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Metabolic stratification of human
breast tumors reveal subtypes
of clinical and therapeutic relevance

Mohammad A. Iqbal,1,2,10,* Shumaila Siddiqui,3,11 Kirk Smith,4,11 Prithvi Singh,5 Bhupender Kumar,6

Salem Chouaib,1,2,7 and Sriram Chandrasekaran4,8,9,*

SUMMARY

Extensive metabolic heterogeneity in breast cancers has limited the deployment of metabolic therapies.
To enable patient stratification, we studied the metabolic landscape in breast cancers (�3000 patients
combined) and identified three subtypes with increasing degrees of metabolic deregulation. Subtype
M1 was found to be dependent on bile-acid biosynthesis, whereas M2 showed reliance on methionine
pathway, and M3 engaged fatty-acid, nucleotide, and glucose metabolism. The extent of metabolic alter-
ations correlated stronglywith tumor aggressiveness and patient outcome. This patternwas reproducible
in independent datasets and using in vivo tumor metabolite data. Using machine-learning, we identified
robust and generalizable signatures of metabolic subtypes in tumors and cell lines. Experimental inhibi-
tion of metabolic pathways in cell lines representing metabolic subtypes revealed subtype-specific sensi-
tivity, therapeutically relevant drugs, and promising combination therapies. Taken together, metabolic
stratification of breast cancers can thus aid in predicting patient outcome and designing precision
therapies.

INTRODUCTION

Cancer cells undergo reprogramming of metabolic pathways to satisfy their metabolic demands.1 In recent years, accumulating evidence

points to the role of metabolic reprogramming beyond providing energy and biomass such as influencing gene regulation,2 epigenetic regu-

lation,3 DNA repair,4 cell cycle,5 apoptosis,6 angiogenesis,7 metastasis,8 inflammation9 and immune evasion.10 Cancer metabolism has also

been implicated in chemo- and radioresistance.11,12 Consequently, cancermetabolism is perceived as a therapeutic hotspot.13 However, clin-

ical targeting of this hallmark to get desirable results has been challenging.14,15 This in part is due to our limited understanding of the

complexity and dynamics of metabolic pathways in cancer. Most of the studies exploring cancer metabolism focus on a particular metabolic

perturbation. However, metabolic reprogramming is muchmore complicated, as it may involve the derangement of numerous pathways syn-

ergistically promoting tumor growth.Moreover, tumormetabolism exhibits flexibility and plasticity in relation to genetic heterogeneity, tissue

biology and tumor microenvironment.16 Taken together, a full spectrum of metabolic perturbations needs to be elucidated and a context-

specific stratification of tumors is warranted for better understanding of metabolic heterogeneity and to design coherent treatments.

Multiomics analysis of patient tumors provides insights into molecular differences, diseasemarkers, and biological pathways, and is thus a

powerful tool for precision medicine.17 In our previous work, using multiomics data, we discovered antagonistic roles of epigenetic readers

CBX2 and CBX7 in breast cancer metabolism.18 Genomic and transcriptomic analysis of pan-cancer samples provided useful insights into

metabolic perturbations in cancer.19–22 Studies applying pathway-based approaches on diverse cancer types provided a richer comparative

understanding on howmetabolism differs across different cancers.23,24 However, pathway-based analysis of metabolism across multiple can-

cers provides a ‘‘zoomed-out’’ view of the metabolic landscape within a cancer type. It is crucial to analyze a ‘‘zoomed-in’’ view of metabolism

that exists within a cancer type to be able to understand the depth of heterogeneity and identify metabolic subtypes. With regards to breast
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cancer, studies have shown the existence of metabolic heterogeneity,25,26 however, a pathway-based global metabolic view of breast cancer

and the clinical relevance of metabolic subtypes remains poorly understood.

Here, we use a systems approach to stratify patients based on their metabolic types, validate these patterns in independent cohorts, study

the subtype genomic alterations, biological pathways, and clinical parameters, and identify likely treatment responses in a context-specific

manner.

RESULTS

Pathway-based analysis of breast cancer metabolism reveals three distinct metabolic subtypes

To investigate the metabolic landscape of breast tumors, we interrogated the METABRIC dataset of 1987 tumors (5 samples removed for

missing expression values) and 144 normal samples. Gene sets were generated using 1519 metabolic genes from Recon1, with each set rep-

resenting one of the 90 metabolic pathways.27,28 Using the gene sets’ expression data as input into Pathifier, we calculated pathway dereg-

ulation scores (PDS) for the 90 pathways in each tumor and normal sample in the discovery and validation cohorts. Pathifer is a powerful tool

that converts gene-level information into pathway-level information and assigns a deregulation score based on the extent of deviation of a

pathway from normal samples. Based on the PDS of 90 pathways, normal and tumor samples showed discriminating metabolic profile with

much higher degree of metabolic deregulation observed in tumor samples (Figures S1A–S1C).

