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This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which
would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method
combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D
information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully
connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method
was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as
the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of
our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset.
It proved that our method could produce better results for the segmentation of low-grade gliomas.

1. Introduction

Among all brain tumors, glioma is the most severe [1].
According to the World Health Organization (WHO) cri-
teria [2], gliomas were categorized into four grades from level
I to level IV according to tumor malignancy. Normally, grade
III and grade IV gliomas are called as high-grade gliomas
(HGG) and grade I and grade II as low-grade gliomas
(LGG). LGG could be further classified into astrocytomas,
oligodendroglioma, and oligodendrocytes astrocytoma based
on pathological type.

Magnetic resonance imaging (MRI) is the most common
imaging diagnostic technique in the clinical diagnosis of glio-
mas. With MRI images, the accurate segmentation of gliomas
is one of the most crucial procedures in treatment planning
and follow-up evaluations. However, manual labeling is very
time-consuming, and it is difficult to adopt a unified standard
for segmentation. Meanwhile, automatic segmentation is still
hard to be achieved because of the diversity of gliomas in size,

shape, and location [3]. Several limits of medical images such
as the intensity inhomogeneity and unexpected intensity
ranges of tissues would also cause difficulty for automatic
segmentation of glioma [4].

A large number of algorithms have been developed to
complete the task of tumor segmentation. Many traditional
segmentation methods were based on gray scale values, such
as fuzzy clustering and region growing [5]. These methods
would be likely to fail when processing nonenhanced tumor
images. Another kind of popular methods was multiatlas seg-
mentation, which was based on the correlation of the priori
brain atlas and the medical images to be processed [6]. How-
ever, these methods are often problematic when the atlases
and target images are obtained via different imaging proto-
cols and the deformable registration is also considered as a
difficult process.

Recently, several methods related with machine learning
have been applied in brain tumor segmentation. Parisot
et al. used the prior knowledge to classify the tumor first
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and then used another graph to determine the class of each
voxel [7]. Huang et al. utilized the sparseness of samples to
build up a particular dictionary and used a softmax model
to optimize the error reconstruction coefficients for different
classes [8]. Random forests have been considered to be good
at dealing with a great number of features to accomplish
brain tumor segmentation. Meier et al. applied a set of dedi-
cated features to get decision forests to discriminate patho-
logical regions from brain MRI volumes [9]. In addition,
Markov random field (MRF) and conditional random field
(CRF) are also often mentioned to obtain smooth edges.
Zhao et al. proposed a semisegmentation method based on
the MRF [10], in which one slice was labeled and other slices
were sequentially labeled based on a MRF label. Meier et al.
estimated the CRF to improve the voxel-wise classification
performance on the top of the decision forest classifier [11].
These conventional machine learning methods are often
based on a large number of features extracted from the image,
reflecting the shape, gray value, and texture of the tumor area.
But an important problem with these approaches is that the
computation of too many features is too time-consuming
and particular feature can cause difficulties in tuning.

Another kind of approach to segment gliomas is based on
the well-known convolutional neural network (CNN). Pri-
marily due to its abilities to obtain image global and local
information directly from the convolution kernels, CNNs
have made breakthrough progress in image processing and
object recognition and been wildly used thereafter [12].
CNNs have shown good performances in the field of medical
image processing in recent years, not only in terms of accu-
racy, but also in terms of efficiency [13]. Pereira et al. devel-
oped two CNN structures with different depths to deal with
the HGG and the LGG [14]. Dvorak et al. evaluated the effec-
tiveness of different patch selection strategies based on the
segmentation results of CNNs [15]. Havaei et al. proposed a
multiscale CNN structures in order to make better use of
local and global information [16]. Rao et al. combined ran-
dom forests with the final output of CNNs to achieve better
classification results [17]. Several CNN methods mentioned
previously are based on a two-dimensional convolution ker-
nels and do not make good use of the natural three-
dimensional (3D) information of medical images. Typically,
3D filters can take fully advantage of 3D connection charac-
teristics of images. Kamnitsas et al. [18] evaluated the use of
3D filters. However, the 3D convolution algorithm limits
the size of convolution kernels and causes a great increase
of the computation load. Furthermore, 3D filters require high
resolution on the vertical plane, while actual MRI images
usually need interpolation and do not have such high resolu-
tion. The process of interpolation and down sampling in 3D
filters often brings additional errors in segmentation. There-
fore, how to make good use of 3D information with CNN in
gliomas segmentation still remains an important problem.

