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Introduction
Constitutively activated, mutant KRAS continuously stimulates 
downstream effector signaling and promotes nearly all cancer 
hallmarks (1). Hotspot mutations that predominately occur in 
codons 12 and 13 result in defective KRAS GTPase activity, thus 
locking it into an active GTP-bound state. A remarkable break-
through occurred when covalent allosteric inhibitors were dis-
covered that could bind the cysteine residue within the switch II 
region of the KRAS G12C mutation, locking the protein in its inac-

tive GDP-bound state (2, 3). More potent KRAS G12C inhibitors 
rapidly emerged, and recently expanded phase I trials with sotora-
sib (AMG510) and adagrasib (MRTX849) have demonstrated 
tumor response rates of approximately 30% to 40% in lung can-
cer and a safe toxicity profile (4–6). While encouraging, respons-
es in the clinic are often short-lived, and mechanisms of clinical 
acquired resistance are beginning to emerge (7, 8). Here, we pres-
ent a KRASG12C-mutant lung adenocarcinoma patient who initial-
ly responded to AMG510 but then rapidly developed numerous 
mechanisms of resistance. Using deep-RNA and whole-exome 
sequencing (WES) of pre- and post-AMG510-treatment samples, 
we reveal diverse clonal populations that occurred through altered 
cell-intrinsic, tumor-microenvironment (TME), and immunologic 
remodeling mechanisms of resistance.

Results
A 77-year-old male patient with prior smoking history was diag-
nosed with metastatic KRASG12C-mutant lung adenocarcinoma 
and 80% expression of programmed death ligand 1 (PD-L1). The 
patient initially received chemotherapy and checkpoint inhibitor 
therapy targeting programmed cell death protein 1 (PD-1), and 
upon progression biopsies of several sites in the neck and the right 
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with 6 posttreatment LN tumors. A total of 950 genes were dif-
ferentially expressed after AMG510 treatment (fold change > 1.5, 
Padj < 0.05, and base mean > 10), compared with the pretreatment 
samples (Figure 2A). Seven hundred nine genes were upregulat-
ed and 241 genes were downregulated after AMG510 treatment. 
Gene set analysis was conducted using the gene set variation 
analysis (GSVA) method, and we computed gene set scores for 
the MSigDB oncogenic signature and cancer Hallmark gene set 
collections. Compared with pretreatment samples, nearly all the 
post-AMG510 treatment samples exhibited robust activation of 
the MAPK pathway, AKT, and mTOR signaling, with 38 significant 
oncogenic signatures (Figure 2B and Supplemental Tables 1–3). 
Consistent with genomic modeling of KRAS loss, we also found 
significant upregulation of pathways involving the transcrip-
tional coactivator YAP1 (9). Among the 9 significantly expressed 
Hallmark gene sets, 2 cell cycle gene sets were downregulated, 
G2/M checkpoint and E2F targets, consistent with dysregulated 
cell proliferation. The other 7 upregulated gene sets include acti-
vation of hedgehog, NOTCH, and WNT/β-catenin signaling as 
well as pathways for epithelial-mesenchymal transition (EMT) 
and tumor angiogenesis activation (Figure 2C). Nearly all these 
signatures were frequently observed in 6 out of the 7 posttreat-
ment LN metastases (Figure 2, B and C), while the periportal LN 
sample number 1 (LN1) often resembled signaling patterns like 

axilla were obtained. The patient subsequently enrolled in a phase 
I clinical trial in which he received AMG510 (sotorasib) 960 mg 
twice daily dosing, and within a few days of starting treatment 
he clinically felt much improved with no significant side effects. 
Imaging 7 weeks after treatment initiation revealed that all lesions 
were stable or responding, and on average the measurable tumors 
had been reduced in size by approximately 35% (Figure 1A). How-
ever, scans at week 13 revealed that a few lesions had begun to 
grow, and at week 17, the study drug was discontinued due to rapid 
disease progression (Figure 1A). The patient died approximately 
6 weeks later, and his body was donated to our rapid autopsy pro-
gram in accordance with his wishes. Following pathologic confir-
mation of both tumor biopsies and matched nonadjacent normal 
tissues (>1 cm from tumor), RNA and DNA were extracted for RNA 
sequencing (RNA-Seq) and WES, respectively (Figure 1, B and C).