Moreover, the metabolic deregulation in tumors showed a high degree of heterogeneity compared to normal samples (Figure S1D), sug-

gesting the existence of metabolic subtypes in breast tumors. Hence, we used a 2-fold approach employing consensus clustering and

NbClust, to identify the number of metabolic clusters in tumor samples based on supplied PDS values (Figure 1A). Both approaches

concurred strongly to suggest the number of clusters to be three, in both discovery and validation sets (Figures S2A and S2B). Then, using

k-means clustering (k = 3), samples were clustered based on PDS and top deregulated pathways unique to each cluster were identified (Fig-

ure 1B). For instance, deregulated bile acid metabolism was found to be associated with the M1 subtype whereas methionine and pyrimidine

metabolism were associated with M2 and M3 subtypes, respectively, along with other pathways (FDR<0.01). Overall, M3 exhibited deregu-

lation in the highest number of pathways whereas M1 showed the least number of pathways deregulated (Figure 1C). Merging the pathways

to super pathways highlighted the deregulation of lipid metabolism pathways in M2, compared to nucleotide and carbohydrate metabolism

pathways in M3 (Figure 1C). Next, to measure the extent of metabolic deregulation in each cluster, Euclidean distance was calculated. As

shown in Figure 1D, Euclidean distance consistently increased fromM1 to M3, suggesting M1 and M3 as least and highest metabolically de-

regulated clusters, respectively. M2, however, exhibited somewhat intermediate deregulation.

To understand the clinical significance of differential metabolic deregulation in breast cancer, survival, and other clinicopathological in-

dicators were examined. Notably, the extent of metabolic deregulation correlated strongly with patient outcome with M3 showing worst

and M1 best prognosis (Figure 1E). Moreover, M3 subtype tumor samples were of higher grade compared to other two subtypes (Figure 1E).

Interestingly, 3-gene classifiers based on ER/HER2 status and proliferation index (one of the clinicopathological indicator of METABRIC sam-

ples, Figure S4) differentiated M2 as being high proliferative compared to M1, albeit both subtypes being predominantly ER-positive (Fig-

ure 1F). Results from the clinicopathological analysis for both cohorts are provided as Figures S3 and S4. All results were reproducible in

the validation set (Figure S2). Additionally, we queried the TCGA dataset, and all key findings were reproduced (Figure S5). In summary, these

results demonstrate the existence of threemajor metabolic subtypes in breast cancer with varying degree of metabolic perturbations, patient

outcome, and other clinicopathological indicators.

Genomic characterization of metabolic subtypes

Amplifications and mutations in key genes are associated with metabolic reprogramming in cancer.29 For instance, MYC amplification and

TP53 mutations have been linked with the rewiring of key metabolic pathways in cancer.30,31 For the identification of mutations related

with each subtype, we focused on forty driver mutations reported in the METABRIC dataset32 and their association with clusters were tested

using the Chi-square test. Contingency tables showing the frequency of top 5 mutations in each cluster are displayed in Figure 2A. TP53mu-

tation is predominant in M3 (80% mutated samples) followed by M2 (28%) and M1 (15%). On the contrary, the PIK3CAmutation showed the

opposite trend with highest in M1 (47%mutated samples), by M2 (39%) andM3 (24%) (Figure 2A).GATA3,MAP3K1 and CDH1 showed a mu-

tation trend such as PIK3CA, that is, decreasing frequency from M1 to M3.

To understand the relation between driver mutations and metabolic subtypes, we performed a correlation analysis of top five driver mu-

tations with all metabolic pathways. Heatmaps revealed strong correlations of TP53mutation with nucleotide metabolism (positive) and bile

acid metabolism (negative) (chi-square test; p < 0.05) (Figure 2A). The correlation behavior of PIK3CA mutation was less pronounced and

opposite to that of TP53.

To study the copy number variations (CNVs) associatedwithmetabolic clusters, cancer genes (OncoKB) with CNVs in 10% ormore samples

were selected and subjected to Kruskal-Wallis testing. All top 5 genes, based on resulting p values, were amplified to the highest degree in

M3, followed by M2 and with least amplification in M1 (Kruskal-Wallis test; p < 0.05) (Figure 2B). The difference in copy number gains for all 5

genes is much less in M2/M3 compared to M1/M3 andM1/M2 scenario, consistent with metabolic deregulation (Figure 1). The correlation of

CNVs with all metabolic pathways exhibited a graded pattern with highest correlations with pyrimidine metabolism and other M3 deregu-

lated pathways followed by M2 and M1 pathways (Figure 2B). As noted in the heatmap, bile acid and methionine metabolism were found

to be negatively correlated with gene amplification (Figure 2B). Combined with mutation data, the M3 subtype demonstrated the strongest

correlation between genomic alterations and metabolism.
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Figure 1. Identification of three metabolic subtypes in breast cancer

(A) Flow chart depicting the analysis pipeline. First, pathway deregulation score (PDS) was calculated for 90 metabolic pathways in each tumor sample using the

Pathifier algorithm. The PDSmatrix generated was then subjected to consensus clustering andNbClust to identify the best number of clusters (k). Finally, k-means

clustering was used to cluster the PDS matrix using k = 3 as identified by 2-fold approach.

