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Abstract: Despite making up a significant proportion of airborne allergens, the relationship between
fungal spores and asthma is not fully explored. Only 80 taxa of fungi have so far been observed
to exacerbate respiratory presentations, with Cladosporium spp., Aspergillus spp., Penicillium spp.,
and Alternaria spp. found to comprise the predominant allergenic airborne spores. Fungal spores
have been found in indoor environments, such as hospitals and housing due to poor ventilation.
Meanwhile, outdoor fungal spores exhibit greater diversity, and higher abundance and have been
associated with hospitalizations from acute asthma presentations. In addition, fungal spores may
be the underlying, and perhaps the “missing link”, factor influencing the heightened rate of asthma
presentations during epidemic thunderstorm asthma events. To improve our knowledge gap on
fungal spores, airborne allergen monitoring must be improved to include not only dominant allergenic
fungi but also provide real-time data to accurately and quickly warn the general public. Such data will
help prevent future asthma exacerbations and thus save lives. In this review, we examine the health
risks of prominent allergenic fungal taxa, the factors influencing spore dispersal and distribution, and
why improvements should be made to current sampling methods for public health and wellbeing.

Keywords: asthma; fungal allergy; fungal spore; thunderstorm asthma

1. Introduction

Approximately one in five individuals suffer from allergic rhinitis worldwide, with
prevalence increasing in middle-aged years [1]. It is characterized by symptoms presenting
after exposure to airborne allergens. Up to 40% of individuals with allergic rhinitis are
also diagnosed with asthma, which can bring about aggravated respiratory symptoms
following exposure [2]. Under extreme conditions, exposure could provoke acute asthma
exacerbations and lead to hospitalization, most notably during thunderstorm asthma
events [3]. While making up a large proportion of airborne allergens, fungal spores have
until recently been inadequately studied compared to other aeroallergens like pollen [4].
While it is suggested that at least 5 million unique fungal species exist [5], only 80 taxa
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have been recognized to date regarding their allergenic potential [6]. Airborne spore
diversity varies depending on local meteorological and geographical factors but genera
commonly attributed to allergies such as Alternaria spp., Aspergillus spp., Cladosporium spp.,
and Penicillium spp. are rampant [7,8]. Atmospheric fungal spore concentrations have
been observed exceeding pollen counts by 1000 times or more [9,10], reaching as high as
50,000 spores per m3 of air [11]. In addition, fungal spore exposure can last for months as
the fungal spore season lasts twice the duration of the pollen season [10], leading to high
patient susceptibility for a more significant proportion of the year [12].

2. Fungal Spore Morphology

Compared to pollen, a high degree of diversity can be observed in the morphology
of fungal spores (Figure 1). This diversity can be observed even within the genera level
and vary depending on geographical features and environmental conditions [13], such as
marine vs. high altitude regions, making it challenging to identify some taxa by observation
alone. The ability of spores to disperse and remain viable in the atmosphere is mainly
dependent on their morphology. The shape of allergenic fungal spores varies, ranging from
allantoid (sausage-shaped) to globular [14,15]. Allantoid fungal spores may have a lower
risk of being washed out of the air by wind or rain than rounded spores, allowing them to
travel further distances [15]. In addition, the surface of fungal spores can vary from smooth
to ornamented textures [14] and, like allantoid-shaped spores, ornamentation provides
resistance to getting washed out and aids long-distance dispersal [16]. Furthermore, thick-
walled spores are resistant to drying out while pigmented spores are resistant to solar
radiation [17]. These adaptations also allow fungal spores to remain in the air for extended
periods of time.

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 2 of 13 
 

 

aeroallergens like pollen [4]. While it is suggested that at least 5 million unique fungal 
species exist [5], only 80 taxa have been recognized to date regarding their allergenic 
potential [6]. Airborne spore diversity varies depending on local meteorological and 
geographical factors but genera commonly attributed to allergies such as Alternaria spp., 
Aspergillus spp., Cladosporium spp., and Penicillium spp. are rampant [7,8]. Atmospheric 
fungal spore concentrations have been observed exceeding pollen counts by 1000 times or 
more [9,10], reaching as high as 50,000 spores per m3 of air [11]. In addition, fungal spore 
exposure can last for months as the fungal spore season lasts twice the duration of the 
pollen season [10], leading to high patient susceptibility for a more significant proportion 
of the year [12]. 

