
Sensors 2011, 11, 10343-10371; doi:10.3390/s111110343

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

SOMM: A New Service Oriented Middleware for Generic
Wireless Multimedia Sensor Networks Based on Code Mobility

Mohammad Mehdi Faghih and Mohsen Ebrahimi Moghaddam *

Electrical and Computer Engineering Department, Shahid Beheshti University, G. C.,
Tehran 1983963113, Iran; E-Mail: me.faghih@mail.sbu.ac.ir

* Author to whom correspondence should be addressed; E-Mail: m_moghadam@sbu.ac.ir;
Tel.: +98-212-243-1728; Fax: +98-212-243-1804.

Received: 1 October 2011; in revised form: 26 October 2011 / Accepted: 27 October 2011 /
Published: 31 October 2011

Abstract: Although much research in the area of Wireless Multimedia Sensor Networks
(WMSNs) has been done in recent years, the programming of sensor nodes is still
time-consuming and tedious. It requires expertise in low-level programming, mainly
because of the use of resource constrained hardware and also the low level API provided
by current operating systems. The code of the resulting systems has typically no clear
separation between application and system logic. This minimizes the possibility of reusing
code and often leads to the necessity of major changes when the underlying platform is
changed. In this paper, we present a service oriented middleware named SOMM to support
application development for WMSNs. The main goal of SOMM is to enable the
development of modifiable and scalable WMSN applications. A network which uses the
SOMM is capable of providing multiple services to multiple clients at the same time with
the specified Quality of Service (QoS). SOMM uses a virtual machine with the ability to
support mobile agents. Services in SOMM are provided by mobile agents and SOMM also
provides a t space on each node which agents can use to communicate with each other.

Keywords: middleware; Wireless Multimedia Sensor Networks; service oriented
architecture; code mobility; TinyOS

OPEN ACCESS

Sensors 2011, 11 10344

1. Introduction

In recent years, the availability of low-cost hardware such as CMOS cameras and microphones that
are able to ubiquitously capture multimedia content from the environment has enabled the
development of Wireless Multimedia Sensor Networks (WMSNs); networks of wirelessly
interconnected devices that allow retrieving video and audio streams, still images, and scalar sensor
data [1]. As time has elapsed, WMSNs have become more and more popular and consequently these
networks are used in different domains such as multimedia surveillance, health care, traffic avoidance,
environmental monitoring, and industrial process control. This wide range of applications has
intensified the need for a programming framework that can help programmers overcome the increasing
complexities of applications which stem from the distributed nature of applications and also the need
for mechanisms to handle harsh operating conditions such as unreliable wireless communications,
node failures, and ultra limited available resources. But, the APIs provided by current operating
systems available for WSNs are low level and as a result, the development of applications for these
networks is a complex, costly, and time consuming task. Due to this dilemma, WMSNs are usually
used in an ad hoc manner, and the developed applications for these networks usually consist of static
parts which are hard to modify and reuse [2]. These characteristics not only reduce WMSN scalability,
but also decrease the modifiability of the networks. For example, if there is a need to modify a
program, all nodes of network should be reprogrammed and since physical access to nodes may not be
easy due to large number of nodes or impassable environments, reprogramming of nodes must be done
remotely. Remote reprogramming is a power consuming task for the reason that radio energy
consumption is very high and the compiled program (which is relatively large) must be sent to all
nodes.

One way to overcome the complexities of application development is using middle-wares, but
because of limited resources available in a WSN, it is not possible to use traditional middle-wares in
these networks. Therefore, many middle-wares have been proposed for WSNs with the ultimate goal
of increasing programming abstraction level and as a result decreasing the development and
maintenance cost of WSN programs [2-4]. However, none of them have been specially designed for
WMSNs which have some particular characteristics that influence the design of network and as a
result the design and implementation of middle-ware. For example, the need for application specific
QoS, high bandwidth demand, multimedia source coding techniques, and multimedia in-network
processing are some of unique characteristics of WMSNs that the designer of middleware should
consider them [1]. Generally, the design and development of a successful middleware for WSN is
not trivial. It needs to deal with the many challenges dictated by the characteristics of WSNs on the
one hand and the applications on the other hand. Some of challenges in which a middleware designer
might face are [5]:

• Managing limited resources
• Scalability and network topology
• Network heterogeneity
• Quality of service
• Security

Sensors 2011, 11 10345

In this paper, we propose a service oriented middleware named SOMM which specially designed
for WMSNs. In the design of the proposed middleware, the mentioned challenges have been
considered. The main goal of this middleware is to support multimedia transmission in WMSNs while
decreasing the cost of application development and improving network modifiability and scalability.
To this end, SOMM taks advantage of virtual machine and code mobility. SOMM structures an
application in terms of mobile agents which provide services to each other to accomplish their tasks.
SOMM also provides localized tuple spaces as the tools for communication between agents.
In addition, some features are provided in SOMM to support QoS requirements of WMSNs. Therefore,
it has some advantages with regard to others as follows:

• It provides a highly scalable platform by using SOA and the concepts of code repositories and
service registries.

• It increases the energy efficiency in the case of application updating and node reprogramming by
using mobile agents and code repositories.

• Modifiability in SOMM is supported via mobile agents and code repositories.
• It is capable of handling heterogeneous nodes with different capabilities and also it makes

possible to have different platforms with different operating systems in the network if needed.

The rest of the paper is organized as follows. Section 2 shows some related works. The SOMM
design model is described in Section 3. In Section 4, the application programming interface of SOMM
middleware has been presented. Section 5 demonstrates the implementation details of SOMM and
finally Sections 6 and 7 show an assessment of SOMM design and our concluding remarks, respectively.

2. Related Works

There have been various works addressing high-level WSN middle-wares but to the best of our
knowledge, there is no WMSN middleware in the literature. The current WSN middle-ware programming
approaches can be classified into low-level programming models and high-level programming
models [6]. Middle-wares like Mate [7,8], Impala [9] and Agilla [3,10] which use a low-level
programming model, take a platform-centric view and focus on abstracting hardware and allowing
flexible control of nodes. High-level programming models like TinyDB [4], MiLAN [11], Cougar [12]
and Kairos [13] take an application-centric view instead of the platform-centric view and address how
easily application logics can be programmed. High-level programming models are further divided into
two types: group-level abstraction and network-level abstraction. Group-level abstractions provide a
set of programming primitives to handle a group of nodes as a single entity while network-level
abstractions, also known as macro-programming, treat the whole network as a single abstract machine.

Mate [7,8] is included in the class of middleware systems that uses a virtual machine for sensor
networks. Mate is implemented on top of TinyOS [14] and allows developers to easily change
instruction sets, execution events, and virtual machine subsystems. Mate uses codes broken into
capsules of 24 byte-long instructions. This benefits large programs, which are made up of multiple
capsules and, thus, easily injected into the network using flooding approach. Although this middleware
has a concise and simple programming model, its energy consumption is high for long running
programs. Agilla [3,10] is based on Mate and extends that approach by providing mechanisms for
better injection of a mobile code into the sensor network to deploy user application. Mobile agents can

Sensors 2011, 11 10346

intelligently move or clone themselves into the desired locations based on network changes. This
method is more suitable than the flooding mechanisms that Mate uses for the same purpose (issues
relevant with the incorporation of mobile agents in WSNs and WMSNs have been thoroughly
investigated in research works such as [15-18]). Impala [9] is a middleware designed for the ZebraNet
project [19] and its goal is to enable application modularity, adaptability to dynamic environments, and
reparability. Its modular design allows easy and efficient on-the-fly reprogramming via wireless
channel. However, Impala is designed to run only on pocket PC handhelds and its nature is not suitable
for devices with limited resources.