(B) Heatmap showing top pathways deregulated in each cluster compared to the remaining two (FDR<0.01 and PDS difference R0.1). PDS value varies from

0 (lowest) to 1 (highest).

(C) Bar chart showing super pathway category of deregulated pathways in M1, M2 and M3.

(D) Box and whiskers plot representing Euclidean distance as a measure of metabolic deregulation.

(E) Relapse free survival (RFS) of three metabolic subtypes with most metabolically deregulated subtype M3 showing worst and least deregulated subtype M1

best RFS.

(F) Heatmap showing the variation in key clinicopathological parameters across three metabolic subtypes. p values were calculated using Kruskal-Wallis test

represented as ****p < 0.0001. For the K-M survival curve, p value was calculated by log rank test.
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Metabolic subtypes and their association with cancer hallmarks

To assess the biological relevance of the metabolic clusters, we calculated the PDS of 50 cancer hallmark pathways (from MSigDB) in each

sample and analyzed their deregulation. As shown in the Figure 3A heatmap, such as metabolic deregulation, deregulation of hallmark path-

ways increased from M1 (lowest) to M3 (highest), FDR < 0.05 (Figures 3A and 3B). Out of six major cancer hallmarks, none was found to be

deregulated in M1, consistent with this cluster’s pattern of least metabolic deregulation and better patient outcome (Figures 1D and 1E).

However, three hallmarks (apoptosis, EMT, and angiogenesis) were deregulated in M2 and another three (inflammatory response, G2M

checkpoint, and DNA repair) were found to be deregulated in M3. Metabolic pathways deregulated in each subtype were positively corre-

lated with each cluster’s hallmark pathways (Figure 3C). For instance, mTORC1 signaling was found to be positively correlated with M3

Figure 2. Genomic characterization of metabolic clusters in breast cancer

(A) TheChi-Square test was applied tomutation data for forty genes inMETABRIC to test for associations with themetabolic clusters. The top five genes based on

the resulting p values are shown in the contingency tables. Pearson’s correlation between these genes’ mutations and metabolic deregulation is shown in the

heatmap.

(B) The Kruskal-Wallis test was applied to CNV data for 1568 (frequency cut-off 10%) genes to test for associations with the metabolic clusters. The top 5 genes

based on the resulting p values are shown via boxplots. Pearson’s correlation between these genes’ CNV and metabolic deregulation is shown in the heatmap.
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Figure 3. Metabolic subtypes and associated cancer hallmarks

(A) Heatmap showing PDS of cancer hallmark pathways (MSigDB); only the top hallmarks pathways deregulated in each cluster compared to remaining two (FDR

< 0.01 and PDS difference R 0.1) are shown.

(B) Bar chart showing number of significantly deregulated pathways in M1, M2 and M3.

(C) The heatmap showing directional correlation between top metabolic and hallmark pathways in each cluster (p < 0.05).

(D) The correlation of all 90 metabolic pathways with six major cancer hallmarks pathways in each metabolic subtype. Only significant correlations are shown

(p < 0.05).
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metabolic pathways but negatively correlated with M2 metabolic pathways. However, the inflammatory response pathway did not show any

positive correlation with M3 or other the two clusters for that matter.

Next, to understandwhether the correlation betweenmetabolic and hallmark pathways is cluster-specific, we studied the association of all

metabolic pathways (in all three clusters) with six cancer hallmarks. Interestingly, a differential correlation of metabolic pathways with six can-

cer hallmarks was observed in three metabolic subtypes (Figure 3C). In other words, correlation between metabolism and hallmark pathways

was found to be dependent on the cluster type. For example, the glycolysis pathway showed a positive correlation with all six hallmarks inM1,

but a predominantly negative correlation in M2 and was relatively insignificant in M3. On the contrary, pyrimidine metabolism showed a

consistent positive correlation with all six hallmarks in all three clusters. Of note, the M1 subtype showed an overall positive correlation be-

tweenmetabolic pathways and cancer hallmarks. Overall, these results highlight that the relationship betweenmetabolic and biological path-

ways is contextual and may change depending on the metabolic subtype of breast tumor.

Machine-learning analysis of the clusters reveals the predictive potential of metabolism

After applying the unsupervised clustering to the METABRIC and TCGA datasets, we set out to show that the clusters could be recaptured

using supervised machine-learning methods. The goal was to use metabolic transcriptomics data to predict the cluster labels (Figure 4A).