On the other hand, segmentation methods mentioned
above mainly focused on the segmentation of the HGG.
Although the internal structure of the LGG is simpler
than that of the HGG, the segmentation of the LGG is
considered more difficult because of its lower contrast
and smaller size [14]. Thus, these segmentation methods

mentioned above often do not produce good results when
dealing with the LGG.

As it is known, the lesion area of the LGG is more distin-
guishable from T2flair MRI than from other MRI modalities
[19]. So in this study, we chose T2flair modal MRI images as
the original data for image processing. LGG has high signal in
the T2flair images. Compared with HGG, the signal intensity
distribution of LGG is more uniform and the boundaries of
tumors and surrounding brain tissues tend to be clearer. In
addition, LGG usually shows no necrosis, perifocal edema,
or hemorrhagic foci. Oligodendroglioma and astrocytoma
were two major types of LGG. The two subtypes could be dis-
tinguished radiologically by the presence of calcification.
Generally, calcification inside oligo tumor turns out hypoin-
tensity on T2-weighted and isointensity on T1-weighted pre-
contrast MRI.

In this paper, a new method is presented aiming at auto-
matic segmentation of LGGMRI images. Main contributions
of the paper are as follows. Firstly, the effect of different CNN
depths and the number of neurons in the fully connected
layers on the segmentation result were thoroughly evaluated.
Secondly, in order to use the 3D information, nearby slices
were set into the network and connected with a fully con-
nected CRF. Lastly, the results on the LGG T2flair dataset
showed that the method is better than the state-of-the-art
CNN method.

The rest of the paper is organized as follows: in Section 2,
we present our materials and method flows. Experimental
design, results, and discussion can be found in Section 3.
Finally, the main conclusions are presented in Section 4.

2. Materials and Methods

2.1. Patients. All data from patients used in our study were
obtained from Shanghai Huashan Hospital. These patients
were diagnosed between July 2013 and March 2016, and
MRI images of these patients were collected at the time of
diagnosis without any treatment. All 160 cases of data are
described in detail in Table 1. We randomly selected 59 of
them as the training data and 101 as the test data. Manual

Table 1: Patients characteristics.

Characteristics Quantity Percentage

Tumor grade

Grade II 160 100.0%

Radiological diagnosis

Astrocytoma 48 30.0%

Oligodendroglioma 25 15.6%

Oligodendrocytes astrocytoma 73 45.6%

Gender

Male 81 50.6%

Female 79 49.4%

Category

Training set 59 36.9%

Test set 101 63.1%
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labeling of the tumor area was performed by two experienced
neurosurgeons.

The size of the MRI images was 512 × 400. MRI images
were stored as 16-bit unsigned integer. All images were
acquired according to the following parameters: pixel
width=0.47mm, slice spacing =2mm, repetition time=
9000ms, echo time= 99ms, inversion time=2501ms, and
flip angle = 150°.

2.2. Data Analysis. The original MRI data contains a lot of
information which is not related to the segmentation prob-
lem, and these noises will greatly affect the tumor segmenta-
tion [3]. Some pretreatment was firstly operated to get rid of
these noises.

BrainSuite is an open-source software and is able to auto-
matically process thehumanbrainmedical images [20].Brain-
Suite was utilized to remove the skull and scalp from MRI
images and corrected nonuniformity problem of images.

2.3. CNNs for Tumor Segmentation. Figure 1 presents the
overview of our approach, which is divided into several parts.
The proposedmethod was also demonstrated in Algorithm 1.
The further explanation will be given in the following
sections.

2.3.1. The Preparation of the Input. The major idea of using
CNN to segment gliomas is to take tumor segmentation as
the problem of tumor recognition. Because the proportion
of tumors in the brain is very small, some normal CNN
network structures of image recognition could not get good
segmentation results of gliomas [21]. Instead of utilizing the
full-sized images in the training phase, CNN was trained

using patches randomly extracted from the images in this
study. The conventional processing is to divide images into
several patches during the training and set categories of
center points as targets. The method was widely used in the
medical image processing with unbalanced data [22]. More
storage and more time were required by the training strategy
using patches comparedwith training strategy using full-sized
images. However, the former one is more suitable for tumor
segmentation because the portion of the tumor regions is very
small and the strategy using full-sized images would cause
false positive results with unbalanced samples. The tumor
region could be sampled more with the strategy using patches
by picking more samples in the tumor regions on purpose.