As we mentioned earlier, Cougar [12] and TinyDB [4] fall within the category of high-level
abstractions for sensor network programming. They are designed for use by relatively simple data
collection applications such as environmental monitoring applications. They allow users to issue
queries in a declarative SQL-like language. Both Cougar and TinyDB are concerned with power
conservation and providing query processing strategies that aim to conserve resources but, TinyDB is
more sophisticated than Cougar [20]. TinyDB can calculate the frequency of sampling that is required
to extend the battery life of a node, and also uses a routing structure called a semantic routing tree to
help sensor nodes accurately determine when queries need to be routed to their children in the routing
tree. Although sensor database systems are easy to use, a key limitation of these systems is the
assumption that sensor nodes are largely homogeneous and therefore they are not suitable for
heterogeneous sensor networks.

Different research teams have recently developed macro-programming languages and service-oriented
approaches for sensor networks. Kairos [13] employs a macro-programming approach to manage
sensors by enabling developers to translate global program behavior to local node behavior and
provides programming abstractions form anipulating individual nodes, accessing their neighbors, and
acquiring their data. Kairos focuses on providing a small set of constructs, containing only abstractions
for nodes, one-hop neighbors, and remote data access and it is language independent so that it can be
implemented as an extension to existing programming languages.

MiLAN [11] middleware takes a different approach to the previously discussed solutions in that it
builds on existing networking and service discovery protocols using a plug-in mechanism to integrate
arbitrary protocols. It provides a data service that supports QoS. Applications submit a query and
specify their sensing and QoS requirements to the middleware in terms of graphs describing sensor
quality of service and state-based variable requirements. In response to a query, MiLAN creates an
execution plan, which specifies the source nodes and the routing tree, such that satisfies the QoS
requirement while maximizing energy efficiency.

However middle-wares play an essential role in easy development of applications, providing a
useful communication protocol may be a challenge in literature. For example PEMuR has been
proposed as a dual scheme protocol for efficient video communication in [21]. This protocol aims at
both energy saving and high QoS attainment by combining an energy aware hierarchical routing
protocol with an intelligent video packet scheduling algorithm. The routing protocol tries to select the
most energy efficient paths and manages the network load according to the residual energy of the
nodes. Additionally, the packet scheduling algorithm enables the reduction of the video transmission
rate with the minimum possible increase of distortion.

Sensors 2011, 11 10347

TinySOA [22,23] facilitates the use of wireless sensor networks in traditional application
development by using a service-oriented model. It provides a set of Web services and tools which
make possible to send and receive information from a deployed sensor network. TinySOA architecture
consists of four main parts: TinySOA Node, Gateway, Registry, and Server. When one of the sensor
network nodes turns on, it detects and identifies what sensor types are available and announces them
by sending a registration message to the Gateway. The Gateway uses the gathered sensor types to
register this information into the Registry. Once the sensor types are registered, the Gateway
subscribes itself to the services provided by the sensor nodes. When sensor nodes receive the
subscription message, they start constantly sending sensed data to the Gateway. The Gateway records
sensor readings into a subcomponent called Historical Registry. The Server uses the Registry to
prepare a Web service. This Web service leads methods to query for sensor readings. When a query for
readings is requested from a user, the Server communicates with the Historical Registry to obtain the
requested information and returns it to the Web services. However, this approach improves the
response time; it imposes energy consumption overhead due to continuously sending unnecessary data
to the registry by sensor nodes.

3. The SOMM Model

In this section, first we present a short description of Service Oriented Architecture (SOA) and then
we explain the main idea and the detail of the SOMM design.

3.1. SOA in a Nutshell

In the absence of a formal definition and reference model for SOA, it is difficult to classify
architecture as service oriented. Although there has been some debate over the precise definition of
SOA, there are a number of main concepts which have been agreed upon and which must be present in
an implemented architecture such that it can be classified as an SOA. The most important of the main
SOA concepts is that components should expose services in some way. These services are the basis
upon which SOA is built and they allow for loosely coupled distributed computing using open
standards-based protocols. Some type of central service repository is also required, in order for the
different components to be able to advertise their own services and discover other services which they
can use. The architecture should allow the different components to search for and discover services in
the service repository. After discovering a service which a component may want to use, the component
should be able to invoke the service with the required parameters and should obtain the resulting return
value from the service. How these different concepts are implemented is not important. As long as they
are present in the architecture, it can be classified as a SOA [24].

Service oriented architecture can be used as a suitable solution to control the complexities of
development of WMSNs. Since SOA is a huge and complex concept and also because of limited
resources available in a GWMSN, SOA must be customized before it can be used in a GWMSN.
Therefore, here a lightweight prototype of SOA is used.

Sensors 2011, 11 10348

3.2. The Main Idea: Achieving a Dynamic Network Using SOA

Most early WMSN deployments have adopted ad-hoc and application-specific architectures. They
were closed networks which typically were deployed by a single party (e.g., a government agency,
a research institute or a private company) and there were no need to link them with each other. Only
the owners of these networks used them and there were no other clients for them. In recent years, wide
usages and different applications of WMSNs, the need for some kind of WMSNs which can perform
multiple tasks and serve multiple clients at the same time raised. These networks are called GWMSNs
(Generic WMSNs). They are expected to be open, multi-purpose, ubiquitous, and interoperable
networks. A GWMSN can be replaced by multiple WMSNs. For example, consider two parties in a
town which both of them deployed a WMSN throughout the town (e.g., traffic control organization
and police station). Each network only can perform a special task for its owner and one party cannot
use other one network. Also, if another party needs to monitor the town, it must deploy another
WMSN. A GWMSN is able to replace these two networks and can service all parties at the same time.
But, the design and development of a GWMSN using current design methods and programming
frameworks, if it is possible, is a complex and costly task. Thus, new programming frameworks must
be defined to enable the development of GWMSNs with reasonable cost.

The proposed middleware (SOMM) consists of some service registry and several servers. Servers
register the specifications of their services, such as type and quality range of service, in the nearest
service registry. A client can refer to appropriate service registry, find the address of server and
communicate with server via message passing. Also, there are some special servers named code
repository which are used as a place for storing different implementations of services that servers can
provide to their clients. An overall view of a GWMSN which designed based on SOMM is depicted in
Figure 1.

Figure 1. Overall view of a GWMSN designed based on SOMM.

Internet

Cyclops WebcamPan-tilt cameraCode repository Service registry

Base station

Sensors 2011, 11 10349

In this network, there are three types of video sensor nodes with different capabilities. Each video
node registers specifications of its service in nearest service registry using API provided by SOMM.
Clients can connect to base station via the Internet and query the SOMM for a specified service with a
given QoS. After that, SOMM checks to see if it is possible for network to provide desired service with
specified QoS. SOMM informs client if network cannot serve the client, otherwise, the SOMM
connects the client to proper server node after reserving needed resources for that service. The details
of these operations are described later.

It is clearly observable that using SOA concepts in SOMM lead to a fully dynamic and scalable
network of server nodes which can provide different services to clients. A network can serve multiple
clients at the same time and new functionalities can be added to the network easily (as described later).

3.3. Achieving Flexibility via Virtual Machine

As mentioned, due to the large number of nodes and unique constraints of a GWMSN, alteration is
a natural characteristic of these networks. New nodes may be added to network or existing nodes may
be removed. Also, because these networks are multi-purpose, new functionalities may be added or
existing implementation of a service may be changed during lifetime of network. Current operating
systems of WSNs support these kinds of changes poorly. To solve this problem, some virtual machines
are developed for WSNs which have been described in Section 2. Employing a virtual machine as a
middleware decrease the application code size; in addition, it simplifies the node reprogramming and
as a result, increases the network flexibility. Portability is another advantage of virtual machine. A
virtual machine lies as a layer between applications and the underlying operating system and makes
them independent of operating systems. Having different implementations of virtual machine for
various operating systems allows us to have multiple operating systems in a GWMSN at the same
time. This is useful when using different operating systems for different nodes based on the node
capabilities is needed. A virtual machine can also provide code mobility which is useful in application
development for a GWMSN. Mobile agents allow a GWMSN to do multiple tasks and serve multiple
clients at the same time. For these reasons, SOMM proposes a virtual machine with support for code
mobility as its core.

