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Abstract: Vitamin K (VK) and vitamin D (VD) deficiency/insufficiency is a common feature of chronic
kidney disease (CKD), leading to impaired bone quality and a higher risk of fractures. CKD patients,
with disturbances in VK and VD metabolism, do not have sufficient levels of these vitamins for
maintaining normal bone formation and mineralization. So far, there has been no consensus on what
serum VK and VD levels can be considered sufficient in this particular population. Moreover, there
are no clear guidelines how supplementation of these vitamins should be carried out in the course of
CKD. Based on the existing results of preclinical studies and clinical evidence, this review intends to
discuss the effect of VK and VD on bone remodeling in CKD. Although the mechanisms of action
and the effects of these vitamins on bone are distinct, we try to find evidence for synergy between
them in relation to bone metabolism, to answer the question of whether combined supplementation
of VK and VD will be more beneficial for bone health in the CKD population than administering each
of these vitamins separately.

Keywords: vitamin K; vitamin D; chronic kidney disease; bone remodeling; vitamin K and D
supplementation

1. Introduction

Chronic kidney disease (CKD) represents a global health issue involving about 13%
of the general population, of which about 11% are patients in the 3–5 stage of CKD [1].
Impaired kidney function impacts the quality of bone tissue and results in the development
of disorders in bone and mineral metabolism, which are defined as Chronic Kidney Disease-
Mineral Bone Disorders (CKD-MBD) [2]. Abnormalities in mineral and bone metabolism
contribute, in part, to severity of vascular calcification (VC). In this context, CKD-specific
risk factors are believed to drive substantially to VC and cardiovascular disease. It is also
established that patients with CKD stage 3–5 will die due to cardiovascular events before
the need of renal replacement therapy [3,4].

CKD-MBD impacts bone remodeling (Figure 1)—the dynamic process mediated
mainly by the two antagonistically acting cellular populations: osteoblasts (OBs) that
control the formation of bone and osteoclasts (OCs), with the ability to resorb mineral-
ized bone [5]. This process is tightly regulated by local and systemic hormones, such as
parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25D), and vitamin K (VK) [5,6].
The process of bone remodeling is composed of four phases: the activation phase (the
recruitment of OCs); the resorption phase (the resorption of bone by OCs); the reversal
phase (the apoptosis of OCs and the recruitment of OBs); and the formation phase (the OBs
lay down new organic bone matrix that subsequently mineralize) [6]. Bone remodeling
together with bone size, geometry, structure, and volume determines bone’s biomechanical
properties, integrity, and strength, providing renewal of damaged bone. An imbalance
between the amount of resorbed bone and the quantity of new bone formation substantially
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contributes to the increased risk of fractures, which is associated with higher mortality in
patients with CKD [7–9].
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Figure 1. Bone remodeling. Abbreviations: ALP, alkaline phosphatase; BGLAP, bone-Gla-protein;
BMP, bone morphogenic protein; BSP, bone sialoprotein; c-fms, colony-stimulating factor-1 receptor;
COL1, collagen type 1; CTSK, cathepsin K; HSC, hemapoietic stem cells; MAPKs, mitogen-activated
protein kinases; M-CSF, macrophage colony-stimulating factor; MMP-9, matric metalloproteinase 9;
Msc, mesenchymal stem cell; NFATc, nuclear factor of activated T-cells; NFkB, nuclear factor-kappa B;
OPN, osteopontin; OCPs, osteoclast precursors; RANK, receptor activator of nuclear factor kappa B;
RANKL, receptor activator of nuclear factor kappa B ligand; Runx2, runt-related transcription factor 2;
TRAF6, Tumor necrosis factor receptor associated factor 6; TRAP, tartare-resistant acid phosphatase.

Many clinical studies reported on VK and vitamin D (VD) deficiency in patients with
CKD or undergoing dialysis [3,10–12]. These vitamin deficiencies could result from both
dietary and nondietary determinants. Dietary recommendations for CKD patients, such as
diets low in potassium (fewer leafy green vegetables rich in vitamin K1, VK1) and low in
phosphate (fewer dairy products rich in vitamin K2, VK2) could promote VK deficiency.
Holden et al. [3] showed that patients with stage 3–5 CKD have higher VK1 levels than
those on maintenance dialysis. They concluded that patients who were clinically better
nourished have also better vitamin K status. Nutritional factors may also affect the defi-
ciency of VD status in CKD. The low food intake was frequently noticed in this population,
due to numerous reasons, such as reduced appetite, dietary restrictions, i.e., low protein
and phosphate diets, uremic-related gastrointestinal symptoms, and impaired gastrointesti-
nal absorption of VD [13]. The nondietary determinants of VD in a cohort of patients with
CKD included age, gender, low physical activity, less sunlight exposure, blunted the re-
sponse of plasma VD to ultraviolet (UVB) irradiation, and hyperpigmentation, which may
play a role in the impaired endogenous VD synthesis [14]. Additionally, with an increased
loss of renal tissue, the availability and functionality of 1-α hydroxylase decreases, thereby
reducing 1,25D [15]. Proteinuria has also been described as a contributing factor in the
pathogenesis of VD deficiency [3,13,14]. Vitamin D binding protein (VDBP) carries about
85% of the circulating 25-hydroxyvitamin D (25D), VDBP–25D complexes are filtered in the
glomerulus. Patients with proteinuria usually present the increased urinary VDBP excre-
tion, but they might also show impaired megalin and cubilin-mediated protein reuptake in
the proximal tubules, which may contribute to VD deficiency in the setting of CKD and
proteinuria, especially in diabetic chronic kidney disease (DCKD) [16,17]. The peritoneally
dialyzed patients are at particularly high risk of VD deficiency due to increased loss of 25D
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and VDBP through the peritoneal effluent [18]. Moreover, the chronic inflammatory state,
which is a common feature of CKD, can affect VD status [3].

Nondietary determinants of VK status in CKD include taking drugs prescribed to
patients with CKD, such as warfarin, statins, proton-pump inhibitors, phosphate binders,
steroids, or antihypertensives drugs [12,19,20]. The genetic variability can contribute to the
large interindividual variation in VK biomarkers. Holden et al. [3] showed that Apolipopro-
tein E4 (ApoE4) carriers may be at risk for undercarboxylated VK-dependent proteins
(VKDPs) due to rapid clearance of VK1 in the liver. Thus, the apoE4 allele, carried by 34%
of this CKD population, may potentially represent a nonmodifiable risk factor influencing
VK status.

Regarding the general population, a recent report recommended that serum 25D
concentrations should be maintained at 20–50 ng/mL, and values >30 ng/mL should be
considered normal [21]. However, there is some doubt as to whether the values considered
“normal” in the general population could be applied to CKD patients. The Kidney Disease
Improvement Global Outcomes (KDIGO) guidelines, published in 2017, do not consider
any reference value for 25D level in CKD, but they recommended its evaluation when PTH
progressively increases or stays above normal at stages of CKD above 3 [2]. A more recent
study performed on stage 1–5 CKD patients showed no evidence of a decreasing effect of
25D on PTH lowering until 25D levels of 42–48 ng/mL [22], suggesting a higher VD target
in CKD without any additional risk of hypercalcemia and hyperphosphatemia.

Establishment of the reference value of VK in patients with CKD is a challenge,
because there is no gold standard for the measurement of VK levels and there is a lack of
standardization. Instead, a functional deficiency of VK is commonly used as a surrogate
of VK status in these patients. Measurements of uncarboxylated prothrombin (known as
protein induced by VK absence/antagonism II (PIVKA-II), uncarboxylated OC (ucOC),
and desphospho-uncarboxylated matrix Gla protein (dp-ucMGP) MGP are indicative of
VK deficiency [3,11,23].

This review focuses on the contribution of VD and VK to skeletal health in CKD, dis-
cussing their effects on bone remodeling, derived from in vitro, in vivo, and clinical studies.
In particular, we tried to find a functional synergy between these vitamins in relation to
bone health in CKD and answer the question of whether simultaneous supplementation
with VD and VK may be more beneficial in counteracting the effects of CKD-MBD than
supplementing the deficiency of a particular vitamin.

2. Vitamin D and Vitamin K in CKD
2.1. General Characteristics of Vitamin K—Chemical Structure, Metabolism, and
Laboratory Evaluation

VK constitutes a group of fat-soluble chemical compounds, whose common property
is a structure containing 2-methyl-1,4-naphthoquinone. Naturally, VK occurs in two forms—
VK1 (phylloquinone) and VK2 (including different menaquinones, MKs). VK1 is the main
source of dietary VK and is mainly found in green leafy vegetables and plant oils. MKs are
derived from intestinal bacteria (Lactococcus or Bacteroides) and fermented food [24]. The
most common MKs in humans are the short-chain MK-4; it is the only MK produced by
systemic conversion of phylloquinone to menaquinones. MK-4 can be endogenously pro-
duced from phylloquinone in some tissues, which is probably due to local biosynthesis [25].
The recently identified MK-4 biosynthetic enzyme, UbiA prenyltransferase containing
1 (UBIAD1), is widely expressed, but the mechanisms regulating its expression are not
currently known [26]. The main sources of VK are illustrated in Figure 2.