Diverse and overlapping patterns of resistance. Analysis of the 
transcriptome of 16 tumor and 8 nonadjacent normal samples 
revealed major differences between tissue origin types (Supple-
mental Figure 1; supplemental material available online with this 
article; https://doi.org/10.1172/JCI155523DS1), so we restricted 
the downstream gene and gene set expression analysis to pre- and 
post-AMG510 treatment lymph node (LN) tumors only to account 
for tissue-specific effects on gene expression in the TME. The 
transcriptome of the 2 pretreatment LN tumors was compared 

Figure 1. Rapid acquired resistance to AMG510. (A) Serial cross-sectional tumor dimensions while the patient received AMG510. (B) All samples were 
acquired either before the patient went on study (pre-AMG510) or during the rapid autopsy 6 weeks after stopping the drug (post-AMG510). All nonadja-
cent normal tissues were at least 1 cm from the tumor margin and confirmed by a pathologist to be free of tumor. (C) An illustration of the locations of 
tumors sampled for the study.
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sequencing quality were combined and used as matched normal 
for all tumor somatic mutation calling. Over 2,000 tumor single 
nucleotide variants (SNVs) were detected in the left neck soft tis-
sue before treatment, and the other 3 pretreatment LN tumors 
also had significantly higher tumor variants called compared with 
all the posttreatment tumors (P = 0.0034; Figure 3A and  Sup-
plemental Figure 3). To identify mutations with potentially high 
biological impact, multiple filtering steps were applied to somatic 
mutation calling. First, only somatic mutations shared by at least 3 
tumor samples were kept. Second, only variants with mutant allele 
frequency (MAF) greater than 5% were kept, ensuring a high-qual-
ity mutation calling. Finally, only variants expressed in any of the 
tumor RNA-Seq samples were used to further investigate poten-
tially high biological impact. We cross-referenced these variants 
with a curated list of genes known to promote cancer progression 
mediated through mutations or copy number gain of function (11). 
Surprisingly, KRAS G12C mutations had a decreased MAF in most 
of the posttreatment samples (Figure 3B), suggesting a potential 
escape mechanism from AMG510 treatment. While the high num-
ber of SNVs called were associated with tumor purity calls (Pear-
son’s correlation = 0.51, P = 0.03), the MAF of KRAS G12C was 
not correlated with tumor purity (Pearson’s correlation = –0.017) 
in copy-neutral samples. Unlike recent studies that analyzed cell-
free DNA (7, 8), we did not see new mutations that reactivate 
MAPK signaling and no new KRAS mutations were found in the 
posttreatment samples. We found a significant inverse Pearson’s 

pretreatment samples. We did observe varying degrees of reacti-
vation of key pathways (notably mTOR, AKT, YAP1, and TGF-β) 
among posttreatment samples (Figure 2B). In parallel, gene set 
enrichment analysis (GSEA) revealed dramatic and noteworthy 
evidence of remodeling within the TME upon acquired resistance 
to AMG510. Indeed, TGF-β signaling and EMT signatures were 
reidentified, and strong evidence for complement activation, 
coagulation, and tumor angiogenesis were reminiscent of recalci-
trant tumors mimicking chronic nonhealing wounds (10). Consis-
tent with alterations in fuel sources, we observed marked increas-
es in fatty and bile acid metabolism, as well as adipogenesis and 
myogenesis (Figure 2D and Supplemental Tables 4–6). Addition-
ally, posttreatment tumors exhibited increased xenobiotic metab-
olism, suggesting tumors may be capable of reducing intracellular 
AMG510 levels. Using Ingenuity Pathway Analysis to evaluate the 
950 differentially expressed genes, we found activated TGF-β sig-
naling as the most significant upstream mediator of these diverse 
pathways of resistance (P < 2.1 × 10–18; Supplemental Figure 2 and 
Supplemental Table 7).

Decreased KRAS G12C mutant allele frequency. WES was per-
formed on 4 pretreatment and 13 posttreatment tumors, as well as 
8 nonadjacent normal samples (Figure 1). Note: The right neck LN 
was obtained at the time of diagnosis prior to any systemic therapy, 
while the submental LN, left neck soft tissue, and right axillary LN 
samples were obtained after chemotherapy and anti–PD-1 immune 
checkpoint therapy. Two nonadjacent normal samples with better 