3.3.1. Virtual Machine and Code Mobility

A node in a GWMSN should be capable of providing multiple services. Hence, all nodes must have
the code for all possible services that the GWMSN can provide. But, because of limitation in resources
such as memory and processing capabilities in a GWMSN node, and also the fact that the size of
multimedia applications are relatively large, it is not possible to have all the codes for all possible
services in each node of GWMSN. Even if it is possible, the result is wasting valuable resources in the
network. Also if there is a need to modify a service or add a new service to the network, the new code
must be propagated to all nodes, which is a power consuming task and waste lots of energy.

SOMM proposes code mobility as a solution for the mentioned issues. The codes of different
services are stored in a code repository (a rich node that has enough memory) as mobile agents. Server
nodes download and run proper code for their services at runtime, considering requested QoS from
their client. In this way, there is no need to store all codes in all nodes of network. Moreover, if a

Sensors 2011, 11 10350

service changed or a new service should be added to the network, the new code should simply be sent
to the code repository.

Figure 2. SOMM Architecture in a server node.

Figure 2 shows the SOMM architecture in a server node. Agent management sub-system is

responsible for managing agent mobility. Each agent is an autonomous process which can migrate
across nodes. An agent consists of instruction memory, data memory, program counter, operand stack
and heap. During migration, the agent manager in source node, packs the agent and its execution
context (which contains the necessary information for resuming agent execution in destination node)
and then transfers the agent to the destination node using agent transmitter component. Agent

Service Layer
(mobile agents)

SOMM

Operating system

Proxy
agent

Service interface

Service
agent

Sensor
sub-system

Sensor platform Camera Microphone …

Network stack

Transceiver

Proxy
agent

Service interface

Service
agent

Byte-code
interpreter
sub-system

 Agent
transmitter

Agent manager

Service
manager A

ge
nt

 m
an

ag
em

en
t

 su
b-

s y
st

em

N
et

w
or

ki
ng

su

b-
s y

st
em

 QOS aware
 routing

Tuple space
manager

Message dispatcher

Neighbors
list

Sensors 2011, 11 10351

transmitter component in destination node takes the transmitted agent and brings it to the agent
manager. After that, agent manager unpacks the received agent and resume its execution.

Services in SOMM are provided by agents and there are two types of agents in SOMM:

• Proxy agent, that is responsible for providing a well defined interface for the corresponding
service.

• Service agent, which encompasses the implementation of corresponding service.

A client connects to the proxy agent and declares its QoS requirements. The proxy agent queries the
code repository and downloads and runs the suitable service agent for the corresponding service with
the specified QoS requirements. The client does not have any information about the service agent and
only communicates with the proxy agent. Communications between proxy and service agents also take
place through tuple space. Using this approach, the implementation and interface of services are
separated; modifying and replacing implementation of services can be done easily and also it is
possible to have different implementations for a service considering different QoS requirements. For
example, a server which provides multimedia streams to its clients can download and execute different
encoding algorithms based on specified QoS by clients.

Byte-code interpreter sub-system is the core of SOMM and its main task is to interpret and
execute the agents. Networking sub-system sits on top of operating system network stack and is
responsible for initial configuration of network and also contains the needed routing protocols which
we describe later.

3.3.2. Routing and Network Configuration

As depicted in Figure 3(a), at startup of a GWMSN which uses SOMM, the network consists of
some code repository and some server node which do not provide any services. When a code
repository starts (at network startup or when adding a new code repository to the network), it
broadcasts a message named CR (Code Repository) to all of its neighbors which means ‘there is a code
repository here’. CR message contains a numeric field called HC (Hop Count) that denotes the number
of hops; the CR message should be broadcasted. When a node receives a CR message, after subtracting
HC field by one, it stores the code repository address and broadcasts CR message to its neighbors if
the HC field is non zero. Since all of the code repository nodes in SOMM are identical and all of them
have all available agents, a node that receives two CR message only stores the address of code
repository which has smaller HC value. This way, all nodes of network find closest code repository.

Service registries are also server nodes; this means that the operations of service registry nodes are
done by agents. The network administrator specifies the service registry nodes at network startup and
sends them the agent that can do service registry tasks. After that, this agent broadcasts a message
called SR (Service registry) meaning that ‘there is a service registry here’ to all its neighbors. SR
message like the CR message has a HC field. Then, all nodes of network find the closest service
registry using a mechanism similar to that of finding code repository. Figure 3(b) shows the network
after all nodes find closest code repository and service registry.

Sensors 2011, 11 10352

Figure 3. Network configuration phases at startup.

When all nodes find the address of the nearest code repository and service registry, the service

manager component in each node identifies the available sensors and the type of service that each
sensor can provide using API provided by underlying operating system. Subsequently, the service
manager downloads the proper proxy agent for each service. All proxy agents register their services in
the service registry and declare the QoS range which they can provide. At this time, network
configuration is completed and services of nodes are accessible via closest service registry which also
acts as cluster head as shown in Figure 3(c). In addition to automatically detecting the capabilities of
node and downloading proper proxy agents, service manger is also responsible to provide the facilities
for remotely deploying a service on the node. This means that the network administrator can remotely
command the service manager to download and run a specified proxy agent form code repository.

Since routing is done using the nodes ID, service registry stores the server ID, QoS range and the
availability of service in a table for each registered service. A base station allocates a unique name for
each cluster head (which is a service registry node) and clients of network request their services based
on these names. For example, in Figure 3(c), when the base station receives a request for a service of
type X and quality of λ from cluster A4, it delivers the request to service registry A4. Service registry
searches its table and sends the address of proper node which can provide aforesaid service to the base
station. Then, the base station connects the client with the server node and the server node can serve
the client.

(a) Sensor network at startup (b) After setting service registry nodes
by network administrator

(c) After registering services by Service
manager component

A1
A2

A3

A4

A5

A6

CyclopsWebcamPan-tilt cameraCode repository Service registry

Sensors 2011, 11 10353

Nodes in a GWMSN have very limited processing power and bandwidth; as a result, typically a
node cannot service multiple clients at the same time. Therefore, a server node in SOMM before
servicing a node sends a message named SCNA (Service Currently Not Available) to the service
registry to state that it is currently busy and cannot serve other clients. When a service registry receives
a SCNA message, it refers to its table and disables the corresponding service. After servicing the
client, server node informs the service registry that it can serve new clients and then service registry
again refers to its table and marks the corresponding service as available.

3.3.3. Service Description

For a client to be able to interact with a service, the service must be well described. To this end,
some standard languages like Web Service Description Language (WSDL) have been developed.
WSDL is an XML-based language that provides a model for describing Web services. In SOMM,
service registries also store service descriptions in WSDL format. However, nodes in SOMM do not
support SOAP and HTTP bindings and only support TCP binding in binary format. This is because
HTTP and SOAP bindings are text based and sending text messages causes more overhead compared
to binary messages and increases the power consumption of nodes.

Each service in SOMM has four characteristics: service type, endpoint, QoS, and interface. As it is
clear, the service type determines the type of service which is limited to the types of services that
nodes of networks can provide. Endpoint defines the identifier of node that provides the service. QoS
is the quality of service range that the provider node can provide and interface specifies the service
operations and required parameters for each operation. Services in SOMM must be accessible from the
outside of network; therefore, sink nodes which are the bridges between the network and the outside
world, support SOAP and HTTP bindings. Users send their queries to sink nodes using SOAP
orHTTP, then, the sink interprets the received queries, connects to the appropriate service registry and
asks for the suitable services. Next, the sink extracts the address of server node and redirect the user
requests to that node in binary format. Sink nodes act as the interpreters between the network users and
network nodes. They convert the SOAP and HTTP messages to binary format and vice versa. In this
way, services of network will be available over the Internet while controlling the power consumption
of network. Figure 4 shows the service description for a simple video streaming service in SOMM.
The service is hosted by node 3 of cluster a4 with the QoS range of 3–7 and as it is shown, its interface
has three methods: start, stop and pause.