In our study, we divided MRI images into 33 pixels× 33
pixels size patches randomly at the training stage. Normally,
about 50 patches were extracted from a single slice. The
training set contained about 230,000 patches from 59
patients’ brain images.

Taking into account the uneven distribution of image
data, we chose an unbalanced selection method to obtain
sufficient tumor samples. There were about 40% of samples
in the channel containing tumors.

After the completion of sample extraction, we adopted
several preprocessing methods. We removed the mean grey
level of patches and normalized gray value and variance. It
is worth being noted that these parameters are preserved
for the test image to do the same processing.

2.3.2. CNN Base Line Structure. We selected one of the most
advanced CNN structures as the base line. The selected CNN
took part in the Brain Tumor Segmentation Challenge 2013
(BRATS 2013) and ranked first place in BRATS 2013 and
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Figure 1: The flow chart of our method.
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second place in BRATS 2015 [14]. The network consisted of
seven convolution layers, and structures are briefly
described as the base line in Table 2. The network utilized
small and continuous convolution kernels to enhance
tumor recognition ability of network without increasing
computation.

Every convolution layer was followed by active layers,
and the dropout layer was set after each fully connected layer.
According to regular CNN strategy, we chose rectifier linear
units (ReLU) as the function of active layers.

It should be mentioned that we put the entire image into
the network in the phase of testing to reduce the processing
time. For the purpose of getting the correct and accurate
labeling map, we removed the dropout and softmax loss
layers of the network in testing.

2.3.3. Building Deeper Networks. Some research results on the
CNN showed that objects would be recognized better with
increasing depth of the network structure and the number
of neurons in the fully connected layers. Therefore, we con-
ducted a number of contrast experiments with different
depths and different number of neurons in the fully connected
layers based on the base line. We referred to a well-behaved
network structure at the time of designing the network struc-
ture [23]. Detailed information is also shown in Table 2.

2.3.4. Adding Near Slices into Networks. As previously men-
tioned, it is a tricky problem to input the 3D information into
the network without increasing the computational load and
bringing the complex registration process. This problem can-
not be well solved by existing methods. In order to drop out a
solution, two ideas in motion recognition from video pro-
cessing were introduced into our CNN structure. Two new
network architectures were shown in Figure 2, called early
fusion and late fusion processes.

In the field of video processing, Karpathy et al.
reported that early fusion structure obtained more accu-
rate local motion recognition and late fusion compared
the contents of each channel to obtain the better recogni-
tion of global motion [24]. Video processing and 3D brain
MRI images have similar characteristics; although several
frames nearby are not exactly the same, relative informa-
tion could provide assistance to make more specific
judgments. In fact, neighbor slices were always referred
to get better differentiation of the tumor area at the time
of manual labeling. Based on this fact, introducing these
structures of combining 3D information could be helpful
in segmenting tumor regions.

It is worth being mentioned that we utilized the network
with a deeper structure and more neurons in the fully con-
nected layers as a basis. The basic structure is referred to as
“Base line + deeper + more fc” CNN structure in Table 2.
As seen in the figure, early fusion mixes the information of
three slices together at the beginning of the network and
three relative slices shared the same network structure
parameters. Each slice was utilized to train a one-way net-
work in the structure of late fusion and finally connected
together by the fully connected layers.

The connection of different slices in the network has
many advantages. Firstly, introducing 3D information can
make the network identify the tumor region more accurately.
This may be of benefit to the CRF decision. Secondly, it is
possible to effectively avoid missegmentation for similar
tumor regions in other brain regions. Combining nearby
slices can correct erroneous identification by the use of 3D
information. Moreover, the structures combined with 3D
information could help CNN recognize the upper and lower
surfaces of the tumor better. The accurate identification of
tumor regions would also bring benefits to the segmentation
of small tumors.

2.3.5. Fully Connected CRF for Further Identification. Current
CNN structures for the tumor segmentation [14–17] have
several limitations due to the structure. First of all, the recep-
tive field that corresponds to a single neuron of the last fully

Table 2: Base line and improved CNN structure configurations.