Figure 2. Dynamic adaptive cell-intrinsic reprograming and TME remodeling. (A) Nine hundred fifty differentially expressed genes with adjusted P values 
of less than 0.05 are shown as heatmaps, with 709 upregulated and 241 downregulated after AMG510 treatment. (B) Gene set analysis via GSVA using 
189 MsigDB oncogenic signatures identified 38 oncogenic signatures (Padj < 0.05) that were upregulated after AMG510 treatment. (C) GSVA analysis using 
50 MsigDB Hallmark gene sets identified 9 signatures (Padj < 0.05) that were differentially expressed, including upregulation in the Coagulation and EMT 
pathways. (D) GSEA for coagulation, EMT, and fatty acid metabolism.
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submental LN metastasis shared a common subclonal origin 
with 6 distant posttreatment metastases, suggesting it gave rise 
to these posttreatment sites (14). All tumors except the left neck 
soft tissue tumor (pretreatment) had clone 1 as a founding clone 
(Supplemental Figure 4A). In most tumors, clones 8 and 3 were 
derived from clone 1. Clone 3 then gave rise to subclones 2, 6, 
9, and 10 in many tumors. Two variants from intron region of 
RAI14 and coding region of SPEF2 in cytogenetic band chr5p13 
had the highest mean CP in the founding clone, clone 1, while 
clone 3 with KRAS G12C and 145 other mutations had the sec-
ond highest mean CP (Supplemental Table 9). Fewer than 150 
mutations were clustered within each shared subclone (Supple-
mental Figure 4B), while the 4 private clones had a minimum of 
273 mutations (clone 7) and a maximum of over 3000 mutations 
in clone 0. Consistent with periportal LN1 having a divergent sig-
nature pattern from the periportal LN2 and mesenteric LN sam-
ples (Figure 2, B and C), our phylogenetic analyses also revealed 
that periportal LN2 and mesenteric LN likely originated from the 
same clone, unlike periportal LN1 (Figure 3D), indicating that 
even adjacent metastatic lesions may originate from different 
clonal populations and have divergent resistance mechanisms.

correlation of KRAS G12C MAF with many of the resistance path-
ways, and a positive correlation with loss of G2/M cell cycle check-
points (Supplemental Table 8), consistent with many of these 
being plausible escape mechanisms. Although 5 other mutations 
were found, none of them were new in the posttreatment samples 
and the MAF was often lower (Figure 3C), suggesting they were 
passenger mutations.

Polyclonal seeding patterns from LN metastasis. To evaluate 
clonal evolution among multiple metastases and between pre- 
and posttreatment samples, we estimated the cellular preva-
lence (CP) and subclonal structure using PyClone-IV (12, 13). 
Phylogenetic analysis using the CPs of subclones defined by 
PyClone-IV revealed there were multiple unique clones before 
AMG510 treatment (Figure 3D). The primary tumor (posttreat-
ment) shared 3 subclones with the other 4 pretreatment samples 
and was in the same phylogenetic branch with 3 pretreatment 
samples. Five subclones (clones 5, 7, 4, 10, and 0) were unique to 
3 pretreatment samples, and 4 of these subclones were private to 
one sample only. Most of the tumors showed multiclonal seeding 
patterns, except the primary tumor, which showed monoclonal 
seeding patterns (Supplemental Figure 4A). The pretreatment 

Figure 3. Loss of KRASG12C variants and clonal phylogenetic analyses. (A) Total number of mutations detected in each tumor sample. A 2-sided Student’s 
t test was run to compare mean numbers of single nucleotide variants between pre- and post-AMG510 treatment. (B) KRASG12C mutation allele frequency 
detected in each sample. Sequenza purity levels are shown for each sample in black. (C) Nonsynonymous mutations detected in 3 or more tumors with 
mutations expressed in RNA. (D) Representative phylogenetic trees showing potential clonal evolution. Pre- and posttreatment samples are colored in the 
branches as purple and green, respectively.
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copy number gains in at least 3 tumor samples (Supplemental Fig-
ure 7). However, all of these occurred in the pretreatment samples, 
suggesting that independent of KRASG12C copy number loss, other 
CNVs were unlikely mediators of acquired resistance.

Immunogenomic and neoantigen remodeling. We next evalu-
ated immunogenomic features to understand how the TME dif-
fered before versus after AMG510 therapy. We found that multi-
ple immune gene signatures related to T and B cell function and 
activation were significantly downregulated in the posttreatment 
samples (Figure 4A). We also observed a significant and unexpect-
ed increase in the mast cell signature score in the posttreatment 
samples (Figure 4A). Expression in posttreatment samples (Sup-

