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Abstract

Dengue is an arbovirus affecting global populations. Frequent outbreaks occur, especially in

equatorial cities such as Singapore, where year-round tropical climate, large daily influx of

travelers and population density provide the ideal conditions for dengue to transmit. Little

work has, however, quantified the peaks of dengue outbreaks, when health systems are

likely to be most stretched. Nor have methods been developed to infer differences in exoge-

nous factors which lead to the rise and fall of dengue case counts across extreme and non-

extreme periods. In this paper, we developed time varying extreme mixture (tvEM) methods

to account for the temporal dependence of dengue case counts across extreme and non-

extreme periods. This approach permits inference of differences in climatic forcing across

non-extreme and extreme periods of dengue case counts, quantification of their temporal

dependence as well as estimation of thresholds with associated uncertainties to determine

dengue case count extremities. Using tvEM, we found no evidence that weather affects den-

gue case counts in the near term for non-extreme periods, but that it has non-linear and

mixed signals in influencing dengue through tvEM parameters in the extreme periods. Using

the most appropriate tvEM specification, we found that a threshold at the 70th (95% credible

interval 41.1, 83.8) quantile is optimal, with extreme events of 526.6, 1052.2 and 1183.6

weekly case counts expected at return periods of 5, 50 and 75 years. Weather parameters

at a 1% scaled increase was found to decrease the long-run expected case counts, but

larger increases would lead to a drastic expected rise from the baseline correspondingly.

The tvEM approach can provide valuable inference on the extremes of time series, which in

the case of infectious disease notifications, allows public health officials to understand the

likely scale of outbreaks in the long run.

Author summary

Dengue is an arbovirus affecting populations across much of the globe. Frequent out-

breaks occur, especially in equatorial cities such as Singapore, where the year-round tropi-

cal climate, large daily influx of travelers and population density provide the ideal
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conditions for dengue transmission. Little work has however quantified the peaks of den-

gue outbreaks, when health systems are likely to be most stretched. Nor have methods

been developed to infer differences in exogenous factors which lead to the rise and fall of

dengue case counts across extreme and non extreme periods. In this paper, we developed

time varying extreme mixture (tvEM) methods to account for the temporal dependence of

dengue case counts across extreme and non-extreme periods. tvEM is able to infer differ-

ences in climatic forcing across non-extreme and extreme periods of dengue case counts,

their temporal dependence as well as estimate suitable thresholds with associated uncer-

tainties to determine dengue case count extremities. Using tvEM, we found no evidence

that weather affects dengue case counts in the near term for non extreme periods, but has

non-linear and mixed signals in influencing dengue through tvEM parameters in the

extreme periods. Using the most appropriate tvEM specification, we found that a high

percentile threshold is estimated, with dengue outbreak events far larger than currently

observed to be expected in 5, 50 and 75 years. Weather parameters at a 1% scaled increase

was found to decrease the long-run expected case counts, but larger increases would lead

to a drastic expected rise from the baseline correspondingly. tvEM can provide valuable

inference on the extremes of time series, which in the case of infectious disease data,

allows public health officials to understand factors and the likely scale of infectious disease

outbreaks in the long run.

This is a PLOS Computational Biology Methods paper.

Introduction

An estimated 390 million dengue infections occur annually, imposing major economic and

health burdens globally [1]. It is widespread in South-east Asia, with outbreaks occurring

annually, sometimes exhibiting synchronous behaviour [2]. Furthermore, it is hyper-endemic

within the region due to all four serotypes being in active circulation. Increased urbanization

and elevated human movement rates via both domestic and international travel have increased

the transmission potential of dengue, particularly across highly connected cities such as Singa-

pore. With favourable vector-breeding conditions due to the year-round tropical climate, a

large daily influx of travelers and population density, Singapore has well-suited conditions for

dengue infections to occur, with an average of over 100 cases being reported every week from

2000 to 2017.

Primarily, vector control is used to mitigate dengue transmissions in Singapore and its suc-

cess is evidenced in the decreasing seroprevalence nationally for the past two decades [3–5].

However, this low seroprevalence complicates the implementation of vaccination using the tet-

ravalent Dengvaxia (CYD-TDV) [6, 7] vaccine on the national scale [8] due to potentially lon-

ger-term risks of severe dengue in vaccinated but seronegative individuals [9]. Fogging and

breeding site reduction, in conjunction with novel biocontrol techniques such as Wolbachia
are utilized instead to prevent and control dengue epidemics [10]. However, major outbreaks

still occur sporadically, with some attributed to population level phenomena such as serotype

switching [11–13], in which a large change in the proportion of circulating serotypes lead to an

increase in the number of reported infections. While sufficient healthcare capacity is usually
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available to deal with muted levels of dengue infections, a large and prolonged rise in the num-

ber of cases may lead significant impact on public health resources.

Being able to infer the properties of extreme values of dengue transmissions allows public

health planning at the national level to be equipped with the information necessary to handle

outbreaks. Typically, modelling or forecasting case counts is conducted using mathematical,

statistical and machine learning tools [14, 15]. These tools allow understanding of dengue

transmission dynamics, aid short to medium term resource planning for disease surveillance

and inform decisions about strengthening vector control for outbreak control [16]. However,

these tools are used for predicting and inferring case counts to minimize overall error for the

entire dataset and are not optimized to characterize extreme conditions such as the peak of

dengue outbreaks [17]. Peaks of dengue outbreaks may also not occur in the near term, which

may further degrade the quality of predictions for standard models [14, 16]. As a result, it may

be difficult to implicitly quantify the long-term risk and scale of these events.