Transcriptomics data from the discovery cohort was used to train the initial ridge regressionmodel. This included 993 samples and 1330meta-

bolic genes. Cross-validation was used to test the model’s robustness, in addition to tuning the regularization hyperparameter, alpha. Ag-

gregation of the 5-fold cross-validation predictions indicated that the model was performing well (accuracy = 0.913, Matthew’s correlation

coefficient (MCC) = 0.863). A final model was then trained on the entire discovery dataset, using the tuned value of alpha from the best-per-

forming cross-validation fold. We found that the model tended to perform better with stronger regularization. This was expected due to the

large number of input features (genes), as the regularization parameter prevents the model from over-fitting by reducing the coefficients of

highly correlated and non-contributing features.

The fully trainedmodel was used tomake predictions on the validation and TCGAdatasets, where it also showedgoodperformance (MCC

> 0.614, AUC > 0.877 in both datasets) (Figures 4B and 4C). The strong performance in TCGA data, which used a different transcriptomics

methodology than theMETABRIC training data, suggests that themodel is able to learn robust and generalizable signatures for each cluster.

The ROC curves were generated using the one-vs-rest method, where the classification of each cluster versus the other two is measured. The

confusion matrices and ROC curves indicate that the model had the most difficulty separating patients in the M1 and M2 clusters. This was

expected, as these clusters are metabolically similar relative to M3.

Shapley values were generated for the validation samples, using the discovery-trained model as the input for the SHAP package in Py-

thon.33 SHAP summary plots were created for each class and were used to determine which genes are most positively and negatively asso-

ciated with the clusters, in regards to our model (Figure 4D). Expression of HMGCS2 (steroid metabolism) was positively associated with M1

and negatively with M3. Meanwhile, the model heavily relied on ALDH1A1 (ethanol metabolism) to differentiate between the M1 (lower

expression) and M2 (higher expression) classes. Lower expression of SLC7A2 was the largest driving factor for the model’s prediction of

the M3 cluster.

Metabolomics data is consistent with gene expression-based pathway analysis

To investigate whether gene expression-based pathway analysis of metabolic subtypes is consistent withmetabolite levels in tumors, we used

metabolomics data of 67 breast tumors fromTerunumaet al.34 First, the usingmachine-learning approach described in Figure 4, we predicted

and labeled tumors as M1/M2/M3. Thereafter, we compared 344 annotatedmetabolites (representing 63 pathways) across three subtypes. A

differential metabolite abundance was observed in the three clusters, as shown in the Figure 5A heatmap (top 5 pathways indicated, FDR <

0.05). A similar pattern of perturbation at themetabolite level was observed, withM3 showingmaximal increase in metabolite levels, followed

by M2 and M1 (Figure 5B).

Patient outcome across the three clusters suggested the worst prognosis for M3 and best for M1, consistent with the transcriptomics-

based survival analysis (compare Figures 1E and 5B). The log rank ptrend for survival curves was not significant though (ptrend = 0.15), possibly

due to relatively lower sample size. Furthermore, we compared the abundance of metabolites representing the top 5 pathways that differ

across three subtypes. Interestingly, metabolites of fatty acid (Figure 5C), pyrimidine (Figure 5D), glycolysis (Figure 5E), and pentose sugars

(Figure 5F) metabolism showed highest abundance in M3, whereas bile acid metabolites (Figure 5G) were upregulated in M1. To summarize,

themetabolite-level results were consistent with data obtained from the gene expression-based pathway analysis, demonstrating the robust-

ness of identified metabolic subtypes in breast cancer.

Metabolic subtypes show differential sensitivity to drugs

Next, we were interested in understanding whether cell line characteristics such as doubling time and drug sensitivity are affected by meta-

bolic subtypes. To this end, we first predicted and labeled cell lines asM1 orM2 orM3, using the samemachine learning pipeline as described

above. Expression data of cell lines for prediction purposes was taken from Heiser et al.35 We trained an additional ridge model for making

predictions on the unlabeled cell lines using the entire METABRIC dataset, with the intention of using all available training data in order to

ensure that the cell line cluster predictions were robust. Surprisingly, out of 56 cell lines, no cell line was predicted to represent M1 metabolic

subtype. To rule out algorithmic bias, we repeated the prediction using prediction analysis ofmicroarrays (PAMR), a nearest shrunken centroid
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classifier,36 and obtained the same results with no cell line predicted for M1 metabolic subtype. A possible explanation could be difficulty in

establishing cell lines from less aggressive tumors.37

The doubling time of M3 cell lines was found to be significantly lower than M2 cell lines (p < 0.0021), in agreement with the higher meta-

bolic deregulation in M3 compared to M2 (Figure 6A). Furthermore, cell lines representing the M2 and M3 clusters differed significantly in

their response to metabolic inhibitors. For example, M3 cell lines were found to be more sensitive to inhibitors of pyrimidine (leflunomide),

fatty acid (C75), and glycolysis (CAP232), in accordance with higher deregulation of these three metabolic pathways in M3 tumor samples

(Figure 6A). On the other hand,M2 cell lines were found to bemore sensitive tomethionine deprivation compared toM3 cells, corresponding

Figure 4. Supervised machine-learning analysis of the metabolic clusters

(A) Gene expression samples from the discovery dataset were labeled with the unsupervisedmetabolic cluster results and used to train a ridge regression model.