Copy number loss of KRASG12C in resistant tumors. Like our SNV 
analyses (Figure 3A), we found the posttreatment samples had few-
er copy number variations (CNVs) (Supplemental Figure 5). The 
pretreatment submental LN metastasis had the lowest KRASG12C 
CNV of any pretreatment sample (Supplemental Figure 6A), again 
demonstrating similarity with many posttreatment samples it likely 
gave rise to (Figure 3D). Tumor purity showed no significant associ-
ation with KRASG12C CNV (Supplemental Figure 6B; Pearson’s cor-
relation = 0.12, P = 0.65), supporting the hypothesis that observed 
CNV changes are reflective of tumor biology in the posttreatment 
samples and not an artifact. When evaluating copy number chang-
es among cancer-related gene loci (11), there were 15 genes with 

Figure 4. Tumor immunogenomic and neoantigen features. (A) Immune gene signatures by treatment time point, out of 40 tested signatures. (B) Tumor 
sample IgH repertoire comparison, by treatment time point. Horn’s modified Morisita overlap index. (C) Tumor sample T cell receptor β chain (TRB) repertoire 
comparison, by treatment time point. Horn’s modified Morisita overlap index. (D) Intersample predicted neoantigen count overlap between samples, log10 scale. 
Significance was assessed with the 2-sided Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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plemental Figure 8) was subdivided into 2 distinct groups: a small 
set of samples that resembled the pretreatment expression, and 
a larger set with more pronounced underexpression across most 
signatures. The 6 posttreatment LN samples were evenly divid-
ed between these 2 groups, indicating that nodal tissue was not 
the source of these differences. Among the B cell receptor (BCR) 
immunoglobulin heavy chains inferred from tumor RNA-Seq, there 
were significantly more overlapping repertoires between post-
treatment samples as compared with between pre- and posttreat-
ment samples (Figure 4B). Inferred T cell receptor (TCR) β chains 
exhibited more overlap between pre- and posttreatment samples, 
as well as between posttreatment samples, such that there was no 
significant difference comparing between these groups (Figure 
4C). Posttreatment similarity scores were substantially higher for 
BCR IgH compared with TCR β chain clonotypes. These results 
suggest a potential posttreatment BCR repertoire focusing in some 
tumor types, perhaps in response to a restricted set of shared tumor 
antigens. The low number of pretreatment samples (n = 2) limits 
detection for repertoire overlap between solely pretreatment sam-
ples. Predicted neoantigens from tumor WES data demonstrated 
higher neoantigen burden in pretreatment compared with post-
treatment samples, mirroring the SNV data (Figure 4D). These 
results are consistent with immune editing via elimination of a sub-
set of tumor clones concurrent with AMG510 therapy; however, we 
cannot be certain that this did not reflect stochastic or differential 
direct effects of AMG510 on tumor subclones. When comparing 
tumor phylogenies and neoantigen remodeling patterns of the 4 
pre-AMG510-treatment samples, we observed that the right neck 
LN sample (obtained prior to chemotherapy and immunothera-
py) clustered tightly with the left neck soft tissue and right axillary 
LN samples (Figures 3D and 4D). In contrast, the submental LN 
(which was obtained at the same time as the left neck soft tissue 
and right axillary LN) gave rise to many of the post-AMG510-treat-
ment metastases (Figure 3D) and differed in its neoantigen clus-
tering (Figure 4D). Considering these findings, we speculate that 
chemotherapy and immunotherapy were not the main drivers of 
differences found in the pre- and post-AMG510-treatment sam-
ples. KRAS G12C neoantigens were predicted to weakly bind this 
patient’s HLA-A allele, and while samples with KRAS G12C loss 
tended to co-occur in clusters, HLA-A expression was relatively 
stable across all pre- and posttreatment samples (Figure 4D).

Discussion
This is one of the first tissue-based molecular analyses to our 
knowledge that uncovers acquired mechanisms of clinical resis-
tance to the novel KRAS G12C inhibitor class. Previously, another 
group analyzed serial cell-free DNA from the plasma of a patient 
being treated with MRTX849 and found numerous resistance 
mechanisms that converge on RAS-MAPK reactivation, including 
discovery of a novel KRASY96D mutation (8). Similarly, using cell-
free DNA analyses in another cohort of 38 patients, investigators 
frequently found bypass mechanisms to reactivate MAPK signal-
ing, including a variety of acquired KRAS mutations or activating 
downstream mutations (e.g., BRAF or MAP2K1; ref. 7), and one 
patient was found to have copy number gain of KRASG12C (7). A key 
limitation of our study is the lack of samples obtained at the time 
of response to AMG510. Although outside the scope of this study, 

another limitation is our lack of validation of the potential mech-
anisms of resistance. Future work will need to rigorously evalu-
ate these pathways using valid model systems. Ongoing efforts 
to obtain clinical samples throughout the course of treatment, as 
well as to establish patient-derived xenograft models will create 
invaluable resources to begin tackling these questions.