The main physiologic role of VK is to act as cofactor for the γ-glutamyl carboxy-
lase (GGCX) enzyme in the gamma-carboxylation reaction that add carboxyl groups to
glutamic acid (Glu) residues in proteins. GGCX oxidizes VK into VK epoxide and then
adds CO2. The newly carboxylated residues in such proteins are referred to as gamma-
carboxyglutamic Gla domains. This process transforms inactive (uncarboxylated) proteins
into active carboxylated VKDPs, enabling them to bind to calcium. Adequate calcium
binding is a critical physiological step in blood coagulation, bone mineralization, and
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vascular calcification. The most acknowledged extrahepatic VKDPs are MGP, osteocalcin
(OC), growth arrest specific protein 6 (Gas6), and Gla-rich protein (GRP) [27].
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In addition to protein modification, a novel mechanism was uncovered in the sig-
naling that regulates the transcription of target genes by VK through the activation of a
nuclear receptor, the steroid and xenobiotic receptor (SXR; also known as nuclear receptor
subfamily 1 group I member 2 (NR1I2) and pregnane X receptor (PXR), which is the mouse
and rat ortholog of SXR) [28]. VK2 was shown to bind to and activate the SXR, which could
induce expression of osteoblastic marker genes, such as alkaline phosphatase (ALP) and
osteoprotegerin (OPG), extracellular matrix-related genes, and collagen accumulation in
osteoblastic cells [29]. When we compare both forms of VK, VK1 is predominant form of
VK in the human diet due to its relatively high content in food [30], but VK2 is required
for OC to become activated and bind calcium, which makes VK2 a vital player in case of
supporting the osteoprotective effect and maintenance of bone health [31–33]. Additionally,
VK2 plays an important role in promoting bone formation: it stimulates the differentiation
of osteoblasts, upregulates the gene expression of bone markers, and inhibits osteoclastoge-
nesis [33]. VK reserves in the body are limited, and it is efficiently recycled through a series
of redox reactions, which are defined as the “VK cycle” (Figure 2). The transformation of
VK epoxide to quinone form occurs through VK epoxide reductase (VKOR). Then, quinone
is converted by quinone reductase to a VK hydroquinone form, which can be reused. This
last stage of the VK regeneration cycle is necessary for proper γ-carboxylation, because
only a reduced form of VK can act as a cofactor for GGCX [34].

The determination of VK levels is difficult because of its physicochemical properties
and low levels of VK in circulation. Measurements can be done using direct and indirect
methods. One of the most popular direct methods is the determination of VK using
high-performance liquid chromatography (HPLC). A disadvantage of this method is the
possibility of interaction between an HPLC column and lipoproteins transporting VK,
which may affect the results [35]. The most common indirect method for determining VK
status is measuring uncarboxylated VKDPs—ucOC and ucMGP—through the enzyme-
linked immunosorbent assay (ELISA). The uncarboxylated forms (uc)VKDP appear when
protein carboxylation is decreased and increased levels of ucOC, ucMGP or dp-ucMGP
reflect a VK deficiency.
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The ucOC level, the total OC level, and the ratio between the two (%ucOC) are fre-
quently used to reflect VK status linked to bone health [36]. The diagnostics of VK deficiency
are also based on measuring PIVKA. These proteins are formed in the liver as inactive,
under-carboxylated precursors that cannot perform their biological functions. Long-term
VK status can be shown by PIVKA II measurement that together with prothrombin time
are markers of the hepatic concentration of VK [10].

2.2. Vitamin K Status in CKD Patients

Many observational and interventional studies reported that patients with CKD under-
going conservative treatment, peritoneal dialysis (PD), or hemodialysis (HD) suffer from
subclinical VK deficiency [3,10,11,20,23,37]. The number of CKD patients with VK defi-
ciency reaches 70%–90% of that population and is more pronounced than in the general pop-
ulation [38]. The alterations in the OC levels have been already observed in the early stages
of CKD, as 60%–70% of pre-dialysis patients had a high percentage of serum ucOC [3,39].
Several studies demonstrated that HD patients had poor VK status [3,10,11,20,23,37,40,41],
which is rather associated with the dietary regimen and overall poor nutrient intake. In
addition to the fact that VK has a lipophilic character, it should not be absorbed or removed
by the membrane during dialysis [42,43]. Westenfeld et al. [41] showed that HD patients
had significantly higher levels of dp-ucMGP and ucOC as compared to a healthy group,
pointing out that most HD patients suffer from a VK deficiency. A recently published
study by Cranenburg et al. [23] demonstrated low intake (140 µg/day) of VK1 and VK2
by HD patients. Interestingly, low VK intake was observed on the weekends and days
of dialysis in comparison to the control group. Additionally, dp-ucMGP and ucOC were
significantly elevated in the majority of HD patients, confirming a subclinical hepatic VK
deficiency, whereas high levels of non-carboxylated MGP in these patients pointed to a
vascular VK deficiency. Voong et al. [37] showed that the majority of HD patients had high
levels of ucOC, and almost 30% had low levels of phylloquinone, confirming a subclinical
VK deficiency. A recent observational study by Fusaro et al. [40] showed that total OC and
ucOC levels were higher in patients with CKD than in healthy controls.

There are a few studies showing that PD patients have a comparable degree of VK
deficiency to HD patients. Stankowiak-Kulpa et al. [44] demonstrated that 46% of PD
patients had a VK insufficiency, as measured by elevated PIVKA-II levels. Another cross-
sectional study of PD patients [11] showed that almost 30% of them had a VK deficiency,
as assessed by serum VK1 level, and all patients had a VK deficiency, as measured by
the level of ucOC. Interestingly, Jansz et al. [45] demonstrated that patients after kidney
transplantation had lower levels of dp-ucMGP compared to HD or PD patients, indicating
that the restoration of kidney function may contribute to an improvement in VK status.

It is widely known that VK is crucial for the activation of OC, which is involved
in bone metabolism. OC (also known as bone-Gla-protein, BGLAP) is one of the main
noncollagenous proteins that is synthetized by OBs during bone formation. Modification
by VK-dependent carboxylation converts ucOC to an active carboxylate form (cOC). The
cOC binds calcium ions and incorporates them into hydroxyapatite crystals in the bone
matrix to promote bone formation [46]. Transcription and translation of the OC gene is
under the control of 1,25D [47] and PTH [48], creating immature ucOC. Circulating OC is
used as a good biomarker of bone formation, whereas high ucOC levels are an expression
of poor VK levels and intake [43]. However, when bone is resorbed, OC fragments are
released into the circulation, and their serum concentrations may reflect bone turnover.
In a healthy organism, the proportion of ucOC to total OC typically does not exceed
20% [49]. OC clearance is through glomerular filtration; hence, patients with CKD demon-
strate significantly increased levels of total serum OC and ucOC compared with healthy
controls [10,23,39,41,50].
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2.3. General Characteristics of Vitamin D

VD is a prohormone that acts in a variety of paracrine and autocrine systems. VD
exerts a pleiotropic effect in the body, plays an important role in calcium–phosphate home-
ostasis and the regulation of PTH, bone metabolism, immune system, and cardiovascular
disease [51,52].

VD is a fat-soluble vitamin that exists in two distinct forms, ergocalciferol (VD2) and
cholecalciferol (VD3) [12]. The sources of VD2 are vegetables and “fortified” food, whereas
VD3 is derived from animal-based foods but is mainly synthetized in the skin [12,13]. VD3
is produced through the action of ultraviolet (UV) sunlight in the skin by photolytic conver-
sion of 7-dehydrocholesterol (pro-VD3) to pre-VD3 (precalciferol); then, it is subsequently
is changed to VD3 [53,54]. Due to the fact that both forms of vitamin D (VD2 and VD3)
are biologically inactive, they need further metabolism to be activated. In the next step,
they are transported by VDBP in the liver, where they are subjected to the hydroxylation
process by 25-hydroxylase (CYP2R1) to create 25D (calcidiol) [55]. The final step of VD
activation, a second hydroxylation, occurs in the kidneys, where 25D is transformed into a
biologically active form of 1,25D (calcitriol) by 1α-hydroxylase (CYP27B1) [56]. The level of
the circulating form of 25D is 1000-fold higher than the active form of VD—1,25D [54,57,58].
The main sources of VD and their metabolism are illustrated in Figure 3.
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In a healthy individual, the kidneys are the main place of 1,25D synthesis, but under
specific conditions (CKD, rheumatoid arthritis, pregnancy), other cell types can also release
it into circulation [55]. Interestingly, these extrarenal 1,25D products do not include the
1,25D pool [55]. Additionally, renal production of the active form of VD is strictly dependent
on substrate availability, when 25D concentration is low [57,58]. A wide range of biological
actions are mediated through binding with the VD receptor (VDR) and lead to changes
in the expression of many genes e.g., Receptor Activator for Nuclear Factor κ B Ligand
(RANKL), Low-density lipoprotein receptor-related protein 5 (LRP5), Cytochrome P450
family 24 subfamily A member 1 (CYP24A1), and Transient Receptor Potential Cation
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Channel Subfamily V Member 6 (TRPV6) [59,60]. The circulating active forms of VD
are highly regulated by many hormones, e.g., PTH, fibroblast growth factor 23 (FGF-
23), low blood calcium, or phosphorus concentration [59]. VD and PTH interact in a
tightly controlled feedback cycle and play a major role in the regulation of calcium and
phosphate homeostasis [61]. VD deficiency with hypocalcemia and decreased calcium
absorption from diet leads to enhanced PTH secretion, which results in increased renal
calcium reabsorption and osteoclastic bone resorption [62–64]. PTH and hypocalcemia
enhance CYP27B1 pathway-mediated hydroxylation of 25D to its active form: 1,25D.
Therefore, 1,25D augments Ca2+ absorption in small intestines, increases PTH-dependent
Ca2+ reabsorption in kidney, and mediates PTH-stimulated calcium release from bone [62].
Thus, PTH is a pivotal stimulator of VD synthesis, while on the other hand, VD has a
negative influence on PTH secretion [61].

Serum 25D concentration is the most reliable biomarker for assessing VD status. To
date, there is a lack of standardized methods for quantifying the level of 25D [65]. Although
the gold standard for evaluating VD status is HPLC, it is not widely used due to high
costs as well as the need for experience and special equipment. The second method that is
extensively used to establish the reference range of serum VD is the DiaSorin Liaison assay,
which is a quantitative chemiluminescent immunoassay (CLIA) [66,67]. Other common
methods include ELISA and radioimmunoassay (RIA) [65,68]. Lately, more attention has
been paid to liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is
able to measure the various serum forms of VD and VD3 [69].