Similar problems exist in other fields such as climatology, oceanography and geography,

where the risk and scale of potential calamitous events such as floods, earthquakes and surge

storms need to be quantified [18]. Characterization of these rare but serious events are con-

ducted through tools developed from Extreme Value Theory (EVT), with statistical estimation

and inference conducted on the extremes of observed events across time and/or space [18].

Some public health work has explored the use of standard EVT tools such as distributional

inference on extreme health events such as infectious disease outbreaks; there have been partic-

ular applications of EVT to Pneumonia and Influenza (PI) death rates [19] and food-borne dis-

ease outbreaks [20], for instance. These works signal its promise for application in a public

health setting. Yet, while relatively large leaps have occurred in the development of extreme

value theory—such as inference on both extreme and non-extreme portions of data [21], hierar-

chical modelling on extreme distributions, formulating EVT parameter estimation as a regres-

sion problem through Bayesian data augmentation and quantifying space and/or time

dependence of extreme values [22, 23]—to the authors’ knowledge, no work in biology nor pub-

lic health has developed the use of these potentially highly informative extensions of EVT tools.

This paper therefore develops and explores the utility of tools derived from extended

extreme value theory to investigate and compare the dynamic signature of extreme and non-

extreme periods of dengue transmissions in Singapore. Briefly, we aim to determine thresholds

and thus classify extreme and non-extreme periods of dengue transmission, quantify the tem-

poral dependence of extreme and non-extreme periods of dengue transmissions as well as den-

gue’s potentially non-linear relationship with weather. To do so, we first developed four

separate extreme-bulk mixture models which are able to characterize the different dynamic

signatures of dengue transmissions, in both extreme and non-extreme periods. These methods

were compared against several diagnostic checks, such as residual autocorrelation, quantile-

quantile plots, Bayes factor and deviance information criterion, to assess the most suitable

model given our data generating process. Next, we explored the potential for climatic fluctua-

tions to affect both extreme and non-extreme periods of dengue transmissions and the differ-

ences in transmission behaviour between separate periods. Lastly, we projected the expected

scale of dengue events in the long run using the most suitable EVT model and provide discus-

sions on these results.

Results

Dengue in Singapore from 2000 to 2017

An average of over 100 dengue cases are reported every week from 2000 to 2017 in Singapore,

with large rises in periods between 2004 to 2005, the middle of 2007, 2013 to 2014 and the end
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of 2015 and beginning of 2016. On visual inspection of the time series, no clear seasonal pat-

tern is observed, with large rises in dengue observed in 2007 and 2013 to 2016 (Fig 1). We fit-

ted four competing models (M1–M4) to infer the driving patterns of biologically relevant

covariates on both elevated (extreme) and baseline (non-extreme) periods of dengue in Singa-

pore from 2000 to 2017.

Model assessment

Convergence of MCMC chains for parameters across all four competing models was indicated

by Gewecke convergence tests, signalling that each marginal parameter posterior space is well

explored. Visual inspection of trace plots was also conducted (S1 Fig). Residual autocorrelation

for the bulk distribution also indicate that an autoregressive (AR) order 3 model is sufficient to

explain dengue transmission dynamics as each lag’s autocorrelation is within the 95% confi-

dence interval bound. Comparing each model’s deviance information criterion (DIC) and log

Bayes factor (logBF) showed increasing DIC across models and increasing logBF as models

become more complex, indicating that more complex models are penalized as expected from

the DIC but overall more favoured in explaining the data according to logBF. In general, a

higher logBF and lower DIC indicates a more suitable model for the data. In particular, we

obtained the highest DIC and logBF for the model with constant beta term in the tail distribu-

tion (Table 1 M4 DIC: 14 268, logBF: 663), followed by a trend of decreasing DIC and increas-

ing logBF in the case where no regression structure was imposed on the tail distribution

(Table 1 M3 DIC: 13 111, logBF: 545), no weather variables being added to the bulk distribu-

tion (Table 1 M2 DIC: 12 781, logBF: 510), as well as no regression structure being imposed on

either bulk nor tail distribution (Table 1 M1 DIC: −1563).

The quantile-quantile (QQ) plots compare the similarity of fitted distributions to data.

Although the DIC for the first model (M1) is low, QQ plots indicate that fitting the gamma dis-

tribution to the bulk data leads to significant deviations from the line of unity as compared to

regression structures (M2–4): this shows that M1 does not provide distributional characteris-

tics which are similar to the data. For the extreme distribution, QQ plots for the regression

structure (M4) generalized Pareto distribution (GPD) has points lying closest to the line of

unity, indicating that it is the most suitable structure to account for extreme value data (S1

Fig). There is a high logBF and favourable QQ plots but also higher DIC for M4 compared to

other models. However, as regression structure was imposed on both the bulk and tail distribu-

tion, the increased penalty on model complexity under DIC is expected. M4 is also further able

to compare the effects of biologically relevant covariates across non-extreme and extreme

states of dengue transmission dynamics, compared to all other models. Further exposition on

results will thus refer to M4 unless specifically mentioned otherwise.