(B and C) Confusion matrices and ROC curves showing the results of the ridge regression model’s classification of the validation and TCGA samples.

(D) Shapley values indicate which genes were most important for the ridge model’s classification of each cluster.
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Figure 5. Validation of metabolic subtypes using metabolite data

(A) Heatmap showing difference in metabolite levels (FDR < 0.05) across three metabolic subtypes; top 5 pathways are indicated. Metabolomics data of breast

tumors from Terunuma et al.34

(B) Survival and metabolic deregulation (Euclidean distance) based on metabolite data.

(C–G) Boxplots showing the differences in metabolites of fatty acid C), pyrimidine D), glycolysis E), pentose phosphate pathway F) and bile acid metabolism G) in

M1,M2 andM3. Boxplots representminimum,maximum andmedian. p values were calculated using Kruskal-Wallis test represented as represented as *p < 0.03,

**p < 0.0021, ***p < 0.0002, ****p < 0.0001.
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Figure 6. Metabolic subtypes and sensitivity to drugs

(A) Boxplot showing M2 and M3 comparison of doubling time, sensitivity to leflunomide (pyrimidine synthesis inhibitor), C75 (fatty acid synthesis inhibitor) and

CAP232 (glycolysis inhibitor).

(B) Methionine dependency tested on four cell lines collectively representing M2 and M3 subtype.

(C) Cell viability analysis in presence of 10 mg/mL C75, 100 mmol/L leflunomide (LFD) and 1 mmol/L doxorubicin for 24 h in M3 representative cell lines MDA-MB-

231 andMDA-MB-468. For combination treatments, cells were either pretreated with C75 or leflunomide for 12 h before incubation with doxorubicin for another

48 h. DMSO was used as vehicle control.

(D) Drug sensitivities heatmap of cell lines representing M2 and M3 subtype based on data from Heiser et al.35 Vertical red and purple bars indicate top drugs

(p < 0.01) to which M3 andM2 cell lines, respectively, are most sensitive. Gray triangles indicate the direction of decreasing (inverted) or increasing (upright) drug

sensitivities.
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with higher deregulation of methionine metabolism in M2 compared to M3 subtype tumors (Figure 6B). To evaluate if metabolic inhibition

could improve the effect of chemotherapeutic drugs, a combination of leflunomide (pyrimidine inhibitor) or C75 (fatty acid synthesis inhibitor)

with doxorubicin was used. Importantly, up to 35% improved the inhibition of cell growth by doxorubicin was observed in two different M3

group cell lines (Figure 6C).

To further assess the clinical utility of metabolic subtypes, sensitivity data against 77 therapeutic compounds (including FDA-approved

drugs) tested on 45 different breast cancer cell lines from Heiser et al.35 was extracted. As presented in Figure 6D, we identified seven drugs

against M2 and four drugs against M3 with highest sensitivities (FDR < 0.05). Moreover, we evaluated the PRISM database, which records

sensitivities of large numbers of cancer cell lines against > 4500 compounds, to identify repurposing drugs.38 Brigatinib and arecaidine ester

were the most effective inhibitors of M3 and M2 cell lines, respectively (Figure 6E; FDR < 0.05). Upon experimental testing, the M3 cell line

MDA-MB-231 was found to be substantially more sensitive compared to M2 cell line T47D which showed negligible response to brigatinib

dosage (p < 0.0002).

DISCUSSION

Since the discovery of deranged metabolism in cancer cells by Otto Warburg in the 1920s, mounting evidence has been generated that

underlines the biological significance of metabolic transformation in neoplastic progression. It is now well-recognized that metabolic re-

wiring confers a variety of benefits including the promotion of key cancer hallmarks.39 Furthermore, metabolic capacities drive clonal se-

lection during tumor evolution.40 Consequently, metabolic reprogramming is considered a hallmark of therapeutic relevance.13 However,

such as genetic heterogeneity, metabolic heterogeneity could be a challenge in the clinical management of cancer. Therefore, a system-

atic stratification of patients based on metabolic subtype is required for tailoring treatments targeting metabolic liabilities of cancer.

Accordingly, the present study was designed to investigate the metabolic landscape of breast cancer and to identify metabolic subtypes

of clinical relevance.

Analysis of transcriptomics-based deregulation scoring of 90 metabolic pathways provided the first line of evidence that within

breast cancer three metabolic subtypes exists (Figure 1; Figure S1). The use of Euclidean distance metrics provided evidence for the

extent of metabolic deregulation, and a clear pattern of least (M1), intermediate (M2), and most deregulated (M3) subtypes emerged.