2. Fungal Spore Morphology 
Compared to pollen, a high degree of diversity can be observed in the morphology 

of fungal spores (Figure 1). This diversity can be observed even within the genera level 
and vary depending on geographical features and environmental conditions [13], such as 
marine vs. high altitude regions, making it challenging to identify some taxa by 
observation alone. The ability of spores to disperse and remain viable in the atmosphere 
is mainly dependent on their morphology. The shape of allergenic fungal spores varies, 
ranging from allantoid (sausage-shaped) to globular [14,15]. Allantoid fungal spores may 
have a lower risk of being washed out of the air by wind or rain than rounded spores, 
allowing them to travel further distances [15]. In addition, the surface of fungal spores can 
vary from smooth to ornamented textures [14] and, like allantoid-shaped spores, 
ornamentation provides resistance to getting washed out and aids long-distance dispersal 
[16]. Furthermore, thick-walled spores are resistant to drying out while pigmented spores 
are resistant to solar radiation [17]. These adaptations also allow fungal spores to remain 
in the air for extended periods of time. 

 
Figure 1. Visualization of the diversity in shape, pigmentation, and ornamentation amongst pollen 
grains (left) and fungal spores (right). Pollen grains commonly feature pores, colpi, or reticulated 
mesh. In contrast, fungal spores have more diverse shapes and ornamented textures. Image features 
artistic representations of Pine (Pinaceae) pollen (a), Plantain (Plantago) pollen (b), Olive (Oleaceae) 
pollen (c), Grass (Poaceae) pollen (d), Leptosphaeria spp. spores (e), Pithomyces spp. spores (f), 
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Figure 1. Visualization of the diversity in shape, pigmentation, and ornamentation amongst pollen
grains (left) and fungal spores (right). Pollen grains commonly feature pores, colpi, or reticu-
lated mesh. In contrast, fungal spores have more diverse shapes and ornamented textures. Image
features artistic representations of Pine (Pinaceae) pollen (a), Plantain (Plantago) pollen (b), Olive
(Oleaceae) pollen (c), Grass (Poaceae) pollen (d), Leptosphaeria spp. spores (e), Pithomyces spp. spores
(f), Pleospora spp. spores (g), Ganoderma spp. spores (h), Coprinus spp. spores (i), Chaetomium spp.
spores (j), Alternaria spp. spores (k), and Cladosporium spp. spores (l).

Fungal spores usually do not exceed 20 µm in diameter, primarily ranging from
3 to 8 µm [14]. Smaller fungal spores can travel greater distances than larger spores [18].
Due to their small size, most allergenic fungal spores can penetrate deep into the lower
airways of sensitized individuals [19], similar to sub-pollen particles from rupturing pollen
grains [20]. In addition, fungal spores classed as “thermotolerant” thrive at body tempera-



Int. J. Mol. Sci. 2022, 23, 4313 3 of 12

ture. Spores have been found submerged and growing in the aqueous lining of the lower
respiratory tract and the lungs’ alveoli [21], which can lead to chronic allergic response and
infection [22]. Inhalation and deep penetration of fungal spores can invoke severe allergic
or asthmatic symptoms.

3. Fungal Sensitization

Fungal sensitization is a potential risk factor for allergic rhinitis and asthma and may
contribute to the development of acute respiratory issues [23,24]. The prevalence of fungal
allergies is estimated to be 3–10% worldwide [25,26]. Prominent allergenic fungi have been
reported to provoke allergic responses in 19–45% of allergic patients and 80% of asthmatic
patients from skin tests [27–29] and increase the duration of asthmatic symptoms [30].
Atopic workers regularly exposed to fungus and mold spores experience frequent rhinitis
and asthma symptoms [31]. About 32.5% of farmers and 16.2% of bakers with occupational
asthma are hypersensitive to fungal spores [32].

While Basidiomycota contributes to a majority of aerosol spores, Ascomycota, which make
up 4% of airborne fungi, have been strongly linked to allergic rhinitis and asthma [33]. Domi-
nant allergenic fungal taxa, in order of frequency, include Cladosporium spp., Aspergillus spp.,
Penicillium spp., and Alternaria spp. [34–36]. These fungal spores have been observed to worsen
symptoms in people diagnosed with asthma, especially children [37–40].