CNN configuration

Base line
Base line +
deeper

Base line +
more fc

Base line +
deeper +
more fc

Input

Conv13–64 Conv3–64 Conv3–64 Conv3–64

Conv3–64 Conv3–64 Conv3–64 Conv3–64

Conv3–64 Conv3–64

Max-pool

Conv3–128 Conv3–128 Conv3–128 Conv3–128

Conv3–128 Conv3–128 Conv3–128 Conv3–128

Conv3–128 Conv3–128

Max-pool

FC2–256 FC-4096

FC-256 FC-4096

FC-2

Softmax

Output
1Conv: followed by the size of convolutional kernels and the number of filter
banks. 2FC: followed by the number of fully connected layers.

Input: image I input, mean value Amean, max value Amax ,
standard deviation Astd, parameters of settled multi-way
CNN network and parameters of fully connected CRF model
(ω1, σα , σβ , Iteration)
Output: tumor segmentation result
1: Normalize I input using Amean,Amax and Astd and get
I output
2: Enter I output into the settled multi-way CNN, and get
the output P xi from the softmax layers
3: Using P xi as original unary potential
4: for Iteration do
5: Compute fully connected CRF with I output and unary
potential using parameters ω1, σα , σβ
6: Correct the segmentation results using several morphology
methods

Algorithm 1: Proposed segmentation method.
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connected layer is too large. Take our network structure for
example, due to the presence of two pooling layers, one neu-
ron corresponds to four pixels in images. What is more, the
CNN was limited by the lack of space and edge constraints
compared with other machine learning methods. So the
result of the segmentation is rough on edges. Secondly, for
MRI images, the contrast and the gray scale of images from
different patients are different. In addition, the contrast of
the LGG is often lower than that of the HGG, increasing
the difficulty for accurate identification of whole tumors.
Because of these reasons, sometimes the CNN can only rec-
ognize a part of the tumor area and sometimes the region
near the tumor is misidentified.

A possible improvement of the CNN is to integrate the
CRF into the network structure to refine the segmentation
results [25]. CRF is a framework for building probabilistic
models. Iterative parameter estimation algorithms were
always applied for CRF [26]. Krähenbühl reduced the
complexity of fully connected CRF computation from qua-
dratic complexity to linear complexity through an optimi-
zation algorithm based on the mean field approximation
[27]. On his basis, we used the network features as the
contribution of each category and optimized the probabil-
ity model in a wide domain. The energy function that we
used is

E x = 〠
i

θu xi + 〠
i,j,i≠j

θp xi + xj , 1

where θu xi is the unary potential which is computed inde-
pendently for each pixel. In our study, we utilized features
extracted from the CNN to calculate this parameter.

θu xi = −logP xi , 2

where P xi is the label assignment probability. We set the
output of the last fully connected layer of the CNN as P xi .
It should be noted that, the bi-cubic method was used to
interpolate the score map since the CNN output size is four
times smaller than the image. The other parts of the energy
function are the pairwise potentials, which reflect the rela-
tionship between any two pixels. Pairwise potentials were
defined as

θp xi + xj = μp xi + xj 〠
K

m=1
ω m k m f i, f j , 3

where μp xi + xj is a function that determines whether a
point is the same or not. The Gaussian kernel k m was calcu-
lated as follows:

k f i, f j = ω 1 exp −
pi − pj

2

2σ2α
−

Ii − Ij
2

2σ2β

+ ω 2 exp −
pi − pj

2

2σ2γ
,

4

where pi and Ii represent the location and intensity of the
corresponding pixel i, respectively. As seen from the formula,
the first Gaussian kernel is related to the location and inten-
sity of a particular pixel, which is the main convergence fac-
tor of the graph model. However, the second kernel is only
related to the location of the pixel, which makes the graph
model smoother. In our experiments, the iterations of the
CRF algorithm also had a great influence on the segmenta-
tion result. These parameters of the CRF should be obtained
through the second training phase of the training set.

2.3.6. Postprocessing. After obtaining the segmentation
results of the CRF output, the segmentation results were cor-
rected using several morphology methods. We chose the
largest connectivity region of each slice as the candidate
region. Then regions containing the area greater than 300
pixels were selected as identified tumors. After yielding the
segmentation results for each slice, 3D smoothing of the
tumor was performed by box filter with 3-dimensional con-
volution kernel to make segmentation results more natural.

3. Results and Discussion

3.1. Experimental Setup and Evaluation. All of our exper-
iments were built on top of MatConvNet [28], a
MATLAB toolbox implementing CNNs for computer
vision applications.