Use of in vitro and in vivo model systems has shed light on sev-
eral cell-intrinsic and non–cell autonomous mechanisms of resis-
tance, and were recently reviewed (15). Upon KRAS G12C inhibi-
tion, subpopulations of cancer cells that enter a quiescent state can 
stimulate a compensatory increase in active, GTP-bound KRAS 
G12C protein via EGFR and aurora kinase signaling. This adaptive 
response can occur within a matter of days, and results in growing 
drug-insensitive populations (16). Consistent with many of the 
resistant tumors in our case, several groups have shown that reac-
tivation of the MAPK and/or PI3K/AKT/mTOR pathway induces 
varying degrees of resistance (4, 17). Evidence that EMT plays a 
role in de novo and acquired resistance to KRAS or downstream 
MAPK inhibition has also been demonstrated in several models 
(18–20), and EMT pathways were markedly enriched in nearly 
all of our patient’s refractory tumors. One of the more intriguing 
cell-intrinsic mechanisms of resistance in our study is the finding 
that tumors had reduced KRASG12C-mutant allele frequency while 
maintaining “oncogene addiction” to the downstream pathways. 
However, unlike prior reports (7, 8), we found no evidence that 
other KRAS mutations or related MAPK or PI3K/AKT/mTOR sig-
naling molecules were mutated, suggesting reactivation cues may 
come from upstream receptors (e.g., EGFR, HER2, c-MET; ref. 21) 
or from molecules such as TGF-β in the TME (19). Activated TGF-β 
signaling was the most significant upstream mediator of many 
overlapping resistance pathways, making it an attractive future 
area of study and potential therapeutic intervention. Another 
striking finding in our study is the dynamic and diverse patterns of 
remodeling within the TME, such as activation of angiogenesis and 
coagulation pathways, as well as alterations in fatty acid and xeno-
biotic metabolism. Unlike findings in the syngeneic CT26 colon 
cancer model that showed increased CD8+ T cells shortly after 
AMG510 treatment (5), our immunogenomic analyses revealed 
that AMG510-resistant tumors became immunologically cold and 
had significantly reduced adaptive immune cell populations. Inter-
estingly, our findings that mast cell populations were increased in 
posttreatment samples is consistent with a previous connection 
demonstrated between KRAS-mediated EMT activation and mast 
cell recruitment (22). The neoantigen data are consistent with 
immune editing (23) in the context of AMG510 treatment; the 
number of predicted neoantigens was decreased in posttreatment 
samples, consistent with an active immune response eliminating 
neoantigen-expressing clones followed by escape with outgrowth of 
the resistant clone found initially in the submental LN. The mecha-
nism of immune stimulation via KRAS G12C inhibition is unknown, 
although in a preclinical model, AMG510 treatment was associated 
with enhanced T cell tumor infiltration and generation of antitumor 
immunological memory (5). Thus, immune escape may be a key 
feature of AMG510 resistance to be explored in future studies.

Our study reveals the potential for dynamic and highly idio-
syncratic mechanisms of acquired resistance to direct KRAS G12C 
inhibition that involve reactivation of KRAS-mediated signaling, 
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metabolic reprograming, EMT activation, and diverse TME alter-
ations including coagulation, angiogenesis, and immune escape 
pathways. Taken together, these results show that although devel-
opment of KRAS inhibitors is a monumental and long-awaited 
success, a deeper understanding and eventual anticipation of 
these escape mechanisms will be paramount to best utilize these 
drugs’ full potential.