Inference on extremes of dengue transmissions

Across 2000 to 2017, when the time varying extreme mixture model (tvEM) was estimated, an

observation of around 150 weekly case counts was estimated to be threshold for data to be clas-

sified as extreme, with 95% credible interval (CrI) 72 to 244 cases. This corresponds to dengue

case counts being above the 70th percentile (95% CrI 41.1–83.8) to be taken as extreme (Fig

1a). In periods where weekly dengue case counts are around or above 150, extreme value

parameters correspond to larger fluctuations compared to nuisance parameters estimated in

non-extreme periods (Fig 1b and 1c). Scaled return level results are consistent across M1–M4

(Fig 2a–2c), with return levels computed by integrating time varying parameters in the tvEM

indicate that at baseline levels, an average scaled level of 0.70, 1.30 and 1.45 will be reached in

5, 50 and 75 years, corresponding to an event where 526.6, 1052.2 and 1183.6 weekly dengue

PLOS COMPUTATIONAL BIOLOGY Time varying methods to infer extremes in dengue transmission dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008279 October 12, 2020 4 / 19

https://doi.org/10.1371/journal.pcbi.1008279


Fig 1. From top to bottom: 1) Dengue case counts from 2000 to 2017 with data above the posterior mean threshold shaded. 95%

credible intervals for the threshold are given in dotted lines 2) Posterior mean time-varying scale parameter for constant beta model,

with highlighted areas representing timepoints when data are above the threshold from 2000 to 2017 3) Posterior mean time-varying

shape parameter for constant beta model, with highlighted areas representing timepoints when data are above the threshold from 2000

to 2017.

https://doi.org/10.1371/journal.pcbi.1008279.g001
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case counts are expected to be observed (Fig 2b). These estimated return levels flatten off after

100 years after to a scaled level of around 1.60 (Fig 2b).

Duality of climatic effects below and above thresholds of dengue

transmission

For the tvEM bulk distribution where the AR model of order 3 was estimated along with

weather variables of up to 3 week lags, we found that 95% credible intervals for climatic coeffi-

cients all overlap with 0, with posterior mean estimates not lesser or greater than −0.1 and 0.1

respectively. The directions of these coefficients are also mixed, with all 95% credible intervals

not crossing more than −0.3 and 0.4. These credible intervals are also consistent in their

spread, at around 0.5 to 0.6 in magnitude, asides from precipitation, where smaller intervals

are evident and range from −0.01 to 0.011 (Table 2, Fig 3c).

However, we found that 95% credible intervals for relative humidity, absolute humidity and

temperature coefficients exclude 0 across certain lags in the tvEM extreme distribution. Specif-

ically for the weather coefficients governing the extreme distribution scale parameter βσ, we

found negative effects coming from precipitation (Table 2: −0.069, 95% CrI: −0.119, −0.016)

and absolute humidity (Table 2: −3.448, 95% CrI: −5.759, −0.703) at a 1 week lag. Correspond-

ingly, positive effects from temperature (Table 2: 4.724, 95% CrI: 1.005, 7.826) and relative

humidity (Table 2: 3.597, 95% CrI: 0.765, 5.969) at a 1 week lag also. The magnitude of the pre-

cipitation coefficient and the spread of the 95% credible intervals are similarly smaller than

that of other weather coefficients. For weather coefficients governing the extreme distribution

Table 1. Model fit for 4 competing mixture models.

Model DIC logBF

M1: Gamma + Constant GPD −1 563

M2: Normal(AR) + Time-Varying GPD 12 781 510

M3: Normal(AR+weather) + Time-Varying GPD 13 111 545

M4: Normal(AR+weather) + Regression GPD 14 268 663

https://doi.org/10.1371/journal.pcbi.1008279.t001

Fig 2. Return levels over a 1 to 190 year return period, with posterior mean estimate given in solid black lines, estimates from the following models are expressed

from left to right: 1) Time-varying generalized Pareto distribution 2) Time-varying generalized Pareto distribution with constant beta regression structure 3) Time-

varying generalized Pareto distribution with time-varying beta regression structure.

https://doi.org/10.1371/journal.pcbi.1008279.g002
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scale parameter, all 2 to 3 week lag variables have 95% credible intervals containing 0

(Table 2).

For the weather coefficients governing the extreme distribution shape parameter βξ, the

precipitation coefficients had all 95% credible intervals containing 0 from 1 to 3 weeks lag.

Conversely, all other weather covariates had 95% credible intervals for their coefficients that

excluded 0 for 1 to 3 weeks’ lag term. These coefficients also vary in direction across lags for

the same variable. For example, the temperature coefficient had 1 and 3 weeks lag being nega-

tive in sign, but the 2 weeks lag was positive (Table 2). For the 1 week lag climate coefficients,

the coefficients governing the extreme distribution shape parameter βξ and the extreme distri-

bution scale parameter βσ are in opposite directions always (Table 2, Fig 3). The absolute

humidity coefficient for the extreme distribution shape parameter is positive but the same

coefficient for the extreme distribution scale parameter is negative. Conversely, the relative

humidity coefficient for the extreme distribution shape parameter is negative but the same

coefficient for the extreme distribution scale parameter is positive (Table 2).