2.4. Vitamin D Deficiency in CKD Patients

Low levels of 25D are common in CKD as well as in the general population, but
the prevalence of 25D deficiency is much greater in the CKD population [70,71]. VD defi-
ciency/insufficiency affects more than 80% of patients with CKD [14,65]. Moreover, many
observational and interventional studies reported that kidney transplant recipients are
susceptible to low levels of VD [72]. A VD deficiency increases with the progression of
CKD, and it accounts for 20% in CKD stage 3 and 30% in CKD stages 4–5 [73]. Interest-
ingly, Cankaya et al. demonstrated that PD and HD patients’ VD levels were lower in
comparison with CKD and renal transplant patients [74]. The low VD status has been
related to increased progression of kidney and bone disease [75,76], cardiovascular events,
metabolic syndrome, vascular calcification, ventricular hypertrophy, muscle weakness,
insulin resistance, and overall mortality in this population [12,75,76].

Both the Kidney Disease Outcomes Quality Initiative (KDOQI) and KDIGO guidelines
recommend checking and supplementing low serum 25D levels in CKD and dialysis
patients [2,77]. Additionally, KDIGO experts suggest that VD concentrations in patients
with CKD should be tested; thus, repeated measurements should be individualized as a
result of the baseline values and interventions. However, there is no consensus on how
frequently VD level should be measured and administered [2,77].

3. Role of Vitamin K and Vitamin D in Bone Remodeling in CKD:
Pre-Clinical Evidence
3.1. Vitamin K and Bone Remodeling—In Vitro Studies

VK (in particular K2) improves the function of OBs by inducing their proliferation,
differentiation [78,79], and inhibiting Fas-mediated OB apoptosis [80]. VK2 treatment of
OBs can increase both ALP activity and the level of bone OC in the cell medium [78].
The higher ALP activity is associated with better formation of the organic matrix and the
mineral part of the bone, and the deposition of OC and hydroxyapatite in the bone. VK2
activates SXR [28,29] and operates as a transcriptional regulator of a number of osteoblastic
biomarker genes and extracellular matrix-related genes [29,81]. Moreover, VK2 supports
bone formation and suppresses bone resorption by stimulating the expression of OPG and
inhibiting the expression of RANKL on OBs [78].
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Yamagushi et al. [82] observed that VK2 induced the downregulation of basal and
cytokine-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
expression in OBs as well as in the OC precursors, explaining its dual pro-anabolic and anti-
catabolic activities. Interestingly, the combined use of VK2 and 1,25D enhanced calcium
deposition and OC expression in the OBs of obese diabetic mice [83], suggesting that
this combined therapy may be more effective for the treatment of diabetes associated
osteoporosis than the use of VK alone. On the other hand, the current evidence suggests that
VK2 reduces osteoclastic activity via different strategies. It prevents OC formation either
directly or indirectly (by interfering with the RANKL/OPG system [78]). VK decreases
both the proliferation of tartrate-resistant acid phosphatase (TRAP) positive cells and TRAP
activity in osteogenic culture medium [78,84]. Moreover, VK2 inhibits bone resorption
induced by bone resorbing factors, such as Prostaglandin E2 (PGE2), Interleukin 1α (IL1α),
and 1,25D [85]. The study of Kameda et al. [84] showed the potential of VK2 to induce
OCs apoptosis. The characteristics of the main studies regarding VK in pre-clinical studies
included in the review are shown in Table 1.

Table 1. Role of vitamin K and vitamin D in bone remodeling in chronic kidney disease (CKD): pre-clinical evidence.

Reference Model Dose Results

Vitamin K

[79] MC3T3-E1 osteoblasts cell line
VK2 (10−8–10−3 M) for 1–5 days
VK2 (10−5, 10−6 and 10−7 M) for

24 h on days 1, 3, 5 and 7

VK2 promoted osteoblast differentiation
and mineralization, induced autophagy

in osteoblasts

[28]
The human cell lines HOS,
MG-63, Saos-2, LS180, and

HeLa
VK2

VK2 activates SXR and induces
expression of the SXR target gene; VK2

treatment of osteosarcoma cells increased
mRNA levels of OB: ALP, OPG, OPN,

and MGP

[85]
Bone marrow cells were

isolated from male Wistar rats
(3 weeks old)

MK-7 (10−8–10−5 M)

MK-7 can inhibit osteoclastic bone
resorption; MK-7 has an inhibitory effect

on the bone-resorbing factors-induced
decrease in bone calcium content

Vitamin D

[78]
Bone marrow cells from the
femur from elderly patients

with type II osteoporosis

10 nM 1,25D and 0.5, 1.0, 2.5, 10
µM MK-4 or VK1

MK-4 and VK1 inhibited 1,25D-induced
osteoclast formation and promoted the

differentiation of bone marrow cells;
MK-4 and VK1 decreased the RANKL

and enhanced OPG

[86]
iliac crest bone biopsy

samples from 11 paediatric
dialysis patients

8 months of doxercalciferol
therapy (an average of 19.3 ± 3.8
mcg of doxercalciferol per week)

1,25D increases the maturation of OBs
lineage cells, stimulates osteocyte

apoptosis and increases RANKL/OPG
expression, increases the number of

osteocytes

[87] hMSCs from 53 subjects
scheduled for hip arthroplasty 10 nM 1,25D

1,25D stimulated the differentiation of
hMSCs to OBs; greater stimulation of
in vitro osteoblast differentiation by

1,25D in hMSCs from younger subjects,
and who had serum 25D ≤ 20 ng/mL

[88]
Primary OB cells, with a

pre-osteoblastic phenotype
from healthy male donors

1,25D (10−8 M)
1,25D increased differentiation,

mineralization and survival of osteoblasts

[89]
Monocytes from blood of
healthy adult volunteer

donors
VD (25D-100 nM and 1,25D-5 nM) 1,25D inhibits osteoclastogenesis
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Table 1. Cont.

Reference Model Dose Results

[90] The tibia from 4-week-old
littermate C57BL/6J mice

1,25D can directly (in absence of RANKL)
suppress OC precursor autophagy, which
negatively regulates the proliferation of

these cells; 1,25D can indirectly
upregulate the autophagy response of
OC precursors, thereby enhancing OC
formation in the presence of RANKL

Vitamin D and Vitamin K

[83]

Primary osteoblasts harvested
from the iliac crests of

C57BL/KsJ lean (+/+) and
obese/diabetic (db/db) mice

VK2 (10 nM) and 1,25D (10 nM)
alone and in combination

The combined use of VK2 and 1,25D
enhanced calcium deposits formation in

OBs and increased the levels of bone
anabolic markers and bone formation

transcription factors

Abbreviations: VK2, vitamin K2; HOS, human osteosarcoma cell line; SXR, steroid and xenobiotic receptor; OB, osteoblast; ALP, alkaline
phosphatase; OPG, osteoprotegerin; OPN, osteopontin; MGP, matrix Gla protein; MK-7, menaquinone-7; VK1, vitamin K1; 1,25D, 25-
dihydroxyvitamin D; RANKL, Receptor Activator for Nuclear Factor κ B Ligand; hMSCs, human bone marrow stromal cells; 25D,
25-hydroxyvitamin D; VD, vitamin D; OC, osteocalcin.

3.2. Vitamin D and Bone Remodeling—In Vitro Studies
3.2.1. Impact of 1,25D on Osteoblast Function

In the available literature, there are few data on the in vitro effect of 1,25D on OBs
from patients with CKD. Table 1 summarizes the main pre-clinical studies regarding VD.
The first report by Zhou et al. [91] showed that different forms of VD, 25D and 1,25D,
can stimulate in vitro OBs differentiation of marrow stromal cells from healthy controls
and CKD subjects. Several years later, it was shown that primary OBs derived from
CKD patients display a maturation defect in vitro [92]. A recent study of this team [86]
documented that 1,25D markedly stimulated the expression of FGF-23, and the mature
OB marker, BGLAP, in primary OBs derived from CKD patients. However, recombinant
human FGF-23 countered VD-stimulated OBs differentiation of human bone marrow
stromal cells (hMSCs) by reducing VDR and CYP27B1 expression as well as inhibiting
1,25D biosynthesis and signaling through bone morphogenic protein-7 (BMP-7) [93]. 1,25D
in very high concentration (100 nM), which far exceeds the concentrations achieved in
dialysis patients receiving high doses of calcitriol, improved in vitro OBs mineralization.
On the other hand, VD stimulated the expression of the osteoclast differentiation factor,
RANKL, in primary CKD OBs, and especially its high doses (10 nM and 100 nM) increased
the ratio of RANKL/OPG expression. In contrast, VD sterols had no effect on the expression
of the early osteoblastic marker, Runt-related transcription factor 2 (RUNX2), and they had
very little effect on ALP expression in CKD cultures. These data suggest that 1,25D may
play an important role in OBs maturation by regulating osteoclast–osteoblast coupling in
the bone of CKD patients [86].