Methods
Nucleic acid extractions and sequencing. Following pathologic review of 
all samples to confirm presence of tumor or normal tissues (in the case 
of nonadjacent matched normal, defined as >1 cm from the tumor 
margin), samples were submitted for nucleic acid isolation. Deidenti-
fied snap-frozen (SF) and formalin-fixed, paraffin-embedded (FFPE) 
tissue samples were sent to the UNC Lineberger Comprehensive 
Cancer Center Translational Genomics Lab for nucleic acid isolation 
using the Maxwell 16 MDx Instrument (Promega, AS3000). DNA was 
extracted from approximately 10 mg of SF tissue using the Maxwell 16 
Tissue DNA Purification kit (Promega, AS1030) and from FFPE slides 
using the Maxwell 16 FFPE Plus LEV DNA Purification Kit (Promega, 
AS1135) following the manufacturer’s protocols (Promega, TM284 and 
TM349, respectively). RNA was extracted from approximately 10 mg 
of SF tissue using the Maxwell 16 LEV simplyRNA Tissue Kit (Prome-
ga, AS1280) and from FFPE slides using the Maxwell 16 LEV RNA 
FFPE Kit (Promega, AS1260) following the manufacturer’s protocols 
(Promega, TM351 and TM408, respectively). DNA and RNA quality 
was measured using a NanoDrop spectrophotometer (Thermo Fisher 
Scientific, ND-2000C) and a TapeStation 4200 (Agilent, G2991AA). 
DNA and RNA concentrations were quantified using a Qubit 3.0 flu-
orometer (Life Technologies, Q33216). RNA-Seq and WES were per-
formed on an Illumina NovaSeq 6000. RNA libraries were stranded 
and sequenced via 150-bp paired-end reads. The RNA isolated from 
FFPE samples was first treated with a Ribo-Zero Magnetic Kit for 
rRNA removal (Illumina) prior to library preparation. WES was run 
on DNA samples following library preparation with an Agilent SureSe-
lectXT2 All Exon V6 kit and performed at 200× coverage.

RNA-Seq data analysis. The fastq files were aligned to the GRCh38 
human genome (GRCh38.d1.vd1fa from the National Cancer Insti-
tute’s Genomic Data Commons [GDC]) using STAR v2.4.2 (24) with 
parameters set as follows: –outSAMtype BAM Unsorted –quantMode 
TranscriptomeSAM. Salmon v0.1.19 (25) was used to quantify tran-
script abundance for each sample using the human transcriptome 
defined by Gencode (release 22). Gene level counts were summed 
across isoforms and genes with low counts (sum expression across 
all samples <5) were removed before the downstream analyses. We 
tested genes for differential expression in DESeq2 (26) (v1.22.2) in 
R (v3.5.1). Genes with an absolute value of fold-change (FC) greater 
than 1.50 and adjusted P value of less than 0.05 (P value obtained by 
Wald test and correction for multiple testing via Benjamini-Hochberg 
method) were defined as differentially expressed genes. Immune 
gene signature expression was calculated by the mean expression of 
each gene within that signature.

GSEA. We evaluated gene set enrichment using GSVA v1.30.0 (27) 
in R. GSVA estimates gene set scores by calculating an enrichment sta-
tistic for each gene set in every sample. The gene set score matrix was 
then used to test for differentially expressed gene sets using limma 
(moderated 2-sided t test; ref. 28) (v3.38.3) package in R (v3.5.1). Gene 

set collections were downloaded from the MSigDB website (29, 30) 
(version 6.2 database was used). We tested for C5 ontology gene set, 
C6 oncogenic signature gene sets, and Hallmark gene sets (31). GSEA 
was also carried out with downloaded GSEA (v4.1.0) software (www.
broadinstitute.org/gsea). We first calculated gene scores as –log10(P 
value) × log2(fold change) for every gene and ranked them by the gene 
scores. The ranked gene list was then entered into the GSEA software 
using the GseaPreranked tool with the following parameters: scoring_
scheme=weighted, norm=meandiv, mode=Max_probe, include_only_
symbols=true, set_max=500, nperm=1000, collapse=No_Collapse. 
The same 3 gene set collections were used as described above.

Variant calling. We picked 2 normal samples (right liver normal 
and left neck soft normal tissue) with better sequencing quality and 
combined them for tumor somatic calling. The somatic variant–calling 
workflow is documented at https://sc.unc.edu/lbg/workflows/next-
flow/somatic, and the “lbg_hg38_SureSelect_AllExonV6” profile was 
used. Briefly, both tumor and normal sequence reads were mapped to 
the GRCh38 human genome reference (GRCh38.d1.vd1.fa from GDC) 
with BWA v0.7.17 (32), and realigned together with ABRA2 v2.23 (33), 
and processed using biobambam2 (v2.0.87) and its bamsormadup tool 
(https://github.com/gt1/biobambam2). Quality control was imple-
mented using the GATK/Picard (v4.1.7.0) tool (http://broadinstitute.
github.io/picard/). Somatic variants were called by 3 callers: Strelka2 
v2.9.10 (34), Cadabra v2.23 (33), and Mutect2 v4.1.7.0 (35). Somatic 
variants were merged into a single variant call file and then converted 
to MAF via the vcf2maf (v1.6.21) tool. This MAF file includes all vari-
ants that were PASS from any of the variant callers and a column with 
an additional filtering for variants passing all of any individual caller’s 
filters and for variants whose quality score exceeded a configurable 
threshold. In Figure 3A, we only counted variants with high/moderate 
impact (change coding) and that have MAF greater than 5%.