Nonlinearities in climatic effects on extremes of dengue transmission

We have lastly examined how weather coefficients governing tvEM extreme distributions

affect expected return levels. We have only included coefficients whose 95% credible intervals

excluded 0, namely, temperature, absolute humidity and relative humidity. In general, we

found the effects of weather on return levels to be highly nonlinear and dependent on the spe-

cific value of shocks applied to each coefficients.

For a 1% positive shock across each parameter at each lag, we found in general a decrease in

the expected return levels across time for temperature lag 1 and 3, absolute humidity lag 1 and

2 and relative humidity at lag 1 and 3 (Fig 4). However, the changes in return levels are almost

negligible when shocks are applied to temperature lag 2, absolute humidity lag 3 and relative

humidity lag 2, corresponding roughly to points when the effects of weather on the scale and

Table 2. Coefficient posterior mean and 95% credible intervals for the constant beta regression with the generalized Pareto regression parameters and bulk regres-

sion. Columns from left to right represent the regression coefficients with the dependent variable being 1Generalized Pareto distribution shape parameter 2Generalized

Pareto distribution scale parameter 3Dengue case counts below the threshold. �Coefficients whose 95% credible intervals are away from 0.

βξ βσ βbulk

Coefficient Estimate1 95% CrI1 Estimate2 95% CrI2 Estimate3 95% CrI3

Precipitation

Lag 1 −0.032 (−0.067, 0.003) -0.069� (−0.119, −0.016) 0 (−0.01, 0.009)

Lag 2 −0.011 (−0.052, 0.043) 0.017 (−0.05, 0.066) 0.002 (−0.008, 0.011)

Lag 3 0.022 (−0.028, 0.077) 0.01 (−0.053, 0.067) −0.001 (−0.01, 0.008)

Temperature

Lag 1 −2.514� (−4.059, −0.43) 4.724� (1.005, 7.826) 0.036 (−0.238, 0.316)

Lag.2 3.279� (0.123, 5.267) −1.5 (−4.276, 1.572) −0.011 (−0.281, 0.286)

Lag 3 −2.136� (−3.513, −0.665) −0.852 (−2.377, 0.763) −0.01 (−0.277, 0.242)

Absolute Humidity

Lag 1 1.912� (0.32, 3.083) −3.448� (−5.759, −0.703) −0.026 (−0.241, 0.18)

Lag 2 −2.479� (−4.01, −0.051) 1.014 (−1.253, 3.071) 0.011 (−0.215, 0.215)

Lag 3 1.693� (0.531, 2.764) 0.717 (−0.518, 1.881) 0.007 (−0.184, 0.21)

Relative Humidity

Lag 1 −1.924� (−3.136, −0.275) 3.597� (0.765, 5.969) 0.026 (−0.178, 0.238)

Lag 2 2.587� (0.133, 4.135) −1.077 (−3.143, 1.249) −0.01 (−0.212, 0.214)

Lag 3 −1.729� (−2.761, −0.604) −0.746 (−1.933, 0.51) −0.004 (-0.206, 0.186)

https://doi.org/10.1371/journal.pcbi.1008279.t002
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shape parameter are positive and negative respectively for temperature lag 2 and absolute

humidity lag 3. They also correspond to instances when the effects of weather on the scale and

shape parameter are negative and positive, respectively, for relative humidity lag 3 (Fig 3a–3c).

For a 5% independent, positive shock across each parameter at each lag, we found markedly

larger magnitudes of change in the expected return levels across time (Fig 5). The same

decreases were found in the expected return levels across time for temperature lag 1 and 3 and

relative humidity lag 1 and 3, but these are markedly larger compared to the 1% shock (Figs 4

and 5). However, with a 5% shock in absolute humidity lag 1 and 2, their effects on return lev-

els are now positive. The formerly negligible change when shocks are applied to temperature

lag 2, absolute humidity lag 3 and relative humidity lag 2 are now positive and rise much more

steeply after extending the return period beyond 10 years (Fig 5).

Fig 3. Coefficient plots for the constant beta regression for the generalized Pareto regression parameters and bulk regression. Panels from left to right

represent the regression coefficients with the dependent variable being 1) Generalized Pareto distribution shape parameter 2) Generalized Pareto distribution scale

parameter 3) Dengue case counts below the threshold.

https://doi.org/10.1371/journal.pcbi.1008279.g003
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Discussion

Results indicate that the tvEM model with regression structure on the extreme and non-

extreme distributions of dengue case counts (M4) could characterize the data well under

model assessment checks (Table 1, S1 Fig). Using M4 to infer weather effects below and above

thresholds of dengue transmission showed a duality of weather effects below and above thresh-

olds of dengue transmission, where it is found to affect the GPD distribution parameters but

not case counts below the threshold (Table 2). The effects of weather on extremes in dengue

Fig 4. Posterior mean return levels at baseline (black solid line) and posterior mean return levels (blue solid line) given a 1 unit shock on each respective

climatic parameter for the constant beta regression over 1 to 190 years.

https://doi.org/10.1371/journal.pcbi.1008279.g004
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transmission are also highly nonlinear and severe, with a mild to moderate increase in weather

observations leading to long run changes in expected return levels over time (Figs 4 and 5).