3.3.4. Tuple Space

SOMM provides a tuple space on each node. A tuple space is a virtual repository or buffer that can
contain tuples. The tuple space serves as an associative memory, in that tuples in the tuple space can be
accessed by matching some or all the elements of the tuples to values or types presented in a template,
which is simply a tuple set up for this matching.

Sensors 2011, 11 10354

Figure 4. Service description for a simple video streaming service.

<wsdl:definitions targetNamespace="http://sbu.ac.ir/vstream/">
 <wsdl:types>
 <xsd:schema>
 <xs:element name="request">
 <xs:complexType>
 <xs:attribute name="method" type="xs:string" use="required"/>
 <xs:attribute name="stream_id" type="xs:integer" />
 <xs:attribute name="QoS" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="vstream" type="xs:stream"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="status">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="msg" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xsd:schema>
 </wsdl:types>
 <interface name="vstream_interface">
 <fault name="ServerError" element="tns:status"/>
 <operation name="start" >
 <input messageLabel="In" element="tns:request"/>
 <output messageLabel="Out" element="tns:response"/>
 </operation>
 <operation name="stop" >
 <input messageLabel="In" element="tns:request"/>
 <output messageLabel="Out" element="tns:status"/>
 </operation>
 <operation name="pause" >
 <input messageLabel="In" element="tns:request"/>
 <output messageLabel="Out" element="tns:status"/>
 </operation>
 </interface>
 <wsdl:service
 name="simple_vstream"
 type="vstream"
 endpoint="a4-3"
 interface="tns:vstream_Interface"
 QosMin = "3"
 QosMax = "7"/>
</wsdl:definitions>

Sensors 2011, 11 10355

The concept of a tuple space was first described in 1982 in a programming language called
Linda [25]. The basic idea is to have many active programs distributed over physically dispersed
machines, unaware of others existence, and yet still able to communicate. They communicate to each
other by releasing data (a tuple) into tuple space. Figure 5 shows a symbolic tuple space. Programs
read, write, and take tuples from tuple space that are of interest to them. In general, a tuple captures the
intuitive notion of an ordered list of elements like (120, 17, 8) or (“book”, “abcd”, “mo”, "pp”) or
(“John”, 85, 15.7) which is accessed via pattern matching.

Figure 5. A symbolic tuple space. Read and write can be synchronous or asynchronous.

There are some other middlewares which proposed the using of tuple space in a WSN [26,27].
TinyLime [27] proposed a mechanism for communication between applications in different nodes of
network using tuple space. In this approach, the tuple spaces of direct or indirect neighbor nodes are
integrated and form a global tuple space. If an application in node A puts a tuple in its tuple space,
applications in other nodes which share neighborhood with A can access that tuple. TeenyLime [26]
also suggested a similar tuple space except that tuple spaces are only shared between nodes that
are direct neighbors. However, since sharing tuple spaces between nodes of network imposes
communication overhead, tuple spaces in SOMM are only accessible locally and agents can only
access local tuple space. SOMM supports standard tuple space operations. An agent can add a tuple to
local tuple space using an out command. The command in removes and returns a matched tuple from
local tuple space. The rd command is similar to in, except that it does not remove the matched tuple
from tuple space and only returns it to the caller agent.

3.3.5. QoS Guarantee

An important aspect of designing a multimedia system is QoS guarantee. If a server accepts to
provide a service to a client with a specified QoS, it must guarantee that the quality of service does not
change as long as the service is not finished. Some algorithms are proposed to guarantee QoS in

Write (“jim”, 10, 20)

<“marry”, 12, 80>

<“fred”, 13.1, 38>

<“jane”, 61, 45.2>

Read (“jane”, 61, w)

Read (“jim”, x, y)

<120, 18.6, 83>

Sensors 2011, 11 10356

multimedia systems. RSVP [28] is one of these algorithms. The main idea in RSVP is to stabilize the
QoS via reserving required resources. RSVP is a receiver-initiated QoS protocol. In other words,
receivers are required to send reservation requests along the path to the sender. A sender in RSVP first
sets up a path to potential receivers and provides the flow specification of the data stream to each
intermediate node. When a receiver is ready to accept incoming data units, it first places a reservation
request along its upstream path to the sender. When a sender receives a reservation request, it checks
whether enough resources are available or not. The request is also passed to a policy control module to
check whether the receiver has permission to make the reservation. If these two tests succeed,
resources can be reserved.

In a GWMSN, reservation of resources in an intermediate node may be irrational; for the reason
that nodes of networks have very limited energy, bandwidth and processing capabilities. Therefore, a
node should not be an intermediate node of more than one stream. Consequently, in SOMM a simple
protocol is proposed to lock the intermediate nodes of data streams, which is briefly described in the
following paragraph.

When a client sends its request to the base station, the base station refers to the proper service
registry and finds the address of server node. Then, it forwards the request of client to that server and
also sends a reservation request to all intermediate nodes. All nodes of the network have a table which
contains the information about their direct neighbors. This table also shows whether a neighbor is busy
or not. When a node n receives a reservation request from the base station, it informs its neighbors that
it is busy. Neighbor nodes then update the status of n in their table as a busy node and they won’t send
their data through node n. Node n also informs the service registry that it is busy. After locking
intermediate nodes, server can start sending data to client. When server completes its work, it notifies
the intermediate nodes and service registry and they update their tables and mark the server node as a
free node. Since wireless communications channel in a GWMSN is unreliable and also node failure is
a prevalent event, locking mechanism may lead to a situation in which an intermediate node remains
locked forever due to a message lost or server failure. To solve this problem in SOMM, each locked
intermediate node of a stream uses a timer to keep the time since receiving last packet. If the timer
exceeds a threshold, the locked node discerns that some problem happened to the stream and frees its
resources. This threshold is a trade-off: assigning a small value to this threshold may lead to tearing a
live stream and therefore losing the QoS guarantee. In another way, giving a large value to this
threshold wastes the network resources. Determining the best value for this threshold in a general
purpose framework may be a difficult task. But SOMM is a multimedia middleware and multimedia
applications are generally real time applications and employ smooth streams. This smoothness in
streams is a key for finding a good value for this threshold.

4. Application Programming Interface

The core of SOMM is a virtual machine which abstracts the complexities of underlying operating
system API and facilitates the programming using a simple script language. The instructions which
SOMM provides to programmer can be divided in four categories:

• General purpose instructions: This category includes instructions for mathematical
operations, reading sensors, toggling LEDs, accessing heap and sending data. Also because

Sensors 2011, 11 10357

SOMM is a stack-based virtual machine, it provides necessary instruction for manipulating
stack. Some of these instructions are add, halt, putled, rand, or, sense, eq, pop, pushc, pushacc,
send.

• Migration instructions: These instructions provide facilities for agents to migrate across
nodes or copy themselves in another node. SOMM supports weak and strong migration. In
weak migration, only the code of agent is transmitted to destination node and the migrated
agent restarts its execution at destination node. But in a strong migration, in addition to code of
agent, also its executing context is transmitted to destination node and as a result, migrated
agent can continue its execution at destination node. The instructions in this category are scopy,
wcopy, smove and wmove which stand for strong copy, weak copy, strong move and weak
move respectively.

• Service management instructions: This group includes six instructions: qsreg, qcrep, dlserv,
regserv, disserv, and enserv. The qsreg instruction allows the agent to query the service
registry and search for a specified service. An agent can connect to code repository and gets the
information about different implementations of a service using instruction qcrep. Instruction
dlserv is for downloading a specified service from code repository. The regserv instruction is
for registering a service in service registry and instructions disserv and enserv enables and
disables a service in service registry, respectively.