Reinterrogation and expressed variants. We performed computation-
al reinterrogation to improve mutation calling sensitivity while keeping 
low false positives. First, we used high-quality somatic variants from 
initial calls described above (PASS in the 3 callers and MAF larger than 
5%). All variants called from every tumor were then combined into a sin-
gle file, and the resulting mutations were queried again in all tumors to 
rescue mutations that might have been missed during the first round of 
variant calling due to low allele frequency. All reinterrogated mutations 
shared by at least 2 tumors (nonprivate mutations) were then queried in 
the RNA-Seq tumor samples to check whether variants were expressed. 
The expressed variant calling workflow can be found at https://sc.unc.
edu/lbg/workflows/nextflow/expressed_variants.

DNA tumor purity estimation and copy number calling. We applied 
Sequenza (v3.0.0), an R package that uses DNA sequencing data to 
estimate tumor purity and ploidy, and to calculate allele-specific CNV 
(36). Using the sequenza-utils function of Sequenza, the GC content 
in sliding windows was calculated from the Hg38 genome reference 
file in FASTA format. Normal and tumor bams generated from somat-
ic variants calling workflow, as described above, are the input files for 
sequenza-utils. The genomic positions with sufficient sequencing depth 
(by default, >20 reads total from tumor and normal specimens) were 
used to determine homozygous and heterozygous positions in the nor-
mal specimen and calculates the variant alleles and allelic frequency for 
the tumor specimen and saved as a tab-delimited seqz text file. Using 
the seqz text file, the Sequenza R package performed GC normalization 
and allele-specific segmentation using the Copynumber package. Then, 



The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

8 J Clin Invest. 2022;132(4):e155523  https://doi.org/10.1172/JCI155523

 1. Stephen AG, et al. Dragging ras back in the ring. 
Cancer Cell. 2014;25(3):272–281.

 2. Ostrem JM, et al. K-Ras(G12C) inhibitors alloster-
ically control GTP affinity and effector interac-
tions. Nature. 2013;503(7477):548–551.

 3. Janes MR, et al. Targeting KRAS mutant cancers 
with a covalent G12C-specific inhibitor. Cell. 
2018;172(3):578–589.

 4. Hallin J, et al. The KRASG12C inhibitor, 
MRTX849, provides insight toward therapeu-
tic susceptibility of KRAS mutant cancers in 
mouse models and patients. Cancer Discov. 
2019;10(1):54–71.

 5. Canon J, et al. The clinical KRAS(G12C) inhibitor 
AMG 510 drives anti-tumour immunity. Nature. 
2019;575(7781):217–223.

 6. Hong DS, et al. KRAS(G12C) inhibition with 
sotorasib in advanced solid tumors. N Engl J Med. 

2020;383(13):1207–1217.
 7. Awad MM, et al. Acquired resistance to 

KRAS(G12C) Inhibition in cancer. N Engl J Med. 
2021;384(25):2382–2393.

 8. Tanaka N, et al. Clinical acquired resistance to 
KRASG12C inhibition through a novel KRAS 
switch-II pocket mutation and polyclonal alter-
ations converging on RAS-MAPK reactivation. 
Cancer Discov. 2021;11(8):1913–1922.

 9. Kapoor A, et al. Yap1 activation enables bypass of 
oncogenic Kras addiction in pancreatic cancer. 
Cell. 2014;158(1):185–197.

 10. Dvorak HF. Tumors: wounds that do not heal- 
redux. Cancer Immunol Res. 2015;3(1):1–11.

 11. Frampton GM, et al. Development and validation 
of a clinical cancer genomic profiling test based 
on massively parallel DNA sequencing. Nat Bio-
technol. 2013;31(11):1023–1031.

 12. Gillis S, Roth A. PyClone-VI: scalable inference of 
clonal population structures using whole genome 
data. BMC Bioinformatics. 2020;21(1):571.

 13. Roth A, et al. PyClone: statistical inference of 
clonal population structure in cancer. Nat Meth-
ods. 2014;11(4):396–398.

 14. Naxerova K, et al. Origins of lymphatic and 
distant metastases in human colorectal cancer. 
Science. 2017;357(6346):55–60.

 15. Akhave NS, et al. Mechanisms of resistance 
to KRASG12C-targeted therapy. Cancer Discov. 
2021;11(6):1345–1352.

 16. Xue JY, et al. Rapid non-uniform adaptation to 
conformation-specific KRAS(G12C) inhibition. 
Nature. 2020;577(7790):421–425.