Present slice
Previous slice

Post slice

Feature map Feature map
64 @ 33 × 33 128 @ 16 × 16 Feature map

4096

Feature map
4096

Present slice

Previous slice

Post slice

Figure 2: Two network structures which can make better use of 3D information. The implementation structure of early fusion is shown
above, and the figure below is the diagram of late fusion.
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In order to make experimental results more contrastive,
we used the same parameters when models were trained.
Network parameters were initialized by using the improved
Xavier method [29], and the echo setting for training was
25. The initial learning rate was 3 × 10−3 and declined to
the final 3 × 10−5 using the logarithmic descent method.

In the process of training the fully connected CRF param-
eters, we used a relatively simple genetic algorithm to specify
the optimal parameters. As shown in Table 3, all the param-
eters were discretized. ω1 and σγ were considered unimpor-
tant and were set to 5 and 5, separately. At first, we
generated a set of parameters randomly and then changed
four parameters one by one in order to optimize the selec-
tion, retaining the best one. Thus, 27 cycles were required
to estimate the parameters of the fully connected CRF model.
The parameters corresponding to the best overall segmenta-
tion results of the 59 training data were chosen as the opti-
mized parameters during the second training phase.

In order to evaluate the accuracy of the segmentation
results, we used three indices as usual [3] Dice similarity coef-
ficient (DSC) [30], positive predictive value (PPV), and sensi-
tivity. TheDSC evaluated the segmentation results globally by
calculating the overlapping parts, which often serve as an indi-
cator of the overall outcome of segmentation results.

DSC =
2TP

FP + 2TP + FN
, 5

where TP, FP, and FN represent the regions of the true pos-
itive, the false positive, and the false negative, respectively.
The PPV calculated the accuracy of the segmentation result.
The higher the coefficient is, the less the nontumor area can
be covered by the segmentation results.

PPV =
TP

TP + FP
6

The sensitivity reflects the sensitivity of the algorithm to
the tumor area. The higher the sensitivity, the more regions
of the tumor that are included in the segmentation results.

Sensitivity =
TP

TP + FN
7

3.2. Results for Different Network Depths. Four experiments
were designed with different CNN depths and architectures.
The design of the network was mentioned in Table 2. The
convergence of the objective function and the error rate
during the training is shown in Figure 3.

We can see from the figure that increasing the depth of
the network and the number of neurons in the fully con-
nected layers can make the network stabilize more quickly
and gain better results. Moreover, deepening the network
structure and increasing the number of neurons in the fully
connected layers at the same time could further enhance
the training results.

The segmentation results of training set and test set were
evaluated, as shown in Tables 4 and 5. Quantitative results
showed that making network deeper can improve the seg-
mentation results without significantly increasing network
parameters. When the network is deep enough, the increase

of the number of neurons in the fully connected layers would
also improve the tumor recognition ability of the network.

All 160 cases of tumor segmentation results were pre-
sented in Figure 4. It can be seen that the tumor recognition
ability of complex network was better than the ones with
simple network structure. Nevertheless, the improved net-
work can also better handle some special cases.

The effect of changing network structrue on the segmen-
tation results can be better reflected in Figure 5. We showed
three examples of segmentation in Figure 5, and it can be
seen that the segmentation results became more detailed
and accurate when the network was deepened or the number
of neurons in the fully connected layers was increased.

The results were also consistent with the conclusion in
the previous quantitative analysis. The promotion of the
PPV was the most remarkable, and the nontumor region
covered by segmentation results was decreased.

We also looked into the difference in the network archi-
tecture by analyzing network features values. Representative
features in the network from different depths were
presented in Figure 6. As some of the research in computer
vision reported [31], the lower layers represent the informa-
tion such as edges, contours, and intensities. With the
deepening of the network, the characteristics become more
different with the input images. Besides, the regions from
different classes become more and more obvious, especially
after the fully connected layers. It can be seen that networks
with more neurons in the fully connected layers can better
identify tumor regions at the same depth. Because the
increase of neurons in the fully connected layers gives
more choices of fitting, the lower layers have the opportu-
nity to establish better parameters.

The effect of increasing the depth of the network can be
seen from the diagram in the last column. With the deepen-
ing of the network, image recognition is significantly more
detailed and the resolution of pixel recognition is higher. Fine
identification of images can benefit the reduction of recogni-
tion errors. This may be because the increase in the number
of convolution layers leads to multiple processing of the same
pixel point.