• Tuple space instructions: This category contains the standard tuple space operations which an
agent can manipulate local tuple space using them. These instructions are out, in, inp, rd, rdp.
The instructions in and rd are blocking ones, this means that if they do not find any matching
tuple, the calling agent blocks until a matching tuple is added to the tuple space. rdp and inp are
non-blocking instructions and in the case that they do not find any matching tuple, the calling
agent does not block.

All of instructions pop their needed parameters from the top of the stack. It is the task of
programmer to push the appropriate parameters into the stack in a proper order. For example, Figure 6
shows the sample code for using regserv instruction. In this piece of code, to register a video service
with QoS range of 3–7, first the needed parameters are pushed to stack using instructions pushc and
pushs and then the regserv is called for registering the service.

Figure 6. A sample code for registering a service in service registry using regserv instruction.

1: BEGIN pushs video
//Pushing the string “video” into the

//stack
2: pushc 3 //pushing constant 3 into the stack

3: pushc 7 //pushing constant 7 into the stack

4: pushc SERVICE //pushing the starting address of service

5: regserv //registering the service

6: … //doing other works

7: SERVICE Pop
//obtaining client request from top of

//stack

8: … //performing the service

Sensors 2011, 11 10358

5. Implementation Details

While it is possible to implement SOMM on top of any operating system, current implementation of
SOMM is based on TinyOS [14] that is the de facto standard operating system for WSNs. In the
following sub-sections, we describe the key points of design and implementation of SOMM.

5.1. Agent Structure

The agent structure in SOMM is similar to that of Agilla [3], a middleware for WSNs with support
for mobile agents which we described it briefly in Section 2. Each agent consists of stack, heap, and
some registers. An agent can access the heap using getvar and setvar instructions. The heap and stack
size is depended on the available memory in the node and can be altered when needed. Each agent also
has three main registers: ID register for keeping agent ID, PC register for maintaining the address of
next instruction, and accumulator register for storing the status of execution such as the result of
comparing instructions.

5.2. The Key Interfaces

Applications of TinyOS and also SOMM are written via a component based programming language
called nesC [29]. Each component of a nesC program provides some interfaces. The key interfaces
of SOMM are shown in Figures 7 and 8 while does not consists of much details for the purpose of
readability.

Tuple space interface is shown in Figure 7(a) which in addition to provide standard tuple space
operations, provides tuple Ready and new Tuple events. The tuple Ready event fires when an in or rd
instruction is completed successfully and also new Tuple event fires when a new tuple is added to tuple
space. Agent manager must be informed of addition of a new tuple to tuple space in order to resume
the execution of a blocked agent that waits for that tuple and this is done using new Tuple event. The
agent manager is also responsible for marshaling, un-marshaling, allocating memory and executing the
agents. Therefore, it uses the agent Arriving event of agent transmitter component [that is shown in
Figure 7(b)] to be aware when an agent wants to migrate to its host. Before an agent migrate to another
node, the agent Arriving event of transmitter component in destination node fires and informs the
agent manager. Agent manager then checks the available resources such as memory and decides
whether to allow the migration or not. If migration is allowed, agent transmitter downloads the agent
and informs the agent manager that the migration is completed using agent Arrived event. After that,
agent manager un-marshals arrived agent and prepares it for execution.

Service manager interface which is shown in Figure 8(a) provides a command named
detDwnServices. At node startup and after determination of closest code repository and service registry
addresses, agent manager calls the detDwnServices command. As a result of executing this command,
service manager detects the connected sensors to the node and downloads the proper proxy agent for
each sensor.

Sensors 2011, 11 10359

Figure 7. Key interfaces in SOMM (a) tuple space interface; (b) agent transmitter interface;
(c) instruction interface; and (d) interpreter interface.

interface ITupleSpaceManager{

//standard tuple space operations

command result_t out (tuple *tuple);

command result_t in (tuple *pattern);

command result_t rd (tuple *pattern);

command result_t inp (tuple *pattern);

command result_t rdp (tuple *pattern);

//notify that an in or rd command is completed

event void tupleReady (tuple *tuple);

//notify that a tuple is inserted in tuple space

event void newTuple (tuple *tuple);

}

(a)
interface IAgentTransmitter{

// sends a marshaled agent to a specified node

command result_t sendAgent(marshaledAgent *agent,uint_t

nodeID);

//downloads and agent from code repository

command result_t dwnAgent(uint_t agendtID);

//notify whether agent successfully sent or not

event void agentSendDone(uint8_t status);

//notify that an agent is arrived

event void agentArrived(marshaledAgent *agent);

//notify that an agent wants to migrate to this node

event result_t agentArriving(resource *requiredResources);

}

(b)
interface IByteCode{

// executes the specified instruction

command result_t execute(uint8_t instr,AgentContext *context);

}

(c)
interface IAgentInterpreter{

// executes current instruction of specified agent

command result_t run(AgentContext *context);

}

(d)

5.3. The Key Components of Middleware and Their Relations

The key components of SOMM and their relationships are depicted in Figure 9. SOMM supports
having multiple agents in the network and also in a node at the same time. However the locking
mechanism provided by SOMM allows the programmer to prevent the node from providing multiple

Sensors 2011, 11 10360

services at the same time, having multiple agents in a node is necessary. Because some situations may
exist in which a node should provide multiple low quality services which do not need locking
mechanism. Also since two types of agents exist in the SOMM (proxy agent and service agent),
SOMM should provide facilities for simultaneous execution of these agents in a node.

When multiple agents exist in a node, it is important to share the CPU time between them. In
SOMM, it is the agent manager component that performs this job. The agent manager executes agents
using Round Robin policy. Scheduling in virtual machine based middlewares such as Agilla [3] and
Mate [7] is at instruction level; which means that each time an executable entity (e.g., process, agent or
capsule) grabs the CPU, the scheduler executes a fixed number of its instructions and then allocates the
CPU to the next entity. For example, Agilla executes four instructions of an agent in each turn by
default. SOMM also performs the similar way; which means that the agent manager that is responsible
for executing agents, executes four instructions of the active agent in each turn.

As shown in Figure 9, agent manager uses the interpreter component to execute agents. To execute
each instruction, agent manager calls the interpreter and the interpreter uses the corresponding Opcode
component to execute the instruction.

Figure 8. Key interfaces of SOMM (a) service manager interface; (b) QoS aware routing
interface; (c) message dispatcher interface; and (d) agent manager interface.

interface IServiceManager{

// search the service registry for nodes that provide a

// specified service

command result_t querySR(service *serviceSpec);

// search the code repository for different implementations of

// a specified service

command result_t queryCR(service *serviceSpec);

// informs the service registry that a specified service is

// disabled

command result_t disService(service *serviceSpec);

// informs the service registry that a specified service is

// enabled

command result_t enService(service *serviceSpec);

// disables all services of this node in service registry

command result_t disAllService();

// enables all services of this node in service registry

command result_t enAllService();

// detects available sensors on this node and downloads

// appropriate proxy agents

command result_t detDwnServices();

// register a specified service in the service registry

command result_t registerService(service *serviceSpec);

}

(a)

Sensors 2011, 11 10361

Figure 8. Cont.

interface IQosRouter{

// sends a message to sink or a specified node

command result_t send(message_t message, uint_t nodeID);

// sends a message to node neighbors and informs them that

// this node is busy

command result_t disServices();

// sends a message to node neighbors and informs them that

// this node is free

command result_t enServices();

// updates the neighbors table and mark a specified node as a

// busy node

command result_t setBusy(uint_t nodeID);

// updates the neighbors table and mark a specified node as a

// free node

command result_t setFree(uint_t nodeID);

// obtains neighbors information

command result_t getNeighboursInf();

// notify whether message successfully sent or not

event void SendDone(uint8_t status);

// notify that an agent is arrived

event void messageArrived(message_t *message);

}

(b)
interface IMessageDispatcher{

// invokes an appropriate component based on message Type

command result_t dispMessage(message_t message);

}

(c)
interface IAgentManager{

// marshals an agent and sends it to destination node

command result_t migrateAgent(AgentContext *agent, uint_t

nodeID);

// un-marshals an agent and runs it

command result_t unmarshalAgent(marshaledAgent *agent);

// blocks an agent that executed a blocking instruction

command result_t blockAgent(AgentContext *agent);

}

(d)

To better understand the behavior of SOMM components, Figure 10 shows the sequence diagram

for registering services scenario at the startup a node. As it is shown, agent manager calls the
detDwnServices command of service manager; service manager detects the connected sensors using
underlying operating system and service manager calls the dwnAgent command of agent transmitter to
download the proxy agent for each sensor. Agent transmitter then downloads the appropriate proxy
agent from code repository by sending and receiving messages to the code repository using QoS aware

Sensors 2011, 11 10362

router component. When an agent transmitter downloads the agent, it delivers the agent to the agent
manager and the agent manager executes the agent after un-marshaling it. Some of the details such as
exchanged messages between agent transmitter and code repository during downloading agents are
omitted from Figure 10 for the purpose of readability.