Over the course of the last decades, 1,25D has been studied extensively for its
pleiotropic actions promoting bone remodeling in the general population, and numerous
in vitro studies have implicated 1,25D in the regulation of both osteoblastic and osteo-
clastic activity [94,95]. Both OBs and OCs express VDR [96,97], which allows 1,25D to
directly affect their biological activity. Moreover, both OBs and OCs can locally synthesize
the active form of 1,25D as they express CYP27B1 [96,98]. However, data obtained from
in vitro studies are very heterogenic with regard to the differentiation stage of the cells
(mesenchymal stem cells vs. primary OBs vs cell line), time points of treatment (2–72 h
after treatment), OB origin (human/rat vs. murine), and the 1,25D concentration that was
used (1–100 nM) [99,100]. This makes it difficult to compare the different studies and to
draw final conclusions. Herein, we focused on the in vitro impact of VD on human OBs
(hOBs), hMSCs, and human OCs (hOCs).
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3.2.2. Effect of 1,25D on hOBs and hMSCs

1,25D has been shown to stimulate bone formation and mineralization in all studies
using hOBs, and it induced osteogenic differentiation from hMSCs. Ten nM of 1,25D
stimulated the differentiation of hMSCs to OBs, and osteoblastogenesis was stimulated
to a greater degree by 1,25D in hMSCs that were obtained from subjects with inadequate
or deficient 25D levels than the people who were VD sufficient [87]. hMSCs, similar to
hOBs and hOCs, express VDR and possess the molecular machinery for VD synthesis
and metabolism, which makes them a producer and target of 1,25D [101]. Moreover,
OBs express the VDBP receptors cubilin and megalin to uptake 25D [102]. In cultured
primary hOBs, active VD increased the survival, differentiation, and function of these cells.
Mechanisms explaining this effect include increased osteoblastogenesis [99] and inhibition
of apoptosis [103,104], leading to the formation of bone nodules and bone mineralization.
1,25D has anti-apoptotic effects on primary OBs and osteoblastic cell lines by inhibiting
Fas ligand-induced apoptosis and regulating components of both the Fas-related and
mitochondrial apoptosis pathways [88,103]. The carefully regulated OB apoptosis plays a
crucial role in healthy bone remodeling; if this process is excessive, osteocyte differentiation,
bone deposition, and mineralization will all be reduced as well [105].

1,25D has been shown to increase RUNX2, small mother against decapentaplegic
(SMAD) 1–3,5, osterix (OSX), ALP, and BGLAP expression in hOBs [86,88,106,107]. The
other genes involved in OB proliferation and differentiation, whose expression has been
shown to be increased by 1,25D, are bone morphogenetic protein-2 (BMP-2) [108] and
insulin-like growth factor-binding proteins (IGFBPs): 2–4 [87,109].

The Wingless-type, Wnt-β-catenin pathway is an important regulator of OBs differ-
entiation and function. Cytosolic β-catenin is translocated into the nucleus to stimulate
osteoblastogenic gene transcription. The levels of β-catenin expression represent the
functional status of the Wnt/β-catenin signaling pathway in OBs [110]. The impact of
1,25D on Wnt-β-catenin signaling in OBs was well recognized an in vitro study, where
1,25D stimulated Wnt signaling, increased β-catenin protein expression, or induced the
Dickkopf-related protein 1 (DKK1) expression, leading to the intensification of calcified
nodule formation in mineralized OBs [88,111,112].

Autophagy was recently recognized as an important regulator of OB survival and
function. During autophagy, the toxic cytoplasmic components are removed, while nu-
trients are recycled to maintain cell functions and to protect against apoptosis. Impaired
autophagy causes cellular dysfunction and cell death. Therefore, modulating the functional
autophagy in bone cells is of therapeutic interest [113,114]. Recently, Al Saedi et al. [88]
demonstrated that 1,25D may improve OB viability and function through the stimulation
of functional autophagy. An additional benefit of 1,25D on the functioning of these cells
could be through its effects on mitochondrial mass [88].

Vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic
factors involved in the regulation of new bone blood vessel formation. Human osteoblastic
cells produce VEGF, and receptors for VEGF have been identified on these cells, allowing
VEGF to directly regulate survival, chemotactic migration, and OB activity [115]. 1,25D
treatment increased VEGF gene expression and protein levels in primary hOBs, indicating
that this hormone can exert its anabolic effects on bone by inducing angiogenesis [116,117].

In vitro experiments with primary bone cells isolated from humans demonstrate that
treatment with 1,25D inhibited OB proliferation and enhanced OB maturation and mineral
deposition. The expression of many genes key to OB maturation and mineral deposition
are modulated by 1,25D, as has been above described [86,88]. The activation of VDR by
1,25D can exert a catabolic effect on bone mineralization to ensure serum calcium home-
ostasis, or it may act as a mineralization enhancer through stimulating OB maturation
and the expression of genes associated with mineralization. It has been proposed that
the stage of OB differentiation is one of the possible factors determining which of these
two effects predominates. The phenotypically immature OBs precursors respond to 1,25D
through the stimulation of RANKL expression, whereas mature OBs predominately re-
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spond through the stimulation of OC expression [118]. However, a later study by Woeckel
et al. [119] demonstrated that 1,25D enhanced mineralization by the effects on hOBs in the
pre-mineralization phase; it is involved in the appropriate preparation of the extracellular
matrix (ECM) for mineralization. 1,25D stimulates the expression of the OB differentiation
marker, ALP, and other ECM proteins, such as collagen type I (COL1A1). ALP-positive
matrix vesicle production was significantly increased by 1,25D in this period of OB dif-
ferentiation, and they can translocate ALP to the ECM, where ALP was incorporated to
initiate mineralization [119].

In addition to the stimulation of bone formation and mineralization, 1,25D has a certain
protective potential to avoid pathological over-mineralization. It may induce activin A and
osteopontin (SPP1) gene expression—the recognized inhibitors of mineralization [120,121].
Moreover, a stimulator of mineralization, bone integrin-binding sialoprotein (IBSP), is
inhibited by 1,25D [122].

3.2.3. Effect of 1,25D on hOCs and Human Peripheral Blood Mononuclear Cells (hPBMCs)

Current evidence suggests that endogenous 1,25D synthesis and the response to this
vitamin in human bone is linked with coordinated functions in both the osteoclastic and
osteoblastic cells, controlling bone remodeling [123,124].

The stimulation of osteoclastogenesis by 1,25D via the OB is one of better established
effects of this vitamin on OC activation. With respect to gene regulation in OBs, the 1,25D–
VDR complex induces the expression of RANKL that activates RANK on OCs and their
hematopoietic precursors, stimulating bone resorption through osteoclastogenesis. OPG,
the soluble decoy receptor for RANKL, is repressed by 1,25D in OBs, so that the biological
effect of RANKL is reinforced [124,125]. The cell-to-cell contact in combination with
macrophage colony-stimulating factor (m-CSF) induces the differentiation of precursors to
OCs and promotes their activity. These data indicate that OBs are the key cell responding
to 1,25D with respect to OC formation [126].

In vitro studies on the effect of 1,25D on osteoclastogenesis and hOC function are
conflicting, showing both stimulatory as well as inhibitory effects of this vitamin on
OC differentiation and resorptive activity [89,90,96,126–137]. In 1992, Suda et al. [128]
suggested that 1,25D promotes bone resorption by increasing the number and activity of
osteoclasts. These effects may be direct, if the osteoclast contains the VDR and CYP27B1,
and 25D promotes their differentiation in the presence of macrophage colony-stimulating
factor (m-CSF) and RANKL. Kogawa et al. [129] showed that OC formation from hPBMCs
in the presence of physiological concentrations of 25D resulted in significant up-regulation
of the key OC transcription factor, nuclear factor of activated T cells-c1 (NFATC1), and a
number of key osteoclast marker genes. An interesting observation of this study was that
the OCs generated in the presence of 1,25D, although more numerous, exhibit reduced
resorptive activity on hydroxyapatite-coated slides when compared to OCs that matured
simply in the presence of RANKL and m-CSF [129].

The study of Zarei et al. [96] showed that the treatment of hOCs with 1,25D signifi-
cantly suppressed the expression of osteoclast fusion markers NFATC1 and transmembrane
7 superfamily member 4 (TM7SF4), reduced OC size, but increased OC number and re-
sorptive activity. An increase in osteoclast resorption was due to less fusion, resulting
in more small OCs in 1,25D-treated samples, as a few larger multinucleated OCs were
observed in the control samples. Sakai et al. [130] also demonstrated that 1,25D treatment
significantly inhibited the expression of NFATC1 in hOCs by upregulating the expression of
interferon-beta, which is a strong inhibitor of osteoclastogenesis. However, the suppression
of NFATC1 resulted in significantly inhibited hOC formation, which is opposite to the
finding of Zarei et al. [96]. A similar effect of 1,25D treatment on mature multinucleated
osteoclasts obtained from human monocytes was observed by Allard et al. [89], who
demonstrated that 1,25D significantly inhibited osteoclastogenesis at early stages but had
no effect on osteoclast-mediated bone resorption activity. Kudo et al. [131] also noticed that
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1,25D did not stimulate resorptive activity of hOCs formed from cultures of hPBMCs. They
suggested that it was more likely that 1,25D could influence OC activity indirectly.

Kim et al. [132] examined the direct effects of 1,25D on the osteoclastogenesis of
human peripheral blood osteoclast precursors. They showed that 1,25D suppressed the
expression of RANK in the hOC precursor and strongly inhibited OC differentiation. The
mechanism responsible for the inhibition of RANK by this vitamin was a down-regulation
of the c-Fms, the receptor of m-CSF, which is required for RANK expression. In line with
the above observation, the treatment of PBMCs from healthy donors with 1,25D dose-
dependently suppressed osteoclastogenesis in vitro, as has been shown by the reduced
number of TRAP-positive OCs [133].

Wnt ligand 10b (Wnt-10b) is a key pathway for bone formation through increases in
the number of OBs and the rate of mineral apposition [134]. A recent study by Lu et al. [135]
demonstrated that in primary cell cultures of OCs, calcitriol increased Wnt-10b expression,
but in parallel, it reduced the OCs fusion ability, the number of TRAP-positive OCs, as
well as their bone-resorbing activity. This finding is compatible with higher Wnt-10b levels
and lower TRAP-5b activity in HD patients receiving calcitriol compared with patients not
taking this vitamin [135]. Although both hOBs and hOCs may be the source of Wnt-10b,
the therapeutic dose of calcitriol enhanced Wnt-10b secretion only from OCs in this study.
Taken together, the bone anabolic effect of a therapeutic dose calcitriol can promote OB
function and it can inhibit OC maturation and resorbing capacity both in OC cultures
in vitro and in hemodialyzed patients in vivo [135].