Of note, both M1 and M2 samples are largely ER positive, yet their metabolism was found to be different with M2 showing greater

deregulation of pathways than M1 (Figures 1B–1D; Figure S2). Interestingly, METABRIC 3-gene classifier’s high proliferative samples

populated significantly more in M2 compared to M1 (Figure 1). This endorses the relation of cancer metabolism with cell proliferation

and rightly so because cancer metabolism provides for the biosynthetic and energetic demands of growing tumor.1 The higher bile acid

deregulation in the M1 subtype is consistent with reports where the accumulation of bile acids in breast tumors improves clinical

outcome.41 Moreover, the deregulation of methionine metabolism in M2 is in agreement with the study by Toker and colleagues where

they demonstrate that oncogenic PIK3CA creates methionine dependency in breast cancer.42 We also observed deregulated ethanol

metabolism in M2, which was in concurrence with work documenting the role of ethanol in the promotion of proliferation of ER positive

M2-type cell lines such as MCF7 and ZR75.1.43 In short, these consistencies not only highlight the reliability of results, but also under-

score the diverse metabolic dependencies in breast cancer. Moreover, the variation in survival and clinical parameters among the three

clusters emphasize how metabolic subtype is informative about both tumor characteristics and patient outcome (Figures 1E and 1F;

Figures S1F–S1G). The reproducibility of gene expression-based pathway analysis (Figure 1) at metabolite levels in patients with breast

cancer (Figure 5) conveys the robustness of metabolic subtypes. It also demonstrates that metabolic gene expression reflects well on

patient tumor metabolism.

Genomic characterization revealed how oncogenic drivers vary across metabolic clusters. For instance, mutations in TP53 and PIK3CA

behaved contrastingly with regards to their correlation withmetabolic pathways (Figure 2A). Likewise,MYC amplification correlated positively

withM3pathways, such as pyrimidinemetabolism, but negatively with bile acid andmethioninemetabolism, pathways deregulated inM1 and

M2 clusters, respectively (Figure 2B). Unlike mutations, the correlation patterns of PDS across the top 5 amplified genes was well graded,

which is possibly due to a similar pattern of increase in copy number andmetabolic deregulation fromM1 toM3 (Figures 1D and 2B). Overall,

genomic analysis of metabolic clusters revealed that genetic heterogeneity may translate into metabolic heterogeneity, as different onco-

genic drivers may result in different metabolic dependencies.16

The deregulation pattern of hallmark pathways in the three clusters was quite similar to the pattern of metabolic alterations observed,

suggesting a systemic deregulation due to the distinct biology of each cluster (Figures 3A and 3B). However, the positive correlation patterns

between uniquely deregulated metabolic and hallmark pathways in each subtype indicate an interdependence between metabolism and

other biological processes in a cluster-specific manner (Figure 3C). Significantly, the direction of correlation betweenmetabolic and hallmark

pathways appears to be dependent on cluster type, suggesting a heterogeneous role of breast cancer metabolism in relation to the biology

of each subtype (Figure 4D).

Figure 6. Continued

(E) Heatmap showing difference in sensitivities of M2 and M3 type cell lines to repurposing drugs (PRISM). Top 10 drug sensitivities are shown (FDR < 0.05).

Viability after 24 h brigatinib treatment compared experimentally in T47D (M2) and MDA-MB-231 (M3) cell lines. Boxplots represent minimum, maximum and

median. Error bars represent SEM. p values were calculated using Kruskal-Wallis or Mann-Whitney test or ANOVA and represented as *p < 0.03, **p < 0.0021,

***p < 0.0002, ****p < 0.0001.
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Big data analysis using machine learning is a powerful approach for stratifying patients for precision medicine.44 Our supervised machine

learning model showed strong and robust accuracy in both the METABRIC validation and TCGA datasets. Although the model performance

decreased when evaluated on the TCGA dataset, this drop in accuracy could be attributed to differences in measurement platform (micro-

array vs. RNA-seq) betweenMETABRIC and TCGA. Further, most machine learningmodels tend to underperform beyond the data they were

trained on.45 Hence considering these issues, our model’s high AUC of 0.87 in TCGA is quite remarkable. This model can be used to classify

new samples into these three clinically relevant subtypes. It also allowed us to classify model cell lines representing metabolic subtypes to

enable targeted drug discovery.

Metabolic reprogramming is perceived as a promising candidate for anti-cancer therapeutics.46 However, heterogeneity in metabolism

needs to be characterized in a subtype-specific manner to be able to exploit the metabolic liabilities successfully. In line with this view, we

attempted to identify drugs to which cell line model of each metabolic subtype is responsive. Cell line panels are considered an excellent

tool for the preclinical testing of drugs to efficiently identify responsive subtypes for guiding clinical trials.35 Drugs such as gefitinib, trastu-

zumab, lapatinib, imatinib have been identified using cell line panels.47–50 TheM2 andM3 subtypes showingmaximal sensitivity to rapamycin

(mTOR inhibitor) and GSK461364 (Polo-like kinase 1 inhibitor), respectively, is a clinically relevant observation suggesting that M2-and M3-

type patients could benefit from these drugs (Figure 6D). Incidentally, Polo-like kinase 1 (PLK1) inhibitor is over-expressed in aggressive

M3-like breast cancers.51 Additionally, our identification of theM3 subtype sensitivity to brigatinib is an interesting observation with potential

clinical implications (Figure 6E). Brigatinib is an FDA approved drug used for the treatment of patients with metastatic anaplastic lymphoma

kinase (ALK)-positive non-small cell lung cancer (NSCLC).