Alternaria spp. is one of the most well studied airborne fungi in terms of aller-
gic potency and is one of the few spores recognized by allergy specialists [41]. While
Alternaria spp. are usually present in lower atmospheric concentrations compared to other
allergenic airborne spores, they sport the highest rate of sensitization amongst atopic
patients, which is estimated to range from 13–17% [29,42,43], and account for 60% of pos-
itive skin prick tests gathered from fungal sensitized patients [8]. Individuals sensitized
to Alternaria spp. are also likely to be sensitized to one or more other allergenic fungal
taxa [43]. This could be explained by cross-reactivity between fungal allergens that share
similar proteins [44]. Positive skin tests for Alternaria spp. have been associated with the
presence of asthma and allergic rhinitis; sensitization was not significantly linked to rhinitis
alone [45]. Sensitization from exposure to Alternaria spp. usually occurs at a young age [46]
and can lead to the development of childhood asthma [47], increasing the frequency of
inhaler usage [48,49], and influencing the prevalence of current asthma exacerbations [50].
It is estimated that asthma patients sensitive to Alternaria spp. are 20 times more likely
to be at risk of respiratory arrest, which can prove fatal [48]. The impact of Alternaria spp.
on asthma has been observed in Australia, with sensitized people found at risk of air-
way inflammation and severe respiratory presentations from exposure [51]. In addition,
Alternaria spp. sensitization has been observed in 13% of hospitalized victims from thun-
derstorm asthma events in Australia [52]. Immunoglobulin-E specific to Alternaria spp. are
more prevalent in sensitized young children after exposure [53]. If they suffer from atopic
conditions, it could make them highly vulnerable to exposure to allergenic fungal spores.

4. Hospitalization from Fungal Spores

Preliminary studies found that asthma-related hospital admissions and deaths in-
creased on days with high fungal spore concentrations [4,54]. It was determined that the
concentration of specific allergenic fungi, rather than the overall spore concentration, was
strongly associated with causing severe respiratory presentations in sensitized popula-
tions (Table 1) [55]. High concentrations of Alternaria spp. and Aspergillus spp. have been
linked to increased hospital admissions for acute asthma exacerbations [56,57] and patients
frequently exposed to Alternaria spp. were at higher risk of being hospitalized [42].

ICU patients admitted for severe asthma are 20% more likely to be sensitive to at
least one fungal allergen than non-ICU patients [58]. For instance, penicillin allergy is
reported in 10–20% of hospitalized patients, limiting them to more expensive and less
effective antibiotic treatments [59,60]. Patients admitted multiple times to the hospital for
asthma are up to 4 times more likely to test positive for fungal sensitivity than patients
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admitted once or never [61]. In addition, patients admitted multiple times are 10 times
more likely to have allergic reactions to more than one fungal allergen [61]. Increased
exposure and sensitivity to allergenic fungal spores coincide with the severity of asthma
presentations [62,63]. While studies have found that fungal spores could have a more
significant impact on hospitalizations than pollen [64,65], further research is required to
determine the accuracy of these statements.

Table 1. Prevalence and clinical symptoms of prominent allergenic fungal spores.

Fungal Spore Allergy
Prevalence

Environmental
Prevalence Clinical Manifestations Fatal

Alternaria spp. ~13% [66] Indoors & Outdoors [67]
• Allergic Asthma
• Allergic Rhinitis
• Allergic Sinusitis [10,44,66–68]

Yes (asthma) [69,70]

Aspergillus spp. ~2% [66] Indoors [67]

• Allergic Asthma
• Allergic Bronchopulmonary Mycoses (ABPM)
• Allergic Rhinitis
• Hypersensitivity Pneumonitis
• Mycotoxicosis [44,66,67,71,72]

Yes (lung disease) [73]

Cladosporium spp. ~3% [66] Indoors & Outdoors [67]
• Allergic Asthma
• Allergic Rhinitis
• Hypersensitivity Pneumonitis [44,66,67,74]

No

Penicillium spp. ~2% [66] Indoors [67]
• Allergic Asthma
• Allergic Rhinitis
• Mycotoxicosis [44,66,67]

Yes (infection) [75]