Autophagy has been reported to increase the number and function of OCs [135,137].
The recent study by Ji et al. [90] proved that 1,25D may be a strong regulator of autophagy
in OCs, and it had a dual effect on osteoclastogenesis this way. 1,25D can directly (without
RANKL) suppress OC precursor autophagy, which negatively regulates the proliferation
of these cells. However, 1,25D can indirectly upregulate the autophagy response of OC
precursors, thereby enhancing OC formation in the presence of RANKL.

Taken together, the in vitro studies revealed that 1,25D may function to optimize
osteoclastogenesis, but on the other hand, it can mitigate hyperactive osteoclastic resorptive
activity. The main effects of VK and VD on bone cells derived from in vitro studies are
summarized in Figure 4.
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Figure 4. Impact of vitamin K and vitamin D on bone remodeling—evidence derived from in vitro
studies. Abbreviations: OBs, osteoblasts; ALP, alkaline phosphatase; OPN, osteopontin; OPG, osteo-
protegerin; MGP, matrix Gla proteins; BGLAP, bone-Gla-protein; FGF-23, fibroblast growth factor 23;
RUNX2, Runt-related transcription factor 2; OSX, osterix; NF-κB, nuclear factor kappa-light-chain-
enhancer of activated B cells; OCs, osteoclasts; ↑, increase; ↓, decrease.

4. Vitamin K and Vitamin D in Bone Remodeling—In Vivo Studies
4.1. Vitamin K and Bone Remodeling—In Vivo Animal Models

According to our best knowledge, there is only one report examining the influence of
VK2 on cortical bone mass and bone strength in rats with renal insufficiency. This study
demonstrated that the administration of VK2 increased cortical bone strength without
changing bone mineral density (BMD) in nephrectomized rats [138], suggesting that VK
could affect bone integrity without altering BMD.

However, several animal models of osteoporosis have been used to study the effects
of VK on bone metabolism. Table 2 reports the main in vivo studies with VK and its
association with bone remodeling. The treatment of ovariectomized [139,140], unilaterally
sciatic neurectomized [38], and tail suspended rats [141] with VK found positive effects on
bone health. Histologic and microcomputed tomographic evaluations demonstrated that
VK2 supplementation inhibited the loss of bone mass as well as improved OB function and
bone architecture. Kim et al. [142] observed that VK administration in high-fat diet mice
resulted in an increase in bone formation and a reduction in bone resorption. Some animal
studies investigated the effect of the coadministration of VK2 and other bone acting drugs
on osteoporosis. The coadministration of VK2 and Teriparatide improved OB function and
increased Gla-OC serum levels [140]. The effect of the combined use of VK2 and bisphos-
phonate showed that VK2 could ameliorate the suppressive effect of bisphosphonates on
bone turnover and increase bone volume as well as the bone formation parameters [143].
Combining VK2 with VD3 showed an additional protective effect on osteoporosis versus
VK2 treatment alone [144]. In addition, the combined effect of VK and antiresorptive
drugs on bone mechanical strength were assessed, providing contrasting results. Otomo
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et al. [145] did not observe any effects of K2 supplementation with Risendronate on bone
quality, while Matsumoto et al. [146] showed that MK-4 treatment enhanced the positive
effect of Risendronate on bone strength. These observations suggest that the combined
administration of VK with other osteoprotective drugs may exert a more promising effect
on bone health than VK alone.

Table 2. Vitamin K and vitamin D in bone remodeling—in vivo studies.

Reference Model Dose Results

Vitamin K

[138]

n = 30, male Sprague–Dawley rats;
assigned to three groups: sham operation

(control), 5/6 nephrectomy and 5/6
nephrectomy + oral VK2

VK2 (menaquinone-4,
menatetrenone):

30 mg/kg, 5 days/week

The administration of VK2
increased cortical bone strength
without changing bone mineral
density (BMD) and improved

renal function.

[140]

n = 25, OVX female Sprague–Dawley rats
assigned to five groups: the sham,

ovariectomy (OVX), VK, TPTD and
VK + TPTD

VK (menaquinone-4):
30 mg/kg/day TPTD:

30 µg/kg, 3 times/week

The coadministration of VK2 and
TPTD improved OB function and

the OB surface, and increased
Gla-OC serum levels, improved
the BMD and bone strength of

the femur.

[142]

n = 42, male C57BL/6J mice divided into
six groups: normal diet, normal diet +
VK1, normal diet + VK2, 45% high-fat
diet, 45% high-fat diet + VK1, a 45%

high-fat diet + VK2

VK1 and VK2:
200 mg/1000 g

VK administration in high-fat diet
mice resulted in an increase in

bone formation and a reduction in
bone resorption.

[143]

n = 30, male Sprague–Dawley rats
assigned to five groups: nonsuspended

group, tail-suspended group with vehicle
alone, tail-suspended group with VK2,

tail suspended group with
bisphosphonate, tail-suspended group
with combination of bisphosphonate

and VK2

Bisphosphonate (incadronate):
0.1 mgP/kg body weight

VK2: 24 mg/kg body
weight/day

The effect of combined use of VK2
and bisphosphonate showed

increased bone volume without
supressing bone turnover.

[146]

n = 59, female ICR mice after
sham-operated or ovariectomized; OVX

divided into six groups: treated with
risedronate (R), MK-4 (K), R+K, either the
treatment was withdrawn or switched to

K or R in the case of R and K

Risedronate: 0.25 mg/kg/day
VK2: 100 µg MK-4/kg/day

Prior 8-week treatment with
MK-4 followed by the 8-week

risedronate significantly increased
femur strength.

Vitamin D

[147]

n = 45, rats assigned to sham-operation or
5/6 nephrectomy surgery (NTX): divided
into two groups: the untreated NTX and

NTX + paricalcitol.

1500 IU/kg VD; for the
12-week:

paricalcitol:100 ng/rat, 3 times
per week

Paricalcitol efficiently
ameliorates advanced renal
insufficiency induced loss of

mineral and mechanical
competence of rat bones,

prevented the renal impairment
associated decrease in vBMD at

the femoral neck and cBMD at the
femoral midshaft, and restored

bone strength at the femoral neck

[148]

n = 49, female Sprague–Dawley rats after
7/8 nephrectomy and CKD + OVX group;
CKD + OVX were divided into 6 groups:

placebo, E2 (10 µg/kg/day), E2
(30 µg/kg/day), calcitriol (10

ng/kg/day), E2 (10 µg/kg/day) +
calcitriol, E2 (30 µg/kg/day) + calcitriol

Calcitriol:10 ng/kg BW, 5
times per week for 8 weeks

Calcitriol reduces bone loss but
also improves trabecular

connectivity; combined treatment
with E2-30 + calcitriol was capable

of achieving normal trabecular
bone volume, trabecular

remodeling, and connectivity
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Table 2. Cont.

Reference Model Dose Results

[149]
n = 36, 5/6 nephrectomized male Wistar

rats divided into groups: control,
Nx-Int D, Nx-Daily D, Ns-Phos

Calcium: 1.2%, phosphate:
1.2%,

VD: 0.5 µg/kg 3 times per
week

Calcitriol enhanced chondrocyte
maturation and restoration of the

growth plate architecture;
calcitriol increased PTH/PTHrP

receptor and d markers of
chondrocyte differentiation; daily

and intermittent calcitriol had
similar effects on endochondral

bone growth in
phosphorus-loaded rats with

renal failure

Vitamin K and Vitamin D

[144]

n = 60, female Sprague–Dawley rats after
OVX or sham operation; OVX rats were

classified into three groups: a VK alone, a
VD alone, and combination of VK

and VD

VK (menaquinone):
48 mg/100 g diet

VD: 0.16 mg/ 100 g diet

VK and VD
may have a synergistic effect on

reducing bone loss

Abbreviations: VK2, vitamin K2; BMD, bone mineral density; OVX, ovariectomy; TPTD, teriparatide; Gla-OC, γ-carboxylated osteocalcin;
VK1, vitamin K1; NTX, 5/6 nephrectomy surgery; vBMD, volumetric bone mineral density; cBMD, cortical bone mineral density; CKD,
chronic kidney disease; E2, 17β-estradiol; BW, body weight; Nx, nephrectomized animals; VD, vitamin D; PTH, parathyroid hormone;
PTHrP, parathyroid hormone-related protein.

In general, evidence from in vitro and animal studies supported the role of VK2 in
bone health, suggesting a potential benefit for its use in patients with osteoporosis.

4.2. Vitamin D and Bone Remodeling—In Vivo CKD Animal Models

Despite widespread clinical use, there are limited studies on animal models of CKD
that examine the bone tissue material and structural properties after VD (or its analogs)
treatment, and the obtained results are inconclusive. Table 2 shows the main in vivo studies
with VD and bone remodeling. One of the first studies, performed on female dogs with a
5/6 nephrectomy showed that the oral administration of 20 µg of 25D, three times a week,
prevented secondary hyperparathyroidism and morphologic abnormalities associated with
renal osteodystrophy during a two-year observation period [150]. Jablonski et al. [151] also
demonstrated that rats that underwent a 5/6 nephrectomy, treated three times a week for
3 months with 0.17 µg/100 g body weight (BW) of calcitriol, exhibited higher trabecular
volume, lower eroded surface and osteoid surface compared to untreated animals. A cross-
sectional analysis showed that with 1,25D treatment, the inner femoral shaft diameter,
femoral widths, bone stiffness, and time to fracture were normalized [151].