By doing so, the CNN could effectively reduce the
adverse impact of surrounding pixels so that recognition
is more precise.

3.3. Results for Adding the Near Slices and Fully Connected
CRF. Similarly, we presented the training parameters of the
network structure after adding the neighboring slice infor-
mation in Figure 3. By comparison, it can be seen from

Table 3: The optional parameters selected for the fully connected
CRF (the first and the last digits represent the selected minimum
and maximum values, and the middle number represents the
chosen step size, expressed in MATLAB representation).

ω1 σα σβ Iterations

Selection range 5 : 5 : 10 20 : 5 : 70 3 : 1 : 10 5 : 1 : 10

The number of optional
parameters

2 11 8 6

Optimized parameters 5 25 10 7
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Figure 3 that the parameters of the training after the addition
of 3D information yield a much better convergence result.
This was because the increased 3D information improves
the recognition ability of the network. However, maybe due
to the noises brought by 3D information, the actual segmen-
tation results were not very satisfactory.

We also showed the result of the segmentation of the
training set and the test set in Tables 6 and 7, after combined
with the fully connected CRF. It can be seen that the combi-
nation of the CNN and the CRF can improve the recognition
effect of tumors to a great extent. More importantly, the com-
bination of these two 3D structures with the CRF seems to
achieve better results. The results of early fusion had a higher
DSC, and the results of late fusion were able to achieve higher
sensitivity with similar global segmentation results.
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Figure 3: The training parameters of different network structures. (a) shows the convergence of the objective function during training, and
(b) shows the error change during training.

Table 4: Performance of different CNN structures on the training data.

CNN structure DSC PPV Sensitivity Total parameters

Base line 0.7609 0.6626 0.8937 1 9 × 106

Base line + deeper 0.7872 0.6849 0.9253 2 1 × 106

Base line + more fc 0.7678 0.6568 0.9239 4 3 × 107

Base line + deeper +more fc 0.8073 0.7296 0.9036 4 3 × 107

Table 5: Performance of different CNN structures on the test data.

CNN structure DSC PPV Sensitivity

Base line 0.7834 0.6915 0.9034

Base line + deeper 0.7910 0.6987 0.9114

Base line + more fc 0.7841 0.6773 0.9306

Base line + deeper +more fc 0.8021 0.7310 0.8886

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DSC PPV Sensitivity

Figure 4: Boxplots of all data segmentation results of different CNN
structures. The first of each group represents the base line, the second
represents the deeper structure of the network, the third represents
the network with more neurons in the fully connected layers, and
the last one is the network with both deeper and more neurons in
the fully connected layers.
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The results are more evident in the globally validated
Figure 7. Compared with the single way CNN, the combina-
tion of the CNN and the CRF achieved a significant improve-
ment. Moreover, early fusion and late fusion accessed to
more promotion in different aspects.

In Figure 8, we showed the superiority of our method in
three examples. In the first case, we can see that the contours

of the tumor obtained with one way CNN are very rough and
the boundaries acquired are not very good. The segmentation
results are more precise and more accurate after combining
the CNN with the fully connected CRF. It is worth being
mentioned that we did not use the fully connected CRF to
smoothen the edges completely. We found that appropriate
iteration time of CRF would lead to better segmentation than

MRI images

Case one

Case two

Case three

Manual segmentation Base line Base line + deeper Base line + more fc
Base line + deeper +

more fc

Figure 5: Segmentation results for networks with different depths. Each row corresponds to a case, and each column corresponds to a
network structure of the segmentation results.

Layer before
first pooling

Layer before
second pooling

Layer after
first fc

Layer before
softmax

Base
line +
deeper

Base
line

Base
line +
more
fc

Base
line +
deeper +
more
fc

Figure 6: Features in networks of case one in Figure 4. Each column corresponds to a network structure, and each row corresponds to one
kind of depth; the output of the last filter in the filter bank was selected.
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the one with fully smoothing. Therefore, the segmentation of
our method might be rugged and preserved good edges of the
tumor regions.

In the second case and the third case, we showed the ben-
efits of combining nearby slices. The CNN combined with 3D
information can identify the tumor area globally. In the sec-
ond case, two network structures combined with 3D infor-
mation can better identify the whole tumor area, even if a
part of the tumor had very poor contrast.

