for sensory materials, we should learn how to mimic nat-
ural receptors present in living systems. The expectations can be met by inducing relevant
shapes and functional groups into macromolecules that will be involved in specific binding.
The foldamers are interesting candidates to display desired properties. By controlling the
monomer sequence, i.e., the primary structure of a macromolecule, we can gain control
over a secondary structure, as it is observed for natural proteins. This approach offers
lots of possibilities in sensor design. The proper choice of monomers and their alignment
may form a binding cavity to fulfil the selectivity criteria, since any other molecule of a
different shape will simply not fit. The fit of the material to the shape of the analytes has
already been investigated for molecular imprinting technology. The molecularly imprinted
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polymers are synthesized in the presence of an analyte that is washed out in further steps.
When the molecule is released from the polymer, it leaves its cavity template printed
into the polymer matrix. However, it is accompanied by selectivity restrictions related to
the limited structural precision of the polymerization process, especially pronounced for
sensing macromolecules. The existing limitations could be overcome by using sequence-
defined polymers. They merge features from two worlds: biological structure precision
and a large library of synthetic building blocks representing a wide range of properties.
Sequence-defined polymers, thanks to full structure control, could be programmed and
precisely engineered to obtain desirable properties of sensory materials.
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