Inference of extreme and non-extreme periods of dengue transmissions across time can be

conducted using tvEM, with the model being able to characterize the temporal dependence of

dengue case counts across time. In general, inference through tvEM indicates that weather

measurements such as absolute humidity, relative humidity and temperature are able to influ-

ence projected return levels over time, but these same variables do not have a near term

Fig 5. Posterior mean return levels at baseline (black solid line) and posterior mean return levels (red solid line) given a 5 unit shock on each climatic

parameter for the constant beta regression over 1 to 190 years.

https://doi.org/10.1371/journal.pcbi.1008279.g005
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influence on dengue case counts directly. These results are in line with previous work [24]

which found that dengue case counts in Singapore can be sufficiently described autoregres-

sively. While said weather variables may exert influence on dengue case data over longer time-

lags, spurious correlations may result from such an analysis due to temporal dynamics already

adequately accounted for in the bulk distribution.

Our results found that a mild to moderate shock in weather variables would lead to consid-

erable changes in the expected return levels over a long return period. As indicated from this

analysis, independent 1% positive shocks on weather variables on 1 to 3 week lags would lead

to either little change or decreases in projected return levels, while larger 5% shocks would

more often lead to increases in projected return levels in dengue case counts across time (Figs

4 and 5). Other work has also revealed non-linear, interactive effects of weather on dengue

transmission dynamics, wherein weather measurements may often exhibit mixed, concave

and/or second order interaction effects on reported cases. For example, large rises in precipita-

tion may reduce viable breeding grounds immediately, but may also lead to the formation of

future breeding grounds through rainwater accumulation [25–29]. Evidence also suggests that

mosquito ovipositing, development from mosquito larva to adult, biting rate and viral incuba-

tion time in the dengue vector are enhanced at raised ambient temperatures, but these effects

have marginal gains at much higher temperatures [30, 31]. Similarly, optimally humid condi-

tions can boost vector egg development and subsequent adult population size that may itself

be correlated with the transmission potential of dengue [32–34].

Using tvEM, events of at least 526.6, 1052.2 and 1183.6 weekly dengue case counts are

expected to occur in 5, 50 and 75 years respectively in Singapore. This notion of return levels is

helpful for public health resource planning purposes. In the case of dengue, the expected surge

in vector control, primary and secondary care required to deal with dengue fever (DF) and

dengue hemorrhagic fever (DHF) can easily be computed using prior data on DF/DHF occur-

rence [35] and the expected number of visits and medication required for DF/DHF patients

[36], both as a factor of the return levels. This method is also easily translatable to other dis-

eases in different localities, regions or countries where disease case counts are collected over a

long period of time, where the notion of exceeding a certain number of cases in any disease

can be obtained for risk management purposes.

The methods described in this paper are also able to resolve certain issues in empirical EVT

applications. Thresholds are estimated automatically using the MCMC approach employed in

this paper, with threshold estimation uncertainty also quantified in its posterior distribution.

This allows individuals to ignore the often subjective methods to select thresholds using graph-

ical diagnostic tests and various rules of thumb approaches while working with extreme values

empirically [17, 18, 37, 38]. Next, imposing an hierarchical temporal structure in tvEM also

resolves the temporal dependence of observed data for the extreme value distribution, allowing

stronger inference on time dependent data such as dengue case counts. This could easily be

translated for use in other endemic infectious disease data such as influenza, for which case

counts are also temporally dependent. Lastly, by inducing a regression structure on the

extreme value distribution, statistical learning on relevant covariates could be conducted,

which then allows meaningful interpretations of the covariates on projected return levels.

These covariate effects could then also be compared to that of non-extreme value data within a

single model structure, as evidenced by tvEM in this paper.

Several limitations are recognised. First, explicitly quantifying the effect of covariates is dif-

ficult in the extreme portion of data, as their effects are on the time-varying extreme value dis-

tribution parameters rather than the dependent variable itself. However, while direct

comparison between extreme and non-extreme portions of the data is challenging, we used

the shock notion to explore the effects on return levels. Time varying parameters estimated
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over the extreme value distribution are also difficult to interpret and return levels have to be

computed after integrating out the parameters sampled over the range of values over the

threshold. The large number of parameters estimated due to time varying extreme value

parameters also makes the MCMC estimation approach slow and future work should explore

the use of approximate but faster estimation methodologies such as particle MCMC or approx-

imate Bayesian computation [39, 40]. The suitability for each EVT tool on data also cannot be

evaluated directly using quantities such as the mean-square error or R2 as estimation above the

threshold provides a time varying regression on parameters but not observed case counts

unlike the bulk distribution formulation, leading us to use other diagnostic measures such as

DIC or logBF in model comparison. The results of this paper are also only based on passive

surveillance data on dengue case counts in Singapore, and may not apply to other health sys-

tems with different case definitions or surveillance systems. Lastly, while dengue case counts

are plausibly spatio-temporally dependent and may have a large number of past case counts,

different multicollinear weather lags affecting contemporaneously reported dengue cases, only

the most parsimonious model adequately accounting for temporal dynamics is used due to the

inherent difficulty in estimating a time varying distribution with regression structure.