In the study by Jokihaara et al. [147], 5/6 nephrectomized rats obtained paricalcitol at
a dose of 100 ng/rat, 3 times per week for 12 weeks. The femoral neck BMD and mechanical
properties were higher than in untreated CKD animals, while no beneficial effects were
observed in BMD or mechanical properties at the femoral diaphysis. The treatment of
female rats subjected to a 7/8 nephrectomy with calcitriol at a dose of 10 ng/kg BW, 5 times
per week for 8 weeks, proved to have a positive effect on bone microarchitecture, achieving
normal trabecular connectivity [148]. Lu et al. [135] explored the effects of calcitriol on bone
microarchitectures in CKD mice, using the 5/6 nephrectomy model, which were treated
orally with 25 or 150 IU/kg/day of calcitriol. The bone volume fraction increased in mice
treated one month with a higher dose of 1,25D; however, trabecular thickness was not
significantly different in any group. The average cortical thickness was higher, whereas
cortical porosity was lower in CKD animals treated with 150 IU/kg/day of calcitriol than in
untreated CKD mice. Although there was no change in femoral BMD between the studied
groups, the authors concluded that calcitriol, especially in the higher dose, can promote
the growth of both trabecular and cortical bone in CKD.
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The effect of daily or intermittent calcitriol administration in enhancing bone growth
in CKD was studied by Sanchez et al. [149]. The animals were treated daily or thrice
weekly with calcitriol for 4 weeks, but the total weekly dose of calcitriol was the same
(350 ng/kg/week). Although calcitriol increased the serum calcium, it did not lower PTH or
improve tibia and body length. However, calcitriol was effective in enhancing chondrocyte
maturation and restoration of the growth plate architecture. Moreover, RANKL levels were
improved with calcitriol treatment without changes in OPG, suggesting an enhancement
of chondroclastogenesis and mineralization.

Newman et al. [152] used a rat model of progressive CKD (Cy/+), which is charac-
terized by autosomal dominant cystic disease. Starting at 25 weeks of age, Cy/+ male
rats were treated with 10 ng/kg BW of calcitriol, intraperitoneally, 3× weekly for 5 weeks.
Apart from a significant suppression of PTH levels in animals with CKD, 1,25D had no
impact on cortical or cancellous bone volume, bone turnover, OC number, or whole bone
mechanical properties.

In contrast to the above data, some studies reported that 1,25D therapy can lead to
bone turnover alteration and a reduction of cortical thickness in CKD rats. Male subtotally
nephrectomized Sprague–Dawley rats were treated with 0.25 µg/kg/day of calcitriol start-
ing 2 weeks after subtotal nephrectomy and continued for the next 14 weeks. In rats treated
with 1,25D, a dramatically increased bone formation rate, an irregular osteoid deposition,
and chaotic mineralization were observed. The dynamic bone histomorphometric parame-
ters could not be measured in these animals due to the chaotic tetracycline incorporation.
An excessive amount of osteoid, in combination with reduced bone resorption, led to a high
bone area, which was improperly mineralized in rats treated with 1,25D. Moreover, kidney
function was significantly more impaired, whereas aortic calcification was increased in rats
treated with calcitriol compared to the CKD group [153].

Bisson et al. [154] treated rats with a 5/6 nephrectomy with 0.5 µg/kg BW of 1,25D,
3 times per week for 6 weeks using a high calcium and phosphate diet. Healthy rats on
a standard diet, healthy rats with 1,25D on a high calcium and phosphate diet, as well
as 5/6 nephrectomized rats on a standard diet were also included in this study. Cortical
bone volume and area were significantly reduced in both CKD groups as compared to
healthy controls; however, cortical bone thickness, the inner and outer cortical perimeter,
and cortical bone mineral content were the most reduced in CKD rats treated with 1,25D on
a high calcium and phosphate diet as compared to the other groups. The trabecular bone
volume, trabecular thickness, trabecular number, osteoid volume, and osteoid thickness
were significantly increased in these animals. Dynamic bone parameter analysis revealed
a lower mineralization surface, bone formation rate, mineral apposition rate, and OC
number in CKD treated with 1,25D on a high calcium and phosphate diet compared
to the other groups. This study indicated that despite low PTH levels, treatment with
calcitriol combined with a high calcium and phosphate diet induced low bone turnover
and mineralization defects, which is likely explained by the high calcitriol dose [154].

Summarizing, the recently performed studies showed that the treatment of CKD
animals with 1,25D may not improve bone quality [152], or even can be associated with
mineralization defects [153,154]. These observations are consistent with the results of
studies performed on non-CKD animals [155–157], which reported that treatment with
calcitriol led to growth plate defects, an accumulation of osteoid and prolongation of
mineralization lag time, reduction of cortical thickness, and suppression of bone matrix
mineralization. Interestingly, VDR−/−, 1α-hydroxylase −/−, or double mutant mice on
a rescue diet showed reduced bone formation, which is corrected by 1,25D, indicating a
physiological anabolic role for the endogenous VD mediated by VDR in vivo [158,159].
Thus, it is possible that pharmacological, but not physiological, doses of 1,25D markedly
increase RANKL expression by OBs, stimulating cortical osteoclastogenesis and bone
resorption [94].

Such divergent data obtained during the treatment of renal osteodystrophy with
1,25D may result from the use of different animal species, doses, and treatment regimens,
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a differential degree of PTH reduction, and possibly distinct effects of this vitamin in
different skeletal sites. Nevertheless, data obtained from animal models indicated that
1,25D may have a direct effect on bone, independent of its effect on PTH suppression.

5. Vitamin K, Vitamin D, and Bone Health in Patients with CKD—Clinical Evidence
5.1. The Impact of Vitamin K on Bone Health in Patients with CKD

Studies regarding the association between poor VK status and bone metabolism, BMD,
and the risk of fracture in CKD patients are limited. The main results obtained using
VK supplementation and its association with bone health are summarized in Table 3. A
small but growing number of recent studies have consistently suggested that there is an
association between poor VK status in CKD patients and bone health [40,160–163].

Table 3. Vitamin K, vitamin D, and bone health in patients with CKD—clinical evidence.

Reference Population Outcome Measure Main Findings

Vitamin K

[162]
n = 468, Adult patients with

ESRD referred for single
kidney transplant

VK, BMD, parameters of
mineral metabolism

Poor vitamin K status is highly prevalent
among patients with ESRD and associates

with inflammation and low aBMD

[163] n = 20, patients with chronic
glomerulonephritis

VK, markers of bone
metabolism MK-4 supplementation suppressed bone loss

[37] n = 141, patients with CKD
stages 1–4 PIVKA-II

Subclinical VK deficiency is detectable at just
the point in terms of loss of renal function

with VC

[160] n = 68, HD patients VK1, OC, ucOC, iPTH

Suboptimal VK nutriture in HD patients is
associated both with increased bone fracture

risk and with a high prevalence of
hyperparathyroidism

Vitamin D

[164] n = 104, HD patients VD, transiliac bone biopsy,
ALP, iPTH

PTH serum levels are equally elevated in low
and high 25D patients;

calcitriol levels are constantly low;
25D deficiency resulted in mineralization

and bone formation defect;
the optimal level of 25D appears to be in the

order of 20 to 40 ng/mL

[165] n = 144, HD patients VD, iPTH, bone densitometry

Increased bone fragility in HD patients is
associated with VD deficiency and relative
hypoparathyroidism in addition to reduced

BMD at the radius

[166] n = 610, elderly women VD, BMD

Combined calcium and vitamin D3
supplementation was effective in reducing

the rate of BMD loss in women with
moderate CKD

[167] n = 120, patients with stages
1–4 CKD VD, BMD, OC, NTx, FGF-23

Daily (2000 IU/d) and monthly (40,000
IU/month) VD supplementation for six

months in adults with DM and CKD was
safe, and it resulted in equivalent adherence
and improvements in overall VD status, but

only modest changes in markers of
bone health

[168] n = 47, CKD patients in stage 3
and 4 PTH, calcium, creatinine, VD

No statistically significant difference between
the two treatments: cholecalciferol (4000

IU/d × 1 month, then 2000 IU/d) to
doxercalciferol (1 µg/d) in lowering PTH
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Table 3. Cont.

Reference Population Outcome Measure Main Findings

Vitamin K and Vitamin D

[3] n = 172, patients with stage 3
to 5 CKD VK, VD, ucOC

Proteinuria was associated with both a
suboptimal VD status as well as worse

peripheral VK status;
high serum ucOC levels were positively

associated with phosphate and PTH, and
inversely with 25D levels

Abbreviations: ESRD, end-stage renal disease; VK, vitamin K; BMD, bone mineral density; aBMD, areal bone mineral density; MK-4,
menaquinone-4; CKD, chronic kidney disease, PIVKA-II, protein induced by VK absence/antagonism II; VC, vascular calcification;
HD, hemodialysis; VK1, vitamin K1; OC, osteocalcin; ucOC, uncarboxylated osteocalcin; iPTH, intact parathyroid hormone; ALP,
alkaline phosphatase; 25D, 25-hydroxyvitamin D; NTx, N-terminal telopeptide; FGF-23, fibroblast growth factor 23; VD, vitamin D; DM,
diabetes mellitus.

Kohlmeier et al. [160] were the first to demonstrate an independent association be-
tween poor VK1 status and risk of bone fracture in HD patients. In the VIKI study, total OC
and ucOC levels were higher in patients with CKD than in healthy controls, and over 50%
of HD patents had vertebral fractures. Additionally, in this observational study, VK1 defi-
ciency was the strongest independent predictor for vertebral fractures in these patients [56].
In another study by Fusaro et al. [161], HD patients treated with warfarin (an antagonist
of VK) had an increased risk of vertebral fractures compared to those without warfarin
treatment. These studies suggest that the VK axis is important in preserving bone mass.
Evenepoel et al. [162] observed an independent association between VK status and bone
health. Data from this study showed that the high dp-ucMGP levels were independently
correlated with low BMD and incident of fractures, whereas no associations were observed
between VK status and bone turnover markers in patients with end-stage renal disease
(ESRD). Additionally, poor VK status at the time of renal transplantation can be considered
as a risk factor for incident fractures.

Studies on the effect of clinical VK supplementation on BMD are also scarce. Sasaki
at al. [163] showed that MK-4 supplementation for a year in steroid-treated patients with
glomerulonephritis prevented steroid-induced bone loss. The patients on hemodialysis sup-
plemented with MK-7 showed a decrease in dp-ucMGP, ucOC, and PIVKA-II, implicating
that MK-7 improves VK status in the liver, bone, and vasculature [30,169,170].