Figure 9. The key components of SOMM.

When a proxy agents starts, it registers its service in service registry using regserv command. To

execute an agent, the agent manager calls the run command of interpreter and passes the agent as a
parameter. When execution of a proxy agent reaches to the regserv instruction, the interpreter uses the
Opregserv component to interpret the instruction. The Opregserv component is also calls the
registerService command of the service manager. The service manager then registers the service by
exchanging messages with the service registry using a QoS aware router and after that, the agent
manager takes the control of CPU to execute another instruction.

Sensors 2011, 11 10363

Figure 10. Sequence diagram for the startup process of a node.

AgentManager ServiceManager Code Repository Service RegistryInterpreter OpregservQosAwareRouter

detDwnServices

AgentTransmitter

dwnAgent

send

dwnAgent message

Marshaled Agent

Marshaled Agent

unmarshalAgent

run

execute

registerService

send

regserv message

status

status

6. Assessing Middleware Design

The objective of this section is to assess the effectiveness of SOMM in enabling a flexible,
modifiable, reusable and scalable design of GWMSN applications. For this purpose, we discuss about
how SOMM achieved its main goals and after comparing SOMM with other middlewares, we propose
a case study to show the usefulness of SOMM.

Sensors 2011, 11 10364

6.1. Middleware Design Goals

As we mentioned earlier, the main goal of SOMM is enabling low cost design and development of
modifiable and scalable applications for GWMSNs. In the following, we discuss about the question
that whether SOMM has reached its goals or not:

6.1.1. Modifiability

Whenever the cost of modifying a system after its deployment is smaller, it is said that the system is
more modifiable. As the lifetime of a system become longer, the probability that the system need to be
modified increases and the modifiability of the system becomes more important. Due to the long
lifetime of WSNs, the modifiability of WSN application has high importance, but current
programming frameworks for WSNs does not provide satisfactory facilities for developing modifiable
applications and therefore the cost of modifying a WSN application is very high. For example if an
application needs to be changed, all nodes of network must be reprogrammed. Reprogramming all
nodes of the network consumes a lot of energy and hence, it is a costly task. To increase modifiability,
SOMM uses a virtual machine which supports mobile agents. Virtual machine makes the applications
much smaller and as a result, decreases the cost of modifying them. Having small applications also
decreases the energy consumption and cost of reprogramming. SOMM also defines some code
repository in the network as places for storing mobile agents. These two concepts highly increase the
modifiability of the applications. Applications can be defined as multiple agents collaborating with
each other and modifying and replacing an agent is as easy as only replacing it in code repository and
there is no need to reprogram all node of network.

6.1.2. Scalability

In a WSN, scalability can be seen from two points of view. From the first, scalability stands for
software scalability and from the second, scalability refers to hardware scalability. Software scalability
means that extending network applications and adding new functionalities can be done easily. Also,
hardware scalability refers to the ease of adding new nodes with different capabilities to the network.
SOMM improves both hardware and software scalability. Using SOMM, adding new nodes to a
network is as easy as installing the SOMM on nodes and adding them to the network. SOMM
automatically detects the hardware capabilities of new nodes and downloads appropriate services for
them. In the absence of SOMM, all nodes must have all applications and therefore to add new program
to the network, it must be sent to all nodes. Consequently, the number of applications in a network is
bounded by the limited memory of nodes and this limits the software scalability. SOMM solves these
problems by using code repositories and service registries. In the presence of SOMM, services are kept
in code repositories and therefore the maximum number of services in SOMM is bounded to the
available memory in code repository nodes which are rich nodes regarding to available memory.
Nodes can download codes of services based on their needs and service registry nodes help the clients
to find the appropriate node which can provide their needed services.

Sensors 2011, 11 10365

6.2. Comparing with Other Middlewares

In this section, we compared SOMM with previously mentioned middlewares by concentrating on
how well they meet the design criteria. Table 1 shows the main features of these middlewares beside
the level that each middleware satisfies each of design criterions and in the follow, these features have
been described in more detail.

Table 1. Comparing SOMM with other middlewares.

Middleware Key features Scalability
Power

awareness
ModifiabilityHeterogeneity

Ease of
use

General
purpose

Mate [7,8]
Virtual machine, small
size applications, per-
module reprogramming

Medium Medium Medium Medium Low High

Cougar [12]

Virtual relational
database, Abstract
DataTypes, SQL Like
Language, In-network
query processing

Low Medium Low Low High High

MiLAN [11]

Macro-programming with
high level concerns, QoS
based efficient execution
planning, Network
protocol stack

Low High Low Low High High

Middleware Key features Scalability
Power

awareness
Modifiability Heterogeneity

Ease of
use

General
purpose

TinyDB [4]

Virtual relational
database, Acquisitional
query processing,
Semantic routing tree,
Power aware query
optimization

Low High Low Low High High

Agilla [3,10]

Virtual machine,
Autonomous mobile
agents, Tuple space,
supporting self-adaptive
applications

Medium Medium Medium Medium Medium High

Kairos [13]

Macro-programming,
Caching with eventual
consistency, Language
independent

Low Medium Medium Low High High

Sensors 2011, 11 10366

Table 1. Cont.

Middleware Key features Scalability
Power

awareness
ModifiabilityHeterogeneity

Ease
of use

General
purpose

Impala [9]
Modular programming,
Mobile agents, Dynamic
code update

Medium Medium Medium Low Medium Low

TinySOA
[22,23]

Service oriented model,
Internet accessible via
web services

High Medium Medium Medium High High

SOMM

Multimedia support, QoS
awareness, Service
oriented model, Virtual
machine, Mobile Agents,
Tuple space

High Medium High High MediumMedium

6.2.1. Scalability

Mate supports scalability by using active messages [30] to update the network protocols and
parameters by injecting new capsules. It facilitates the addition of new nodes to the network but the
number of concurrent applications in Mate is very limited because of maintaining all applications in all
nodes of network. Cougar and TinyDB use a centralized optimizer to maintain a global knowledge of
the network and since the dynamic nature of large-scale sensor networks poses a problem for this
centralized approach, these middlewares do not support scalability. MiLAN tackles the scalability
challenge by providing application driven network management. Agilla and Impala provide application
adaptation at runtime and therefore scalability using mobile agents and a suitable architecture model.
Kairos is not scalable because it does not provide the ability for applications to fully control the
underlying runtime resources. TinySOA provides a highly scalable framework by using service
oriented architecture. Also as we mentioned in previous sub-section, SOMM provides highly scalable
platform by using SOA and the concepts of code repositories and service registries and also the ability
to automatically detect and register capabilities of nodes.