Future work can explore nesting sparse regression priors or spatio-temporal priors on the

extreme value regression to infer and incorporate spatio-temporal behaviours or the effect of

many covariates on dengue extremes. Incorporation of sparse regression priors may also

resolve the issue of multicollinearity between many variables in both bulk and extreme por-

tions of data [41–43]. When data become available, the same assessment checks described in

this paper can also be conducted on separate dengue time series to examine model validity, cli-

mate-extreme value exposure-response relationships and disparities in return levels.

The methods developed in this paper are easily applicable to any other infectious disease

where time series are recorded over a sufficient period of time. These methods are able to con-

duct statistical learning of covariates on extreme and non-extreme periods of time series data.

Lastly, tvEM is able to provide meaningful notions of return levels on a pre-specified return

period, which in the case of infectious disease data, allows public health officials to prepare for

the likely scale of an infectious disease outbreak in the long run.

Methods

Data

Dengue incidence data in Singapore are collected by the Ministry of Health with mandatory

notification of virologically confirmed or laboratory-confirmed cases. Laboratory confirma-

tion of dengue cases is conducted through (1) nonstructural protein 1 (NS1) antigen detection,

viral RNA detection by polymerase chain reaction (PCR), or (2) immunoglobulin M detection

[44, 45]. Data are publicly available from the Infectious Disease Bulletin, published weekly by

the Ministry of Health, Singapore. Data is available from 2010 to 2017. No ethical approval is

required for this study.

Weather data were obtained from ERA5, published by the European Centre for Medium-

Range Weather Forecasts. ERA5 provides hourly estimates across a 30km grid [46], which we

aggregate nationally over a weekly timescale and spatially averaged for Singapore. Mean, mini-

mum and maximum air temperature at 2m is calculated to represent thermal forcing and

stress on vector population growth, and weekly total rainfall is obtained for breeding site avail-

ability. Air temperature and dewpoint temperature is utilized to calculate saturation vapor

pressure and actual vapor pressure using Teten’s formula, with which relative and absolute

humidity could then be estimated using standard formula [47]. Data are available from 2010 to

2017.
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Extreme value mixtures to infer bulk and extreme periods of dengue

We have used mixtures of bulk and extreme distributions as our key framework to derive

statistical inference on both non-extreme and extreme periods of dengue transmission dynam-

ics. The general structure of our model follows (1), where yt denotes our data at timepoint t,
Ft(y1:t|Θ) the cumulative distribution function of our model, H(yt; u, Θ−u) the bulk cumulative

distribution with parameters Θ−u below the threshold u and G(yt|u, Θu) the tail cumulative dis-

tribution with parameters Θ−u above the threshold u.

Ftðy1:tjYÞ ¼
Hðyt; u;Y� uÞ if yt < u

Hðu;Y� uÞ þ ð1 � Hðu;Y� uÞÞGðyt; u;YuÞ if yt � u

(

ð1Þ

Bulk distribution. Four competing models were estimated, first, the canonical case where

no regression structure was imposed on yt, with h(yt; u, Θ−u) * Gamma(a, b) and g(yt|u, Θu)

*GPD(u, ξ, σ), where GPD refers to the generalized Pareto distribution [23, 48]. Next, the

autoregressive (AR) structure without (M2) or with (M3) weather variables (2) was imposed to

the bulk distribution with normally distributed errors. Namely, P denotes the AR order, with J
being the number of exogenous variables and K the maximal number of lags estimated for

exogenous variables. Xt−k,j refers to the exogenous variable at lag k of type j. AR and lagged

parameters to be estimated are Θ−u = {β, α, σb}. � is some noise term with 0 mean and second

moment s2
b. The AR structure was used for easily interpretable parameters and being able to

capture the time-dependent behaviour of dengue case data. It is also supported by a large

body of work using AR as a baseline to both understand and forecast dengue transmissions

[34, 49–51].

yt ¼ b0 þ
XP

i¼1

yt� ibi þ
XJ

j¼1

XK

k¼1

Xt� k;jak;j þ � ð2Þ

� � Nð0; s2

bÞ

Tail distribution. For values above some threshold u, it is standard to fit data using the

generalized Pareto distribution (GPD) with Θu = {ξ, σ, u} shape, scale and location parameters

to be estimated respectively. Our first model (M1) considers the canonical, static distribution

with no regression structure imposed on the GPD (3).

Gðyt; u;YuÞ ¼
1 � 1þ

xðyt � uÞ
s
Þ
� 1=x

� �
if x 6¼ 0

1 � expð� ðyt � uÞ=sÞ if x ¼ 0

8
<

:
ð3Þ

We then consider imposing time varying parameters on the GPD, with a fixed threshold u, but

having the scale and shape parameter vary across time Θu,t = {ξt, σt, u} (4). The additional flexi-

bility of using a time varying structure was imposed on ξt, σt as observed dengue case counts

may fluctuate greatly over time, especially in dengue hyper-endemic Singapore, which can

skew parameter estimation if we only consider static parameters for the GPD distribution. Fur-

thermore, imposing a suitable structure for time variation allows incorporation of dengue case

count autocorrelations from successive timepoints. Lastly, past information on model parame-

ters can be incorporated contemporaneously, strengthening inference procedures for the
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GPD.