5. Indoor vs. Outdoor Prevalence

While fungal spores are measured in large quantities outside, fungal spores are
also common in the indoor environment, primarily from mold growth due to venti-
lation systems aiding dispersion. Dominant indoor molds include Cladosporium spp.,
Aspergillus spp., and Penicillium spp. [76]. Homes analyzed in New York found that 98%
contained Cladosporium spp. molds and 91% contained Penicillium spp. Molds [77]. Ap-
proximately one in five hospital departments in Italy reported fungal pollution, with
Aspergillus spp. making up 91.8% of airborne fungal spore load and 68.5% of molds [78].
Fungal contamination has also been found in neonatal hospital wards [79] and indoor
Penicillium spp. growth has been identified as the cause of wheezing and breathing prob-
lems in newborn infants [80]. Higher rates of allergic reactivity in atopic patients have
been reported from exposure to indoor allergens than outdoor allergens [81]. In addition,
exposure to indoor fungal spores increases the risk of children developing allergies and
asthma over time [82]. However, while the abundance of indoor fungi is dependent on
outdoor concentrations and seasonal conditions [83], the level and diversity of indoor
fungal spores are exceedingly lower than their counterparts observed outside [84,85]. Fur-
thermore, indoor fungal contamination can be effectively managed via mold removal and
remediation [86].

Exposure to Alternaria spp. occurs almost always outdoors [10]. Outdoor fungal spores
primarily originate from agricultural lands, with variations in climate governing seasonal
fluctuations [87]. Sensitization to outdoor fungal spores is more prevalent than sensitization
to indoor fungi [88]. Unlike indoor fungi, which have been primarily linked to allergy
and infection, fungal spores prevalent outdoors have been reported to cause acute asthma
exacerbations [30]. In addition, outdoor spores have been associated with worsening
lung function and heightened airway inflammation, especially in asthma patients [89].
Furthermore, an increase in outdoor fungal spore concentrations was linked to a rise in the
number of children admitted to hospitals for asthma presentations [90] and deaths caused
by asthma [91].
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6. Climate, Pollution, and Fungal Spores

Approximately half of the variation in airborne fungal spore counts can be explained
by changes in weather [92]. High temperatures can increase the rate of spore production
and the impact of climate change could see spore production rates continue to rise [93].
High humidity leads to heightened levels of basidiospores but decreases dry-air spores
like Alternaria spp. and Cladosporium spp. [36,40]. Heavy rain has been observed to remove
spores from the air, significantly reducing their concentration and the risk of exposure [94].

Temperature, rain, and relative humidity appear to be the more critical factors influ-
encing fungal spore concentration [95]. However, observations of other weather parameters
have not produced consistent results. For instance, wind speeds had no noticeable impact
on fungal spore concentrations observed in Turkey [96], sampling carried out in Spain
found the wind had a negative effect on fungal spore counts [92], while wind speeds
observed in Mexico positively influenced spore concentrations [97]. This suggests that
other mechanisms must influence fungal spore counts besides climate alone.

Regions with high vehicular and human traffic have been found to contain increased
atmospheric concentrations of fungal spores [98]. A high rate of human activities, such as
constructions projects, increases environmental disturbances and encourages the dispersal
and distribution of airborne fungal spores [99]. In addition, agricultural regions also
have significant contributions to spore production. Plant fungal pathogens infect crops
to reproduce, with spores continuously distributed via disturbances like wind or farming
practices [100].

Urban communities boast higher pollution levels on average, which could also in-
fluence spore production and allergenicity. High PM10 levels have been associated with
increased airborne fungi [27]. Elevated CO2 concentrations have been shown to increase
Alternaria spp. spore production 3-fold [101]. In addition, fungus exposed to height-
ened CO2 levels released spores that contained double the average number of allergenic
proteins [101]. Elevated CO2 can also lower the resistance of crops to fungal invasion,
encouraging the spread and growth of plant fungal pathogens like Alternaria spp., which
causes early blight [102,103]. However, other pollutants like ozone and NO2 have had
inconclusive effects on fungal spore levels and need to be explored further [104].

7. Fungal Spores and Thunderstorm Asthma

While some studies may have found no consistent links between fungal spore counts
and single weather parameters, significant correlations have been found when analyzing
variations in weather conditions associated with thunderstorms [105]. Different fungal
spore taxa have been observed to increase atmospheric concentrations before, during, and
after storms [106]. Elevated levels of Alternaria spp. and Cladosporium spp. are associated with
higher temperatures, high ozone concentration, and low humidity, which is characteristic of
conditions prior to a thunderstorm [6,40,107]. Static charges created from lightning strikes
can also encourage the release of spores into the air [108]. An increase in airborne fungal
spores during storms could be the mechanism that causes severe respiratory exacerbations
resulting from epidemic thunderstorm asthma events [109].