 17. Misale S, et al. KRAS G12C NSCLC models are 
sensitive to direct targeting of KRAS in com-
bination with PI3K inhibition. Clin Cancer Res. 

Statistics. Results for each group were compared using Student’s 
t test (for comparisons of 2 groups) and 2-way analysis of variance 
(ANOVA) (for multiple group comparisons). Multiple hypothesis 
testing correction of these statistical results was made using the 
FDR. A P value of less than 0.05 was deemed statistically significant.

Study approval. The patient provided consent prior to death for a 
rapid autopsy, in accordance with protocols of the UNC at Chapel Hill 
Office for Human Research Ethics and the US Department of Health 
and Human Services. This study was approved by the IRB of the Uni-
versity of North Carolina.

Accession numbers and data sharing. Sample information for RNA-
Seq and DNA-Seq fastQ runs was uploaded to the NCBI’s database of 
Genotypes and Phenotypes (dbGAP accession number phs002734).

Author contributions
YST, MGW, BGV, JSP, and CVP designed experiments, performed 
the investigation, and provided software. YST, MGW, SHA, LBT, 
and CVP curated data. YST, MGW, KLK, BGV, JSP, and CVP con-
ducted formal analyses of the data. YST, MGW, and KLP validated 
the data. YST, MGW, and CVP generated figures and wrote the 
original draft of the manuscript, which was reviewed and edited 
by all the authors. CVP conceived the study, acquired funding, and 
provided resources. The co–first authors, YST and MGW, contrib-
uted to the vast majority of the experimental design and execu-
tion, and YST is listed first as they performed a larger amount of 
bioinformatic analyses.

Acknowledgments
This work was almost entirely supported by the very generous 
donations of Richard and Fran Duley as well as Jimmy and Kay 
Mann. CVP was supported in part by NIH grants R01CA215075, 
R01CA258451, and 1R41CA246848. SHA was supported in part 
by NIH grant 1R41CA246848 and a North Carolina Biotechnology 
Center Translational Research Grant. MGW was supported in part 
by NIH grant 1T32CA211056.

Address correspondence to: Chad V. Pecot, Lineberger Compre-
hensive Cancer Center, University of North Carolina at Chapel 
Hill, 450 West Drive, Chapel Hill, North Carolina 27599, USA. 
Phone: 615.305.3955; Email: pecot@email.unc.edu.

the sequenza-fit model was applied to infer the purity and ploidy param-
eters and copy number profiles using the log(posterior probability) for 
all pairs of the candidates. The purity and ploidy values of the sample 
were estimated through Bayesian inference and the results expressed in 
a selected confidence region and 1-point estimate.

Tumor clonal analysis. PyClone-VI was applied to all 17 tumor 
DNA samples using the mutation calls after computational reinterro-
gation, as described above, and allele-specific copy number calls from 
Sequenza, as described above. A total of 6519 variants fulfilling the 
following criteria were used: (a) a depth of greater than 20 in all 17 
samples, (b) a MAF of greater than 0.15 in any of the 17 samples, and 
(c) a valid Sequenza copy number call. The final cluster assignment of 
all the variants is shown in Supplemental Table 9.

Phylogenetic tree construction. Using the cellular prevalence of 
all subclones for each of the 17 tumors estimated from PyClone-VI, 
we calculated a pairwise distance between sample pairs via the Jen-
sen-Shannon divergence using the R (v4.0.0) software package “phy-
loseq,” as previously described (14, 37). The distance matrices reflect-
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Neoantigen prediction. HLA major and minor class I alleles were 
determined from RNA expression data using OptiType v1.3.1 (38) via 
the authors’ published Docker container in RNA mode (--rna, as per 
https://github.com/FRED-2/OptiType). Annotated variant transcripts 
were created using ANNOVAR v2019Oct24 (39), using their suggest-
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suggested dbNSFP v3.0a (40) database. MHC binding affinities for 8-, 
9-, and 10-mer peptides were calculated using netMHCpan v4.0a (41). 
NeoPredPipe v4.0 (42) was used to orchestrate the process of variant 
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Immune repertoire inference. Immune chains were inferred from 
RNA-Seq FASTQ files using MiXCR v2.1.9 (43) and, following their 
recommended methods for multiplex-PCR data, paired-end reads 
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Immune repertoire similarity was calculated from the inferred chains 
using Horn’s modified Morisita overlap index.
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