Yu;t ¼ GðYu;t� 1;Yu;t� 2; . . . ;Yu;t� g ;wtÞ ð4Þ

Temporal dependence. The time evolution of our GPD parameters follow some function

G with input variables being the lagged GPD parameters and wt some noise term (4). The time

varying GPD parameters were considered using two functional forms. Firstly, we consider the

simplest case of a first order dynamic linear model [52], where parameters follow random

walk state equations, with some white noise terms wξ,t and wσ,t for the shape and scale equa-

tions (M2-3) given some initial information drawn from θξ,0 * N(mξ,0, Cξ,0) and θσ,0 * N
(mσ,0, Cσ,0). We log-transform ξt, σt to allow parameters to be within the allowable bounds for

the GPD (ξ> −1) with lξt = log(ξt + 1) and lσt = log(σt):

lxt ¼ yx;t þ vx;t vx;t � Nð0; 1=VxÞ yx;t ¼ yx;t� 1 þ wx;t wx;t � Nð0; 1=WxÞ

lst ¼ ys;t þ vs;t vs;t � Nð0; 1=VsÞ ys;t ¼ ys;t� 1 þ ws;t ws;t � Nð0; 1=WsÞ

Secondly, to allow inference and comparison between the possible effects that weather has on

non-extreme and extreme periods of dengue transmissions, we imposed lagged regression

structures on the time-varying GPD parameter (M4). To belabour, we allowed inference on lξt,

lσt by additionally imposing state-determining Eqs (5) and (6). In M3, lξt, lσt is influenced by

the effect of Xt−k,j weather variables with a maximum of J weather terms and K lags. The

parameters βξ,j,k, βσ,j,k determine the degree of influence that weather variables have on the

GPD parameters.

lxt ¼ bx;0 þ
XJ

j¼1

XK

k¼1

bx;j;kXt� k;j þ vx;t vx;t � Nð0; 1=VxÞ ð5Þ

lst ¼ bs;0 þ
XJ

j¼1

XK

k¼1

bs;j;kXt� k;j þ vs;t vs;t � Nð0; 1=VsÞ ð6Þ

Model estimation

We estimated all models (M1–M4) using Markov chain Monte Carlo (MCMC) approaches. In

general, Gibbs sampling was conducted when suitable conditional conjugate distributions can

be derived, such as the case of regression parameters in the bulk distribution or their respective

noise terms. For the constant and time varying GPD parameters, there are no known condi-

tionally conjugate priors. Marginal sampling of their parameters was conducted using Metrop-

olis or Metropolis-Hastings steps instead. For all models, a total of 10 000 MCMC steps were

taken with a burnin of 1000.

Briefly, for the first model where parameters of interest are the gamma bulk shape and rate

parameters a, b and static GPD tail distribution ξ, σ, u, we conducted Metropolis-within-Gibbs

steps for each of their respective marginal distributions with proposal distributions tuned to

allow efficient exploration of the posterior space. This was also conducted due to the GPD dis-

tribution not having any known conjugate prior distributions, which precludes the use of

more efficient Gibbs sampling. We sampled a, b, ξ, u using truncated normal distributions and

σ using either a wide Gamma or truncated normal distribution depending on the sign of ξ. For

PLOS COMPUTATIONAL BIOLOGY Time varying methods to infer extremes in dengue transmission dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008279 October 12, 2020 14 / 19

https://doi.org/10.1371/journal.pcbi.1008279


time varying tail distribution, random walk Metropolis steps were taken for flxtg
T
t¼1

and

flstg
T
t¼1

with the proposal distribution a symmetric normal distributions with mean given by

the previous iteration. With appropriate prior choices on the regression terms and second

moments {Vξ, Wξ, θξ,t, Vσ, Wσ, θσ,t, β, s2
b, u}, where diffuse normal priors are placed for regres-

sion parameters and inverse-gamma priors for their respective second moment, conjugate

conditional posterior distributions of these terms allow for Gibbs sampling. Full technical

details are explicitly provided in the supplementary information.

Model assessment

Convergence of MCMC chains was first assessed by visual inspection of trace plots and

Gewecke convergence diagnostic checks. Residual autocorrelation is computed for up to 20

week lags to ensure that the transmission dynamics of dengue are properly accounted for and

to determine the maximum autoregressive lag order for each specification. Quantile-Quantile

plots are used to see whether the bulk and tail specifications adequately account for the data

structure. The log Bayes factor was computed using naïve Monte Carlo simulation and devi-

ance information criterion as detailed in S1 Text to provide summary measures of model fit

and model appropriateness to data.

Model inference

As we have found the constant beta model (M4) to be favourable on model assessment, we

define only return levels for that particular model for clear exposition. Estimation of the GPD

provides us with return levels ẑ r for the r-year. This is the level expected to be exceeded once

every r years, with l̂u the empirical threshold exceedance rate observed in the data set. We gen-

eralize return levels from the static distribution case to account for the presence of time vary-

ing GPD parameters which are also affected by other covariates in M3 (7).

ẑ r;t û; ŝt; x̂t; b̂x; b̂s;X
� �

¼

û þ ŝ tðb̂s;XÞ
x̂ tðb̂x ;;XÞ

ðrl̂uÞ
x̂tðb̂x ;XÞ � 1

� �
; if x̂tðb̂x; ;XÞ 6¼ 0

û þ ŝtðb̂s;XÞlogðrl̂uÞ; if x̂tðb̂x; ;XÞ ¼ 0

8
><

>:
ð7Þ

The expression (7) above provides some return level for the r-year at every time-point t
where GPD parameters were estimated, given some specified return period r. Integrating out

the expression across time provides us with the mean return level for dengue transmissions

over the tail dataset (8).