Early thunderstorm epidemics were first attributed solely to pollen, particularly rup-
tured grass pollen grains [110–112]. However, the presence of high airborne allergenic spore
counts on days with asthma epidemics was identified decades ago [113], and analyzing
past epidemics found correlations between spikes in fungal spore levels and the occurrence
of thunderstorms [114]. The potential role of fungal spores in epidemic thunderstorm
asthma has since been more thoroughly investigated. Fungal spore counts have been
observed to double on days with storms as rates of asthma admissions increased [109].
Specifically, high concentrations of Alternaria spp. were associated with a rise in asthma
presentations across the UK following a thunderstorm, with sensitivity to Alternaria spp. in-
creasing an individual’s risk of suffering from thunderstorm-related asthma exacerbations
by 900% [115]. High Cladosporium spp. levels were also observed to increase emergency
department admissions for asthma, which were associated with a higher occurrence of
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thunderstorms [40]. In addition, ruptured Alternaria spp. spores, which are associated with
severe asthma presentations, have been collected during thunderstorms [116].

8. Airborne Allergen Sampling Methods

Researchers frequently use sampling traps to collect airborne allergens from internal
or external environments. At least 68% of pollen and spore traps currently used worldwide
are Hirst-type [117,118]. These sampling traps, first developed in 1952, operate by taking in
air volumetrically at 10 L/min and depositing airborne particulates on adhesive-removable
surfaces such as tape or microscope slides [119]. The Burkard pollen and spore trap
(Figure 2), for instance, is a commonly used Hirst-type sampling device [106] that has been
demonstrated to yield high counts of pollen grains and fungal spores and is a reliable
method for assessing the atmospheric composition of aeroallergens [120,121].
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These traditional sampling traps do have limitations. For instance, sampling ma-
chines alone cannot distinguish between local fungal spores and spores dispersed from
long distances. Researchers have recently trialed genetically analyzing airborne spores to
improve knowledge on local airborne spore diversity, which a sampling trap alone cannot
achieve [122]. Similar techniques could be employed at sampling stations across various
countries to understand local spore diversity and distribution better. In addition, some
Hirst-type sampling traps are less efficient at trapping particulates smaller than 5 µm. While
this doesn’t affect larger spores like Alternaria spp. and Cladosporium spp., it may impact
the sampling of smaller allergenic spores like Aspergillus spp. and Penicillium spp. [123,124].
However, compared to commercially available spore trap services, Hirst-type traps are cur-
rently the most appropriate and widely-used method for obtaining fungal spore data [125].
Furthermore, most sampling machines are designed to collect airborne particles over a
long period of time, with the Burkard required to be continuously operating for 24 h to
7 days [126]. While this method can provide researchers with a vast amount of unin-
terrupted data, the delay caused by these long collection times means the public is not
provided with real-time information about the current level of airborne allergens. Develop-
ing a sampling regime with shorter collection intervals or with the ability to identify pollen
or spores automatically would be a significant improvement over traditional sampling
traps. Real-time sampling would allow researchers to monitor current atmospheric aeroal-



Int. J. Mol. Sci. 2022, 23, 4313 7 of 12

lergen concentrations in ways that are overlooked or misjudged by Hirst-type traps [127].
Automatic functional pollen counters have been recently found to be effective in regions
with low airborne allergen diversity [128], with some models outperforming traditional
samplers [127]. However, this technology is still very new and requires further work to
fix critical issues such as low accuracy and the high rate of false positives (e.g., non-pollen
identified as pollen) [129,130]. With continued investment, automated systems could be
adopted for future aeroallergen monitoring.

9. Conclusions

Spores pose a significant risk to respiratory health and should be taken more seriously
for their allergenic potential. Fungal allergens, both indoors and outdoors, are a common
cause of rhinitis and asthma exacerbations and are just as potent as pollen. Limiting the
exposure of vulnerable populations to allergenic fungal spores is crucial to preventing
severe respiratory exacerbations. Thus, more attention needs to be put towards monitoring
seasonal fungal spore concentrations. Updating our daily allergen monitoring systems to
include allergenic spores will be necessary to accurately detect airborne allergen levels and
help develop warning systems to protect the public during thunderstorm-related asthma
epidemics. In addition, more sensitive equipment, potentially with real-time automatic
sampling, should be developed to improve current monitoring methods and our ability to
collect and identify allergenic fungal spores.
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