In the third case, the upper surface of the tumor cannot
be recognized by the single way CNN. But two kinds of
network structures combined with 3D information can
complete segmentation successfully and make the tumor
identification more detailed.

As for two structures of early fusion and late fusion, we
can see that the results of the former are more detailed and
the latter are more likely to recognize more regions. Three
convolution channels combined in late fusion showed
responses to larger regions. This may be due to the fact that
separate convolution channels obtained more 3D informa-
tion but were more susceptible to noises.

We can further explore the advantages of our method of
combining 3D information with Figure 9. In Figure 9, we
showed the unary potential preparing for the input of the fully
connected CRF. These features were set as the output of the
last fully connected layers in CNNs. The color bars next to
the score map showed the intensity distribution in the graph.

It can be seen that the intensity distribution of the unary
potential obtained from two CNN structures with 3D infor-
mation was more extensive and the color of the tumor region
shown in the figure was brighter. The results corresponded to
the point we said previously that the CNN can recognize
tumor regions more certainly after adding 3D information.
This capability would be beneficial for better recognition of
the fully connected CRF, as can be inferred from (1).

3.4. Operation Times. Thanks to the CNN processing speed
advantage and the simplified calculation method of the fully
connected CRF, our proposed pipeline can be completed in a
very short time. Specifically, by using GPU NVIDIA Quadro
600 on an Intel Xeon E5620 2.40GHz machine, we need one

to seven days to train networks, and the specific time depends
on the network complexity. After the network is obtained, the
segmentation time wasmuch less since the segmentation pro-
cess required only the forward operation of the network. A
slice takes only 2 to 10 seconds to get the segmentation results,
and all images of a patient need 2 to 10 minutes. Similarly,
the specific time varies according to the network structure.
Compared with the traditional machine learning methods,
our method is very advantageous in computing time [3].

4. Conclusions

In this study, we explore better ways to segment the LGG
based on the CNN in the binary framework. We firstly stud-
ied the effect of different depths and the number of neurons
in the fully connected layers on the tumor segmentation. It
was found that the deepening of the network can optimize
the segmentation results without increasing the amount of
computation. Increasing the number of neurons in the fully
connected layers under the same conditions can also improve
the segmentation results. Next, we found that the use of the
fully connected CRF as the CNN postprocessing can improve
the segmentation results of the contour and edge and greatly
enhances the segmentation results. At last, we proposed two
kinds of network structures combined with 3D information.
Experiments showed that the combination of these two
structures and CRF can get better results. Early fusion can
improve the segmentation results globally, and late fusion
can make the segmentation results more sensitive. Using
our proposed workflow, we can achieve better results on
the LGG segmentation than one of the best CNN tumor seg-
mentation methods at present. In order to better verify the
applicability of our method, we will have a more detailed
identification of brain tumors and validate our method on
BRATS database in the future.

Table 6: Performance of different CNN structures associated with
the CRF on the training data.

CNN structure DSC PPV Sensitivity

One way CNN with CRF 0.8493 0.8355 0.8637

Early fusion with CRF 0.8506 0.8297 0.8745

Late fusion with CRF 0.8059 0.7415 0.8825
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Figure 7: Boxplots of all data segmentation results of different CNN
structures combined with fully connected CRF. The first plots of
each group represent results of one way CNN, the second plots
represent results of one way CNN connected to CRF, the third
plots represent results of the early fusion structure with CRF, and
the last ones are the results of the late fusion structure with CRF.

Table 7: Performance of different CNN structures associated with
the CRF on the test data.

CNN structure DSC PPV Sensitivity

One way CNN with CRF 0.8459 0.8577 0.8344

Early fusion with CRF 0.8504 0.8561 0.8447

Late fusion with CRF 0.8372 0.8113 0.8649

9Journal of Healthcare Engineering



MRI images

Case one

Case two

Case three

Manual segmentation Result of one way CNN

Result of one way
CNN with fully
connected CRF

Result of early fusion
CNN with fully
connected CRF

Result of late fusion
CNN with fully
connected CRF

Figure 8: Segmentation results of different network structures combined with the fully connected CRF. Each row corresponds to a case, and
each column corresponds to a network structure of the segmentation results. The 3D reconstructions of tumors are shown in the second row
of each group.
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Figure 9: The score maps that are entered into the CRF of different network structures. Each row corresponds to a case and each column
corresponds to a network structure.
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