In conclusion, the metabolism of breast cancer exhibits significant heterogeneity and three metabolic subtypes exist, each with a unique

fingerprint of metabolic deregulation. Further, the metabolic make-up of each subtype is informative about patient outcome and other clin-

ically relevant parameters including sensitivity to anti-cancer drugs. Finally, the results presented suggest targeting metabolic behavior in a

personalized manner could be a way forward in breast cancer therapy.

LIMITATIONS OF THE STUDY

Our study does have certain limitations. The transcriptomics samples in METABRIC were collected from the UK and Canadian tumor banks

with a large majority of patients with European ancestry, and this data may not be representative of other ethnic and racial groups. Further-

more, we have extrapolated tumormetabolic activity using transcriptomics andmetabolomic data. Gene expression andmetabolite levels do

not strongly correlate with metabolic pathway flux. Moreover, given the dynamic nature of metabolism, metabolomics-based subtypes may

not be as consistent as gene expression-based subtypes across datasets. Tumor metabolism may also interconvert between different meta-

bolic subtypes. More complex computational models built using temporal patient samples can be applied in the future to dissect these dy-

namic nonlinear effects.52 Finally, we have validated promising vulnerabilities for each subtype using cell line models; while cell lines have

been a great tool in cancer drug discovery, sensitivities observed in vitro may not necessarily reflect in vivo tumor sensitivity to a drug.
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Mohammad Askandar Iqbal (dr.askandar@gmu.ac.ae).

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Brigatinib MedChemExpress Cat#HY-12857

C75 Sigma-Aldrich Cat#C5490

Doxorubicin Sigma-Aldrich Cat#D5220

Fetal Bovine Serum Gibco Cat#16000044

Leflunomide Sigma-Aldrich Cat#L5025

Penicillin/Streptomycin Gibco Cat#15-140-122

Methionine deficient media Gibco Cat#A1451701

Critical commercial assays

CCK8 kit Abcam Cat#ab228554

Deposited data

Code availability This paper https://github.com/kirksmi/BreastCancerClustering

METABRIC microarray data European Genome-Phenome

Archive

https://ega-archive.org

accession number: EGAD00010000210,

EGAD00010000211, and EGAD00010000212.

METABRIC copy-number and mutation data cbioportal https://www.cbioportal.org

TCGA mRNA-seq and clinical data UCSC Xena http://xena.ucsc.edu

Drug sensitivity data ArrayExpress E-MTAB-181 https://www.ebi.ac.uk/biostudies/arrayexpress/

studies/E-MTAB-181

Metabolomics data Terunuma et al. (GSE37751) https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3871244/

Experimental models: Cell lines

MDA-MB-231 ATCC ATCC HTB-26

MDA-MB-468 ATCC ATCC HTB-132

MCF7 ATCC ATCC HTB-22

T47D ATCC ATCC HTB-133

Software and algorithms

Consensus clustering Gene pattern version 2.0, GSEA http://www.broadinstitute.org/gsea/

GraphPad Prism v8 GraphPad prism software https://www.graphpad.com/features

MSigDB The Broad Institute http://software.broadinstitute.org/gsea/msigdb/index.jsp

Morpheus Broad institute https://software.broadinstitute.org/morpheus/

Pathifier Bioconductor package https://www.bioconductor.org/packages/release/bioc/html/

pathifier.html

Nbclust CRAN https://cran.r-project.org/web/packages/NbClust/index.html

PRISM Broad institute https://depmap.org/repurposing

Python version Python Software Foundation https://www.python.org

SHAP Python https://shap.readthedocs.io/en/latest/
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Materials availability

All data are provided in figures and in the supplementary materials. No materials were generated in this study.

Data and code availability

� No new datasets were generated during the current study.

� Codes used are made available at https://github.com/kirksmi/BreastCancerClustering.
� Information and requests for resources and any additional data should be directed to and will be fulfilled by the lead contact.

METHOD DETAILS

Pathway analysis, clustering, metabolic and clinical analysis of patients with breast cancer

From the European-GenomeArchive (EGA), weobtained transcriptomics and clinical data (N= 1992 tumor, 144 normal) of theMETABRICdata-

set. Details about theMETABRIC patient population, consents, approvals, tissue collection and sample processing are provided in the publica-

tion by Curtis et al.53 Tumor samples were randomly split into discovery (N = 993) and validation (N = 994) cohort using RAND function in excel.