To date, very little is known about the VK insufficiency and bone remodeling in CKD.
Holden et al. [3] performed a study on patients with stage 3–5 CKD and found that high
serum ucOC levels were positively associated with phosphate and PTH, whereas it was
inversely associated with 25D levels, suggesting a relationship with bone remodeling [9].
Moreover, 6%, 60%, and more than 90% of patients in this study met the criteria for
subclinical VK insufficiency, regarding VK1, ucOC, and PIVKA-II levels, respectively.
Voong et al. [37] showed that subclinical VK deficiency is common in patients on dialysis,
but it is also more frequent with worsening renal function in those CKD patients not yet
on dialysis.

So far, VK supplementation and bone fractures in CKD patients have not been studied
in a controlled, randomized clinical trial. Currently, there is one randomized controlled
double-blind trial, RenaKvit, being performed in Denmark to address the effect on VK2
(MK7) on cardiovascular and bone disease in CKD patients. This study is evaluating
the impact of VK2 supplementation on arterial stiffness and bone mineral density in
HD patients. The RenaKvit trial is evaluating the impact of 360 µg of VK2 during a
period of 2 × 12 months [171]. Increasing evidence that VK is also involved in vascular
health is supported by controlled, randomized trials [14,172,173]. Oikonomaki et al. [174]
investigated 1-year supplementation of 200 µg of VK (VK2/MK-7) in the prevention of VC
progression among HD patients and found reduced serum uc-MPG levels, but they did not
observe significant effects on the regression of VC. There are still ongoing trials evaluating
the influence of oral VK supplementation on VC in HD patients—with 5 mg VK1 [172]



Nutrients 2021, 13, 809 19 of 34

and 360 mcg VK2, 3 times weekly for 18 months. Other trials that are in process include
Vitamin K supplementation in patients on hemodialysis (VISTA) in phase 2, with 400 mcg
of VK1 three times a week, on dialysis days for four months [175]; Evaluation of Vitamin
K Supplementation for Calcific Uremic Arteriolopathy (VitK-CUA) with administration
of 10 mg of VK1 three times a week after dialysis for 12 weeks [176]; Comparative Study
Evaluating the Effect of Vitamin K1 Versus Vitamin K2 on Vascular Calcification in Dialysis
Patients in phase 2, with 10 mg of VK1 thrice a week for 3 months and phase 3 with 90 µg
per day of VK2 [177].

5.2. Impact of Vitamin D on Bone Health in Patients with CKD

Together with the declining kidney function, many abnormalities concerning 1,25D,
FGF-23, and PTH levels were observed. A disruption of the delicate balance between 1,25D,
calcium, phosphorus, and PTH lead to secondary hyperparathyroidism and increased
risk of bone disease. Several studies showed an inverse association between VD defi-
ciency/insufficiency and PTH levels [178–182]. Metzger et al. [182] observed that serum
PTH levels rise steeply when 25D values fall below 8 ng/mL; on the contrary, a mild
decrease in this hormone concentration was seen when 25D levels exceeded 20 ng/mL.
These observations are in line with other studies [183–185], suggesting that PTH increases
significantly when 25D levels in CKD patients are below 30 ng/mL. Some authors noticed
that VD deficiency was associated with lower values of serum calcium [179,186], which
may be an additional cause of secondary hyperparathyroidism.

Studies showing an association between VD and BMD or bone fractures in the CKD
population are limited. A summary of the key findings is presented in Table 3. A retro-
spective study conducted by Coen et al. [164] demonstrated that patients with low 25D
levels (<15 ng/mL) had a lower bone formation rate and trabecular mineralization sur-
face. Another retrospective study [165] showed that HD patients with fractures had a
significantly lower VD concentration in comparison to patients without fractures, and
low VD levels were associated with reduced BMD. Additionally, low levels of VD were
independently related to increased fracture risk. Other studies showed that patients with
lower 25D levels had increased subperiosteal resorption, reduced BMD, and increased
skeletal fractures [187–189]. Interestingly, ESRD patients showed radiologic features of
secondary hyperparathyroidism [188]. In line with these results is the Korean National
Health and Nutrition Examination Survey [190], which reported that the BMD of CKD
patients was lower in those with serum 25D < 50 nmol/L than in patients within serum
25D > 50 nmol/L. On the contrary, Brunerová et al. [191] did not demonstrate significant
differences in trabecular bone and T-scores in HD patients with regard to their 25D levels.
Based on these studies, it seems that low VD status is associated with an increased risk of
fractures due to mineralization defects and lower BMD.

The optimal management of CKD-MBD is a daily challenge for nephrologists. VD
supplementation is required for CKD patients to suppress PTH increases as well as to cor-
rect abnormalities of bone and mineral metabolism. In daily practice, VD (cholecalciferol or
ergocalciferol) can be used in daily, weekly, or monthly doses. On the other hand, when VD
supplementation is ineffective, therapy with VDRA (calcitriol, paricalcitol, doxercalciferol,
alfacalcidiol) can be initiated [65]. Nevertheless, the issue of which form of VD should
be used in patients with CKD is still a matter for debate. Current guidelines propose
that CKD patients with VD deficiency should receive supplementation using the same
recommendation as the general population [2,77,192]. The KDOQI recommend a dosage of
1000–2000 IU of VD3 for VD repletion, but it confirmed that some patients with CKD may
require a more aggressive therapeutic strategy [77]. However, irrespective of the chosen
form of VD, it is worth emphasizing that when serum 25D levels are greater than 100
ng/mL, the risk of hypervitaminosis D toxicity can occur, including adverse effects such as
hypercalcemia and hyperphosphatemia [65]. According to KDOQI 2017 recommendations,
“mild and asymptomatic hypocalcemia can be tolerated in order to avoid inappropriate
calcium loading in adults”. The KDOQI work group holds the view that avoidance of



Nutrients 2021, 13, 809 20 of 34

hypercalcemia will protect vascular and valvular calcifications, arrhythmia, and an in-
creased risk for cardiovascular events in adults with CKD. In contrast to adults, the KDOQI
work group endorses the recommendation to maintain serum calcium concentrations in
children with CKD in the age-appropriate normal range, because the growing skeleton
must be in positive calcium balance to achieve normal bone accrual. In this age group,
the permissive mild hypocalcemia may have deleterious effects on skeletal integrity and
should be avoided [193]. The excessive VC can also be caused by hyperphosphatemia
(especially in the setting of persistent hypercalcemia) and a positive net phosphate balance.
As has been recently summarized by Cozzolino et al. [194], hyperphosphatemia can cause
damage in several cells and tissues, among others in the heart and blood vessels, where
it is strongly associated with vascular and valvular calcification, arteriosclerosis, and an
increased risk of cardiovascular death, especially in advanced CKD patients.

Vitamin D analogs (VDRAs), which are less calcemic and phosphatemic than the
active form of vitamin D, are becoming the standard for the treatment of secondary hyper-
parathyroidism. The experimental models and clinical studies suggest that VDRAs can
promote VC probably only at high doses if they induce or exacerbate hyperphosphatemia,
while the use of these agents in more physiological doses (just enough to correct secondary
hyperparathyroidism) might even be protective against VC [195–197].

In a study by Oksa et al. [198], a 12-month cholecalciferol supplementation of 5000
or 20,000 IU/week significantly improved VD deficiency, increased calcidiol, and less
markedly, calcitriol levels, and decreased PTH levels without adverse effects on serum
mineral parameters. Additionally, the number of hypercalciuric patients increased with a
higher VD dose, although there was no sustained rise in calcuria. A similar decrease in
PTH levels, following cholecalciferol supplementation, had also been presented in other
studies [199–201]. Additionally, Yadav et al. [201] reported that cholecalciferol supplemen-
tation not only suppressed secondary hyperparathyroidism but also favorably changed
the biochemical parameters of mineral metabolism in patients with CKD. On the contrary,
supplementation with 50,000 IU cholecalciferol weekly [202] or 1000 IU cholecalciferol
daily [203] found no difference in PTH levels in CKD patients. Post-hoc analysis of the
Vitamin D, Calcium, Lyon Study II (DECALYOS II) study [166] reported that daily supple-
mentation of 800 IU of cholecalciferol in combination with 1200 mg of calcium significantly
increased serum 25D concentrations and radius BMD in an elderly woman with moderate
CKD and severe VD deficiency. On the other hand, Mager et al. [167] found no significant
differences in FGF-23, OC, N-terminal telopeptide (NTx), and BMD as measured by dual
X-ray absorptiometry (DXA) after daily (2000 IU/day) and monthly (40,000 IU/month)
VD3 supplementation for six months in adults with diabetes mellitus and CKD. Summa-
rizing, all the above-mentioned randomized studies demonstrated that a correction of
VD deficiency with cholecalciferol supplementation led to the efficient achievement of a
sufficient level of 25D in CKD patients.

In another study, Moe et al. [168] compared cholecalciferol at a dose of 4000 IU/d
for a month, and then 2000 IU/d for two months and doxercalciferol at a dose of 1 µg/d
for 12 weeks. The PTH levels decreased by 10% and 30% in the cholecalciferol and the
doxercalciferol groups, respectively. However, there was no significant difference in the
mean change between these two treatments. Additionally, there were no increases in
serum calcium and urinary calcium/creatinine in the cholecalciferol group, whereas in the
doxercalciferol-treated patients, there was a slight increase in the serum calcium level and
urinary calcium exertion level. In the next study by Zelnick et al. [204], patients received
either cholecalciferol (4000 IU daily for 1 month and then 2000 IU daily for 5 months)
or calcitriol (0.25 µg daily for 1 month and then 0.5 µg daily for 5 month). There was
no difference in PTH levels in both groups, and only the calcitriol-treated group showed
a significant change in FGF-23 levels. Interestingly, both groups significantly increased
circulating 24,25D concentrations and the ratio of 24,25D/25D.