6.2.2. Power Awareness

Mate and Agilla are not efficient in term of power awareness. Their virtual machine and instruction
interpreter increases the energy consumption of network. However, Agilla provides an energy efficient
mechanism for application modification by using mobile agents that can be updated separately, but if
an agent in Agilla needs to be replaced with a new one, the new agent should be propagated to all
nodes of network and this task consumes a lot of energy. Impala supports energy efficient application
modification by allowing the application to be as modular as possible. The key idea is changing a
small module of an application needs less energy with comparison to updating the whole application.
MiLAN supports energy efficiency by dynamically configuring the underlying network protocol based
on the specified QoS by the application. This middleware tunes the network parameters at runtime
regarding to application needs and with the goal of minimizing the energy consumption of network.
Cougar is not energy efficient because it uses the worthful resources to transfer the large amounts of

Sensors 2011, 11 10367

unprocessed data from sensor nodes to its database server. Mate supports the energy efficiency by
providing grouped aggregation queries using aggregation function. This results in an appreciable
bandwidth and energy savings by decreasing the amount of data that should be transferred through the
network. Also TinySOA is not fully power aware because it transfers and caches all sensor reading
to its database which wastes the resources of network. However SOMM increases the energy
efficiency of application modification and node reprogramming by using the concepts of mobile agents
and code repositories, the virtual machine used in SOMM introduces some overhead due to its
instruction interpretation.

6.2.3. Modifiability

Agilla and Mate support modifiability by using virtual machines. Thanks to the virtual machine
approach, applications in Mate and also agents in Agilla can be updated without need for
reprogramming sensor nodes. Also, it is possible to add new applications to the network after
deployment. Cougar and TinyDB are modifiable since adding new capabilities requires modifying the
query processor in all sensor nodes. MiLAN is also not modifiable because of its tight coupling with
applications. Impala supports modifiability by using mobile agents and modular programming. A
module of an application can be updated without need to update the whole application. As mentioned
in the previous sub-section, modifiability in SOMM is supported via mobile agents and code
repositories.

6.2.4. Heterogeneity

Mate and Agilla provide APIs supplemented by virtual machines and hence they support
heterogeneity. Impala is designed to run only on Hewlett-Packard/Compaq iPAQ Pocket PC handhelds
running Linux and it does not support heterogeneity of sensor nodes. Cougar and TinyDB which try to
manage large scale networks in a centralized fashion do not support heterogeneity, since heterogeneity
of nodes in a large scale sensor network increases the complexities of centralized management of
them. MiLAN is an application driven middleware and the tight coupling between this middleware and
its applications results in the lack of support for operating systems and hardware heterogeneity.
TinySOA is developed on top of TinyOS operating system and utilizes the platform heterogeneity
provided by this operating system and hence it can be installed on different hardware platforms that
TinyOS supports. SOMM is capable of handling heterogeneous nodes with different capabilities and
also because of its use of virtual machines; it is possible to have different platforms with different
operating systems in the network if needed.

6.2.5. Ease of Use

The only mechanism which Mate and Agilla provide for developing applications is byte code
programming. Thus, these middlewares are not very easy to use. A high level language is needed to
help programmers with the task of programming. Impala makes the task of programming easy by
providing a modular programming API.

Cougar and TinyDB offer an easy-to-use database query system for different network operations.
These middlewares provide an abstract view of the network to the user as a single entity and make the

Sensors 2011, 11 10368

distribution issues hidden. As a result, the user does not need to deal with low-level APIs in the sensor
node. MiLAN helps the programmer with an easy to use approach which is concentrated on high-level
abstractions. TinySOA provides a set of web services which programmers can write applications to
employ them. This way, programmers can easily obtain network services using any programming
language that supports web service communication. Since current implementation of SOMM only
comprises byte code, it is not very easy to use; a high level language and programming model for
application development are needed in order to simplify the programmer’s task.

6.2.6. General Purpose

All the mentioned middlewares are general purpose middlewares, excluding Impala which is
specially designed for a wildlife tracking project called ZebraNet. SOMM is a special purpose
middleware designed to support multimedia transmission in a sensor network. However, it is possible
to use this middleware in other types of WSNs.

6.3. Usability Case Study

In this section, we propose a case study to assay the capabilities of SOMM for developing applications
for a real world scenario.

Consider a sensor network like the one in Figure 1 spread throughout a city. Suppose that the nodes
of this network are multimedia nodes with different capabilities. The traffic control organization
(TCO) and the police are two clients of this network. The TCO continuously uses the network and
collects the traffic information of whole city, but the police use the network only when they need to
monitor an area of the city. When the police uses the network, it needs a high quality service and is
also takes priority over TCO. We want to use SOMM to develop necessary applications for this
scenario.

The TCO application which runs continuously must be very energy efficient. Therefore, it provides
two types of services. The first service is a low quality service and instead of sending a video stream
for its client, it periodically extracts important information such as average speed and number of cars
and sends them to its client. It can detect unusual events like accidents and also can search its field of
view for a specified car and inform the client. The second service is a video streaming service which
streams video to client considering its QoS requirements. Normally, the TCO uses the first service in
order to save network’s resources. If received information shows an abnormal event like dense traffic
or an accident, the TCO employs the second service to precisely monitor that event and make proper
decisions.

The police needs a tracking service to carry out their missions. This service also should preserve the
QoSto where it is possible. Suppose that a car is stolen and the police suspect that the stolen car is in a
wide area of the city and therefore it should monitor the whole area to find the car. The police sends
the characteristics of stolen car to all the nodes in that area and asks them to announce when they
detect the car. When a node detects the stolen car, it informs the police and at this time, the police
makes use of the tracking service. The agent that is responsible for tracking service, as well as sending
a video stream to its client also detects the direction of the target and finds the node that the target is

Sensors 2011, 11 10369

going toward its field of view and clones itself on that node. Using this technique, the tracking agent
can precisely track its target.

Suppose that the target of tracking agent arrives to an area that is under monitoring of TCO using its
second service. As we mentioned, the TCO’s second service is a high quality service and it locks the
intermediate nodes in order to preserve its QoS. The tracking agent needs to clone itself to a node that
is locked by the TCO service. Although SOMM does not provide any facilities for priority based
resource management in the network, it is possible to solve the contention problem between the TCO
service and the police tracking service using SOMM primitives. To solve this problem, all we need is
an agreement on a predefined tuple template between the TCO service and tracking service. This tuple
template is for notifying the TCO service that the police needs its node. When the tracking agent
reaches a node that is under control of the TCO service, it puts a tuple with the predefined template in
tuple space of that node. When the TCO service detects the mentioned tuple, it informs its client that
the node is under control of the police and stops sending data. After the tracking agent finished its
work and released that node, the TCO service on that node can resume its work.

7. Conclusions and Future Works

This paper has presented the so-called SOMM middleware, a service oriented middleware which is
developed to support the programmers of GWMSNs applications. The main goal of SOMM was to
enable the development of modifiable and scalable applications for GWMSNs. SOMM uses mobile
agents as the entities which provide services to network clients and also the concept of code repository
as a place to store different agents. In a network which uses SOMM, multiple agents are executed at
the same time. This way the network can handle multiple clients simultaneously. Although our initial
investigations clearly demonstrate the usefulness of SOMM to support a wide range of GWMSN
applications, we also plan to extensively evaluate both qualitatively and quantitatively the advantages
brought by SOMM to the application developers, e.g., in terms of code complexity and inter-service
dependencies. Also for the reason that the programming using byte-code is a tedious task, we plan to
develop a high level language for SOMM to further simplify the task of programming for GWMSNs.

Acknowledgments

This research has been done by financial support of Shahid Beheshti University research chancellor
under Contract No.: 600/915-90/6/14.

References

1. Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. A survey on wireless multimedia sensor networks.
Comput. Netw. 2006, 51, 921-960.

2. Rezgui, A.; Eltoweissy, M. Service-oriented sensor–actuator networks: Promises, challenges, and
the road ahead. Comput. Commun. 2007, 30, 2627-2648.

3. Fok, C.-L.; Roman, G.-C.; Lu, C. Agilla: A mobile agent middleware for self-adaptive wireless
sensor networks. ACM TAAS 2009, 4, doi:10.1145/1552297.1552299.

4. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An Acquisitional query
processing system for sensor networks. ACM TODS 2005, 30, 122-173.

Sensors 2011, 11 10370

5. Hadim, S.; Mohamed, N. Middleware: Middleware challenges and approaches for wireless sensor
networks. IEEE Distrib. Syst. Online 2006, 7, 1.

6. Sugihara, R.; Gupta, R.K. Programming models for sensor networks: A survey. ACM Trans. Sens.
Netw. 2008, 4, 1-29.

7. Levis, P.; Culler, D. Mate: A Tiny Virtual Machine for Sensor Networks. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, USA, 5–9 October 2002; pp. 85-95.

8. Levis, P.; Gay, D.; Culler, D. Bridging the Gap: Programming Sensor Networks with Application
Specific Virtual Machines. In Proceedings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 04), San Francisco, CA, USA, 6–8 December 2004.

9. Liu, T.; Martonosi, M. Impala: A Middleware System for Managing Autonomic, Parallel Sensor
Systems. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 03), San Diego, CA, USA, 11–13 June 2003; pp. 107-118.

10. Fok, C.-L.; Roman, G.-C.; Lu, C. Rapid Development and Flexible Deployment of Adaptive
Wireless Sensor Network Applications. In Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems (ICSCS’05), Columbus, OH, USA, 6–10 June
2005; pp. 653-662.

11. Heinzelman, W.B.; Murphy, A.L.; Carvalho, H.S.; Perillo, M.A. Middleware to support sensor
network applications. IEEE Network 2004, 18, 6-14.

12. Romer, K. Programming Paradigms and Middleware for Sensor Networks, In Proceedings of the
GI/ITG Workshop on Sensor Networks, Karlsruhe, Germany, 26–27 February 2004; pp. 49-54.

13. Gummadi, R.; Gnawali, O.; Govindan, R. Macro-Programming Wireless Sensor Networks Using
Kairos. In Proceedings of International Conference on Distributed Computing in Sensor Systems
(DCOSS 05), Marina del Rey, CA, USA, 30 June–1 July 2005; pp. 126-140.

14. Hill, J.; Szewczyk, R.; Woo, A.; Hollar, S.; Culler, D.; Piste, K. System architecture directions for
networked sensors. ACM SIGOPS Oper. Syst. Rev. 2000, 34, 93-104.

15. Chatzigiannakis, I.; Kinalis, A.; Nikoletseas, S. Sink Mobility Protocols for Data Collection in
Wireless Sensor Networks. In Proceedings of the 4th ACM International Workshop on Mobility
Management and Wireless Access, Terromolinos, Spain, 2–6 October 2006; pp. 52-59.

16. Luo, J.; Hubaux, J.P. Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor
Networks. In Proceedings of the IEEE INFOCOM 2005 and 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005;
pp. 1735-1746.

17. Luo, J.; Panchard, J.; Piórkowski, M.; Grossglauser, M.; Hubaux, J.-P. MobiRoute: Routing
Towards a Mobile Sink for Improving Lifetime in Sensor Networks. In Distributed Computing
in Sensor Systems; Gibbons, P., Abdelzaher, T., Aspnes, J., Rao, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4026, pp. 480-497.

18. Prem Prakash, J.; Zaslavsky, A.; Delsing, J. Sensor Data Collection Using Heterogeneous Mobile
Devices. In Proceedings of the IEEE International Conference on Pervasive Services, Istanbul,
Turkey, 15–20 July 2007; Arkady, Z., Jerker, D., Eds.; 2007; pp. 161-164.

Sensors 2011, 11 10371

19. Juang, P.; Oki, H.; Wang, Y.; Martonosi, M.; Peh, L.-S.; Rubenstein, D. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet.
In Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), San Jose, CA, USA, 5–9 October, 2002;
pp. 96-107.

20. Henricksen, K.; Robinson, R. A Survey of Middleware for Sensor Networks: State-of-the-Art and
Future Directions. In Proceedings of the International Workshop on Middleware for Sensor
Networks, Melbourne, Australia, 28 November 2006; pp. 60-65.

21. Kandris, D.; Tsagkaropoulos, M.; Politis, I.; Tzes, A.; Kotsopoulos, S. Energy efficient and
perceived QoS aware video routing over Wireless Multimedia Sensor Networks. Ad Hoc
Networks 2011, 9, 591-607.

22. Avilés-López, E.; García-Macías, J.A. TinySOA: A service-oriented architecture for wireless
sensor networks. Serv. Orient. Comput. Appl. 2009, 3, 99-108.

23. Avilés-López, E.; García-Macías, J.A. Providing Service-Oriented Abstractions for the Wireless
Sensor Grid. In Advances in Grid and Pervasive Computing; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 710-715.

24. Prinsloo, J.M.; Schulz, C.L.; Kourie, D.G. A Service Oriented Architecture for Wireless Sensor
and Actor Network Applications. In Proceedings of the 2006 Annual Research Conference
of the South African Institute of Computer Scientists and Information Technologists on IT,
Somerset West, South Africa, 11–13 September 2006; pp. 145-154.

25. Gelernter, D. Generative communication in Linda. ACM TOPLAS 1985, 7, 80-112.
26. Costa, P.; Mottola, L.; Picco, G.P.; Murphy, A.L. Programming Wireless Sensor Networks with

the TeenyLIME Middleware. In Proceedings of the ACM/IFIP/USENIX 2007 International
Conference on Middleware, Newport Beach, CA, USA, 26–30 November 2007; pp. 429-449.

27. Curino, C.; Giani, M.; Giorgetta, M.; Giusti, A. TinyLIME: Bridging Mobile and Sensor
Networks through Middleware. In Proceedings of the 3rd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2005), Kauai Island, HI, USA, 8–12 March
2005; pp. 61-72.

28. Zhang, L.; Deering, S.; Estrin, D.; Shenker, S.; Zappala, D. RSVP: A New resource resevation
protocol. IEEE Network Mag. 1993, 7, 126.

29. Gay, D.; Levis, P.; Behren, R.V.; Welsh, M.; Brewer, E.; Culler, D. The nesC Language: A
Holistic Approach to Networked Embedded Systems. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, San Diego, CA, USA, 9–11
June 2003.

30. Von, Eicken, T.; Culler, D.; Goldstein, S.; Schauser, K. Active Messages: A Mechanism for
Integrated Communication and Computation. In Proceedings of the 19th International Symposium
on Computer Architecture, Gold Coast, Australia, 19–21 May 1992.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /Algerian
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Basemic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DejaVuSans
 /DejaVuSans-Bold
 /DejaVuSans-BoldOblique
 /DejaVuSansCondensed
 /DejaVuSansCondensed-Bold
 /DejaVuSansCondensed-BoldOblique
 /DejaVuSansCondensed-Oblique
 /DejaVuSans-ExtraLight
 /DejaVuSansMono
 /DejaVuSansMono-Bold
 /DejaVuSansMono-BoldOblique
 /DejaVuSansMono-Oblique
 /DejaVuSans-Oblique
 /DejaVuSerif
 /DejaVuSerif-Bold
 /DejaVuSerif-BoldItalic
 /DejaVuSerifCondensed
 /DejaVuSerifCondensed-Bold
 /DejaVuSerifCondensed-BoldItalic
 /DejaVuSerifCondensed-Italic
 /DejaVuSerif-Italic
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /GentiumBasic
 /GentiumBasic-Bold
 /GentiumBasic-BoldItalic
 /GentiumBasic-Italic
 /GentiumBookBasic
 /GentiumBookBasic-Bold
 /GentiumBookBasic-BoldItalic
 /GentiumBookBasic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kingsoft-Phonetic
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LevenimMT
 /LevenimMTBold
 /LiberationSansNarrow
 /LiberationSansNarrow-Bold
 /LiberationSansNarrow-BoldItalic
 /LiberationSansNarrow-Italic
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MVBoli
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OpenSymbol
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