We used 1500metabolic genes from Recon127 to represent 90 metabolic pathways.28 TCGA-BRCA data of 1104 tumor and 114 normal sample

datawereobtained fromUCSCXena. Pathifierwas used to calculate pathwayderegulation score (PDS) ofmetabolic andMSigDBhallmarkpath-

ways for each tumor sample. Pathifier calculatesderegulation scoresbasedon suppliedexpressiondataof gene sets andPDSvalues are normal-

ized between 0 and 1.54 Consensus clustering and NbClust were used to identify the number of clusters in breast tumor samples based on the

PDSof 90pathways in each sample. Consensus clustering is a robustmethod that classifies samples into clusters andprovidemetrics to evaluate

their stability alongwith a heatmap for visualization.55 NbClust uses 30 indices to determine the number of clusters in a dataset and the number

supported by themaximumnumber of indices is usually selected.56Once the cluster number (k = 3) was determined by consensus andNbClust,

k-means clustering was performed and heatmaps were prepared as described here.18 For the validation of subtypes at the metabolite level,

metabolomics, transcriptomics, and survival data of 67 patients with breast cancer were obtained from Terunuma et al.34 Kaplan–Meier curves

were prepared for survival analysis; p values were calculated using the log rank test in GraphPad software.

Genomic analysis

Copy number and mutation data of the METABRIC dataset were taken from cBioportal. For copy number, genes with more than 10% fre-

quency in tumors were subjected to Kruskal-Wallis test to select the ones with significant copy number changes in metabolic clusters. For

mutation analysis, 40 driver mutation genes in METABRIC32 were studied across metabolic subtypes and chi-square tests were used to

find out significant associations.

Machine learning analysis

A ridge regression classification model was trained using the Scikit-Learn package in Python. This algorithm was well-suited for our scenario,

in which there were many features (metabolic genes), some of which are likely to be highly correlated. Ridge regression incorporates L2 reg-

ularization, which adds a penalty to the loss function and helps prevent overfitting. This method helps deal with multi-collinearity and drives

the coefficients of less important features to zero, making it easier to determine which genes are most associated with the clusters. First, a

model was trained on the discovery subset of the METABRIC data, which we referred to as the discovery dataset (994 samples x 1330 meta-

bolic genes). We first used 5-fold cross-validation on this training data to evaluate the model’s robustness before training a final model on the

entire dataset. The final model’s performance was measured by predicting on the METABRIC-validation (993 samples) and TCGA (1087 sam-

ples) datasets. For the ensuing cell line drug sensitivity analysis, we trained an additional model using the entire METABRIC dataset, to in-

crease model’s robustness. The TCGA data was not included due to known differences in the transcriptomics distributions.

For determining which metabolic genes were most important in the ridge regression model we used the SHAP (SHapley Additive

exPlanation) package in Python to generate Shapley values.33 Based on cooperative game theory, Shapley values are essentially calculated

by iteratively adding and removing features from a machine-learning model and using the average change in the model outcome as a mea-

sure of the feature’s contribution. This information provided insight into whether the ridgemodel was more likely to predict theM1, M2 or M3

class as the expression of each gene either increases or decreases.

Drug sensitivity analysis

Drug sensitivity data of breast cancer cell lines against metabolic inhibitors C75, leflunomide and CAP232 were taken fromGenomics of Drug

Sensitivity in Cancer (GDSC). Doubling time anddrug data in Figure 6Dwere obtained fromHeiser et al.35; Z-scores of -log10(GI 50) valueswere

used for heatmap. Repurposing drug sensitivity data (Figure 6E) were obtained from the PRISM resource.38

Cell culture experiments

MDA-MB-231, MDA-MB-468, T47D and MCF7 breast cancer cell lines were procured from the American Type Culture Collection (ATCC),

authenticated through STR profiling and maintained as described.57 Briefly, cell lines were either grown in DMEM or RPMI media (Gibco,

ThermoFisher Scientific Inc., Waltham, MA, USA) supplemented with 10% FBS and 1% penicillin/streptomycin (Gibco). C75, leflunomide
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and doxorubicin were purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in DMSO to prepare stocks of recommended con-

centrations and stored at�80�C until further use. For brigatinib treatment: T47D andMDA-MB-231 cells were treated with indicated concen-

trations of brigatinib (MedChemExpress, NJ, USA) for 24 h. For methionine deprivation: MDA-MB-231, MDA-MB468, T47D and MCF7 cells

were seeded in 24 or 96 well plates and after 24 h spent media was removed and replaced with methionine deficient media and incubated for

additional 24 h. Viability measurements were done using CCK8 assay (Abcam, Cambridge, UK).

Statistical analysis

All experiments were performed in three independent replicates to calculate mean and its standard error (SEM). Unless otherwise noted,

Kruskal-Wallis or Mann-Whitney tests were used to calculate significance and Benjamini-Hochberg procedure was used to calculate false dis-

covery rate (FDR). p < 0.05 was considered statistically significant and denoted as *p < 0.03, **p < 0.0021, ***p < 0.0002, ****p < 0.0001.
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