Et½ẑ r;t� ¼

Z

ẑ r;tðû; ŝt; x̂t; b̂x; b̂s;XÞ dt ð8Þ

The subsequent effect of some weather variable on expected return levels can be inferred by

comparing the return levels at baseline versus some unit shock ωl,p for some prespecified vari-

able and lag across the dataset (9) and (10). It was then back transformed to allow computation

of return levels in (7) and (8) given the new scenario. In this paper, we have looked at the effect

of 1% and 5% increases in the observed range of each of our weather variables on our return
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levels.

l̂x t;shock ¼
XJ

j6¼l

XK

k6¼p

b̂x;j;kXt� j;k þ b̂x;l;pðXt� l;p þ ol;pÞ ð9Þ

l̂s t;shock ¼
XJ

j6¼l

XK

k6¼p

b̂s;j;kXt� j;k þ b̂s;l;pðXt� l;p þ ol;pÞ ð10Þ
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Pará. Environmetrics: The official journal of the International Environmetrics Society. 2005; 16(3):291–

304. https://doi.org/10.1002/env.704

42. Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P, Katokele S, et al. Estimation of malaria inci-

dence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial–temporal models.

Spatial and spatio-temporal epidemiology. 2013; 7:25–36. https://doi.org/10.1016/j.sste.2013.09.001

PMID: 24238079

43. Park T, Casella G. The bayesian lasso. Journal of the American Statistical Association. 2008; 103

(482):681–686. https://doi.org/10.1198/016214508000000337

44. Lai YL, Chung YK, Tan HC, Yap HF, Yap G, Ooi EE, et al. Cost-effective real-time reverse transcriptase

PCR (RT-PCR) to screen for Dengue virus followed by rapid single-tube multiplex RT-PCR for serotyp-

ing of the virus. Journal of clinical microbiology. 2007; 45(3):935–941. https://doi.org/10.1128/JCM.

01258-06 PMID: 17215345

PLOS COMPUTATIONAL BIOLOGY Time varying methods to infer extremes in dengue transmission dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008279 October 12, 2020 18 / 19

https://doi.org/10.1016/j.actatropica.2005.03.010
http://www.ncbi.nlm.nih.gov/pubmed/15993832
https://doi.org/10.1007/s13744-013-0118-4
https://doi.org/10.1007/s13744-013-0118-4
http://www.ncbi.nlm.nih.gov/pubmed/23949815
https://doi.org/10.1017/S174275841300026X
https://doi.org/10.1371/journal.pntd.0002805
https://doi.org/10.1371/journal.pntd.0002805
https://doi.org/10.1186/1471-2458-14-1078
http://www.ncbi.nlm.nih.gov/pubmed/25323458
https://doi.org/10.4269/ajtmh.1987.36.143
http://www.ncbi.nlm.nih.gov/pubmed/3812879
https://doi.org/10.1016/j.meegid.2010.01.004
https://doi.org/10.1371/journal.pntd.0001470
https://doi.org/10.1371/journal.pntd.0001470
http://www.ncbi.nlm.nih.gov/pubmed/22348154
https://doi.org/10.1016/j.actatropica.2007.05.014
http://www.ncbi.nlm.nih.gov/pubmed/17612499
https://doi.org/10.1016/S1473-3099(16)00146-8
https://doi.org/10.1016/S1473-3099(16)00146-8
http://www.ncbi.nlm.nih.gov/pubmed/27091092
https://doi.org/10.1016/S0140-6736(97)12483-7
https://doi.org/10.1016/S0140-6736(97)12483-7
https://doi.org/10.1080/0233188021000055345
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1002/env.704
https://doi.org/10.1016/j.sste.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24238079
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1128/JCM.01258-06
https://doi.org/10.1128/JCM.01258-06
http://www.ncbi.nlm.nih.gov/pubmed/17215345
https://doi.org/10.1371/journal.pcbi.1008279


45. Pok KY, Lai YL, Sng J, Ng LC. Evaluation of nonstructural 1 antigen assays for the diagnosis and sur-

veillance of dengue in Singapore. Vector-Borne and Zoonotic Diseases. 2010; 10(10):1009–1016.

https://doi.org/10.1089/vbz.2008.0176 PMID: 20426686

46. ERA5. Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate

Change Service Climate Data Store (CDS) Copernicus Climate Change Service (C3S); 2017. Available

from: https://www.ecmwf.int/en/about/what-we-do/environmental-services/copernicus-climate-change-

service.

47. Snyder R. Humidity conversion. Davis, University of California, Biometeorology Program (http://biomet.

ucdavis.edu/conversions/HumCon.htm). 2005.

48. Do Nascimento FF, Gamerman D, Lopes HF. Time-varying extreme pattern with dynamic models.

Test. 2016; 25(1):131–149. https://doi.org/10.1007/s11749-015-0444-4

49. Eastin MD, Delmelle E, Casas I, Wexler J, Self C. Intra-and interseasonal autoregressive prediction of

dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. The

American journal of tropical medicine and hygiene. 2014; 91(3):598–610. https://doi.org/10.4269/ajtmh.

13-0303 PMID: 24957546
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