Studies regarding VD supplementation, using ergocalciferol in CKD patients with VD
insufficiency, have shown effective correction of 25D [205–210]. Treatment with ergocal-
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ciferol among patients with stage 3 CKD resulted in a significant decrease of serum PTH
concentrations [207,208]. Similarly, Zisman et al. [205] observed a decrease in PTH levels
but only in CKD stage 3. On the contrary, Porter et al. [206] and Gravesen et al. [209] did
not find any differences in PTH levels and bone/mineral parameters. Wetmore et al. [211]
compared the efficacy of cholecalciferol and ergocalciferol in the CKD population, and they
showed that therapy with cholecalciferol is more effective at raising serum 25D concentra-
tion, suggesting that cholecalciferol may be more effective. These results are in line with
other studies conducted on CKD patients [212,213].

6. Impact of Combined Vitamin K and Vitamin D Supplementation on Bone Health in
Patients with CKD

A growing body of evidence from in vitro [83] and in vivo studies [144], as well as
clinical trials [214–217], showed that bone metabolism depends on the interaction between
vitamins D and K, as has been schematically presented in Figure 5. However, the interplay
between these vitamins in relation to bone health remains not fully elucidated, especially
in CKD.
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OC is produced by OBs during bone formation. It is one of the most abundant proteins
in bone and is necessary for bone mineralization. The synthesis of fully functional OC
and its expression are controlled by both VK and VD [218]. 1,25D is a known promoter
for OC gene expression [219], whereas VK is acquired for proper γ-carboxylation of OC,
thereby increasing its beneficial effect on bone formation [220,221]. Fully carboxylated OC
is positioned into hydroxyapatite and strongly binds calcium, providing bone mineraliza-
tion [222]. Moreover, 1,25D is able to regulate the γ-carboxylation of OC, decreasing ucOC
secretion in human osteosarcoma cells [223].

VD can exert an anabolic effect in bone through increasing OB activity and reducing
OC activity [224]. Koshihara et al. [225] demonstrated that VK2 promoted α25D-induced
mineralization in human periosteal OBs. Similarly, the study by Poon et al. [83] showed
that the coadministration of VK and VD caused an enhancement of calcium deposits and
additionally increased the levels of bone anabolic markers of bone formation in the OBs
of obese/diabetic mice. These findings suggest the synergistic effect of both vitamins in
relation to bone formation and mineralization.
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On the other hand, there are suggestions that excessive amounts of VD can increase
VK requirements, inducing a relative VK deficiency by direct stimulation of the synthesis
of VK-dependent proteins [226,227].

Another field of VD and VK cooperation is inflammation, which is casually implicated
in osteoporosis [228]. VK is related to a decreased production of inflammatory markers:
C-reactive protein, isoprostanes, and proinflammatory IL-6 [229–232]. VD exerts several
immunomodulatory functions, such as the suppression of pro-inflammatory cytokine
expression and regulation of immune cell activity [233]. VD supplementation reduced
tumor necrosis factor α (TNF-α) levels in patients with osteoporosis [234].

VK and VD also overlap metabolically at the cellular level. The VK cycle is a source
of electron transfer for antioxidant power in hOBs, and 1,25D can enhance the reductive
recycling of MK4 [220]. SXR, which can be activated by VK2, was shown to be able to
crosstalk with VDR, and this way deranging 1,25D metabolism. It was shown that the SXR-
VDR crosstalk can inhibit VDR-mediated CYP24 promoter activity [235]. CYP24-mediated
hydroxylation of 1,25D is a critical step in its catabolism, and it appears to be responsible for
controlling systemic 1,25D levels. CYP24 is directly regulated by VDR, and it is expressed
mainly in the kidney, where VDR is also abundant. However, recent studies [5–7] have
shown that bone cells also have molecular machinery capable of producing and metaboliz-
ing 1,25D, suggesting that such an interaction may be present in bone as well. Therefore,
VK and VD can mutually intensify each other’s metabolism.

On the other hand, the activation of SXR in the liver can lead to the down-regulation
of CYP2D25, which is an enzyme involved in 1,25D biosynthesis [236] that may be related
to osteomalacia.

In vivo evidence also reported that combined VD and VK2 supplementation prevented
bone loss by stimulating OC production in ovariectomized (OVX) rats [144,224,237,238],
whereas no effect was observed when these vitamins were given separately [238]. A recently
published study [239] demonstrated the beneficial effects of eggshell calcium, VD3, and
VK2 on the inhibition of OVX-induced bone loss in rats. The combination of these three
elements increased cortical and trabecular bone quality as well as improved biochemical
and densitometrical parameters. Meanwhile, Iwamoto et al. [240] found no synergistic
effect of VK and VD on intestinal calcium absorption, renal calcium reabsorption, and
cancellous and cortical bone mass in calcium-deficient rats. Therefore, it seems that the
availability of calcium is an important factor in determining the synergistic effect of these
vitamins in relation to bone mineralization.

The above presented data suggest that combined VD and VK supplementation may be
beneficial for bone health in the course of CKD. Unfortunately, there have been no random-
ized, controlled trials that examined the effects of such a combination in this population.
Many studies have investigated the combined effect of VK and VD supplementation on
skeletal integrity in the general population, especially in postmenopausal women with
osteoporosis [214–217,241]. Nevertheless, these studies did not provide consistent conclu-
sions, and the effect of the coadministration of these vitamins is still poorly understood. A
recently published meta-analysis [241] was based on eight selected randomized controlled
trials, which evaluated the combined effect of supplementation with VK and VD on bone
quality. This meta-analysis showed that the simultaneous administration of VD and VK
can improve bone quality by increasing the total and third lumbar BMD and decreasing
ucOC. However, in the remaining lumbar segments and femoral neck, the combined sup-
plementation of these vitamins did not significantly increase BMD. Taken together, this
report indicates that the coadministration of VD and VK can have a more favorable effect
on bone health than giving each one separately. However, the authors emphasize that
conclusions from this meta-analysis should be interpreted with caution due to potential
publication bias.

Taken together, despite the growing body of evidence from in vitro and in vivo studies,
as well as clinical trials, the synergy between VK and VD in relation to bone quality and
quantity remains not fully elucidated. Therefore, further studies are needed to explain the
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exact mechanisms of the combined effects of these vitamins on bone health, especially in
the CKD population.

7. Conclusions

The current understanding is that patients with CKD are a clinical group at high risk
for VD and VK deficiency. Therefore, these patients are prone to suffering from many
consequences of VK and VD deficiency, such as poor bone health and a higher risk of
fractures. Therefore, finding new solutions for the prevention/treatment of osteoporo-
sis in this population is a particular challenge. The majority of randomized-controlled
studies performed on osteoporotic patients without CKD suggest that combined VK and
VD supplementation may be more beneficial for the prevention and treatment of bone
loss. Moreover, supplementation with these vitamins is easily accessible, safe to use, and
relatively inexpensive. However, there is still not enough evidence to recommend VK and
VD supplementation. Based on studies in the general population, we can suspect that
VD and VK supplementation in CKD patients may be a possible therapeutic target for
improving bone health. Due to the lack of adequate clinical studies in this population,
the question arises whether CKD patients might benefit from simultaneous VK and VD
supplementation. This creates a need for further research, in which an investigation of the
potential synergistic effect of combined supplementation of VD and VK on bone health in
this population should receive more attention.
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DCKD diabetes chronic kidney disease
DECALYOS II Vitamin D, Calcium, Lyon Study II
DKK1 Dickkopf-related protein 1
dp-ucMGP desphospho-uncarboxylated matrix Gla protein
DXA dual X-ray absorptiometry
ECM extracellular matrix
ELISA enzyme-linked immunosorbent assay
ESRD end-stage renal disease
FGF-23 fibroblast growth factor 23
Gas6 growth arrest specific protein 6
GGCX γ-glutamyl carboxylase
Gla gamma carboxyglutamic acid
Glu glutamic acid
GRP Gla-rich protein
HD hemodialysis
hMSCs human bone marrow stromal cells
hOBs human OBs
hOCs human OCs
hPBMCs human peripheral blood mononuclear cells
HPLC high-performance liquid chromatography
IBSP integrin-binding sialoprotein
IGFBPs insulin-like growth factor-binding proteins
IL1α interleukin 1α

KDIGO Kidney Disease Improvement Global Outcomes
KDOQI Kidney Disease Outcomes Quality Initiative
LC-MS/MS liquid chromatography-tandem mass spectrometry
LRP5 low-density lipoprotein receptor-related protein 5
m-CSF colony-stimulating factor
MKs menaquinones
NFATC1 nuclear factor of activated T cells-c1
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NR1I2 nuclear receptor subfamily 1 group I member 2
NTx N-terminal telopeptide
OBs osteoblasts
OCs osteoclasts
OPG osteoprotegerin
OSX osterix
OVX ovariectomized
PD peritoneal dialysis
PGE2 prostaglandin E2
PIVKA-II protein induced by VK absence/antagonism II
PTH parathyroid hormone
PXR pregnane X receptor
RANKL Receptor Activator for Nuclear Factor κ B Ligand
RIA radioimmunoassay
RUNX2 Runt-related transcription factor 2
SMAD small mother against decapentaplegic
SPP1 osteopontin
SXR steroid and xenobiotic receptor
TM7SF4 transmembrane 7 superfamily member 4
TNFα tumor necrosis factor α
TRAP tartrate-resistant acid phosphatase
TRPV6 Transient Receptor Potential Cation Channel Subfamily V Member 6
UBIAD1 UbiA prenyltransferase domain-containing protein
ucOC uncarboxylated osteocalcin
UV ultraviolet
VC vascular calcification
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VD vitamin D
VDBP VD binding protein
VDR VD receptor
VEGF Vascular endothelial growth factor
VK vitamin K
VK1 vitamin K1
VK2 vitamin K2
VKDPs VK-dependent proteins
VKOR VK epoxide reductase
Wnt Wingless-type
Wnt-10b Wnt ligand 10b
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