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Abstract

In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant

micro-structural information and meaningful descriptive maps of the white matter previously

obscured by traditional techniques like Diffusion Tensor Imaging (DTI). The direct estimation

of the EAP, however, requires a dense sampling of the Cartesian q-space involving a huge

amount of samples (diffusion gradients) for proper reconstruction. A collection of more effi-

cient techniques have been proposed in the last decade based on parametric representa-

tions of the EAP, but they still imply acquiring a large number of diffusion gradients with

different b-values (shells). Paradoxically, this has come together with an effort to find scalar

measures gathering all the q-space micro-structural information probed in one single index

or set of indices. Among them, the return-to-origin (RTOP), return-to-plane (RTPP), and

return-to-axis (RTAP) probabilities have rapidly gained popularity.

In this work, we propose the so-called “Apparent Measures Using Reduced Acquisitions”

(AMURA) aimed at computing scalar indices that can mimic the sensitivity of state of the art

EAP-based measures to micro-structural changes. AMURA drastically reduces both the

number of samples needed and the computational complexity of the estimation of diffusion

properties by assuming the diffusion anisotropy is roughly independent from the radial direc-

tion. This simplification allows us to compute closed-form expressions from single-shell

information, so that AMURA remains compatible with standard acquisition protocols com-

monly used even in clinical practice. Additionally, the analytical form of AMURA-based

measures, as opposed to the iterative, non-linear reconstruction ubiquitous to full EAP tech-

niques, turns the newly introduced apparent RTOP, RTPP, and RTAP both robust and effi-

cient to compute.

Introduction

Under the name of Diffusion Magnetic Resonance Imaging (DMRI) we gather a set of diverse

MRI imaging techniques with the ability of extracting in vivo relevant information regarding

the random, anisotropic diffusion of water molecules that underlay the structured nature of
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different living tissues. It has attracted an extraordinary interest among the scientific commu-

nity over recent years due to the relationships found between a number of neurological and

neurosurgical pathologies and alterations in the white matter as revealed by an increasing

number of DMRI studies [1–3].

The most relevant feature of DMRI is its ability to measure directional variance, i.e. anisot-

ropy. In the beginning of the 2000s, diffusion tensor MRI [4, DT-MRI] gained huge popularity

in white matter studies, not only among technical researchers but also among clinical partners,

to the point that even nowadays most of the research studies involving DMRI focus on the dif-

fusion tensor (DT). By using a simple Gaussian regressor, the anisotropy of the tissues is actu-

ally probed by acquiring as few as 20 to 60 images, which is acceptable in clinical practice.

DT-MRI brought to light one of the most common problems in DMRI techniques: in order to

carry out clinical studies, the information given by the selected diffusion analysis method must

be translated into some scalar measures that describe different features of the diffusion within

every voxel. That way, measures like the Fractional Anisotropy (FA), the Axial and Radial Dif-

fusivity (AD, RD) or the Mean Diffusivity (MD) were defined [5]. Even at the early stages of

DT-MRI, it was clear that the Gaussian assumption had important limitations. It provided a

useful tool allowing clinical studies, but the underlying diffusion processes were not accurately

described because of the over-simplified fitting, so that more evolved techniques with more

degrees-of-freedom naturally arose, such as High Angular Resolution Diffusion Imaging [6–8,

HARDI] or Diffusion Kurtosis Imaging [9, DKI]. It seems obvious that more degrees-of-free-

dom require more diffusion images to be acquired, but the requirement of an accurate angular

resolution also implies the need for a finer angular contrast, which translates in the need for

stronger gradients to probe diffusion, i.e., higher b-values [10].

The trend over the last decade has consisted in acquiring a large number of diffusion-

weighted images distributed over several shells together with moderate-to-high b-values to

estimate more advanced diffusion descriptors, such as the Ensemble Average diffusion Propa-

gator [11, 12, EAP]. This leads to a completely model-free, non parametric approach for diffu-

sion that can accurately describe most of the relevant phenomena associated to diffusion.

The most straightforward way of estimating the EAP is Diffusion Spectrum Imaging [11,

DSI], that relies on the dense sampling of the q-space for discrete Fourier transformation.

Hence, it requires a huge number of images to avoid aliasing artifacts and attain a decent accu-

racy, which makes it not so appealing in practice. As a consequence, alternative techniques

aim to parametrically reconstruct the EAP from reduced samplings of the q-space, most of

them related to the recent advances in compressed sensing and sparse reconstruction [13, 14].

In practice, some multi-shell reconstruction techniques may be used to compute the EAP, typi-

cally as a superposition of the integrals analytically computed for each basis function. Some of

the most prominent methods areHybrid Diffusion Imaging [15, HYDI], themultiple q-shell dif-
fusion propagator imaging [16, 17, mq-DPI], the Bessel Fourier Orientation Reconstruction [18,

BFOR], the directional radial basis functions [19, RBFs], or the Simple Harmonic Oscillator
Based Reconstruction and Estimation [20, SHORE]. More recently, theMean Apparent Propa-
gator MRI [12, MAP-MRI] and its improved version, the so-called Laplacian-regularized
MAP-MRI [21, MAPL], have gained interest among the community due to the compelling

results demonstrated in several clinical trials [22].

There is no doubt the EAP provides rich and valuable anatomical information about the

diffusion process, though such amount of information may result overwhelming and difficult

to integrate within clinical studies. This pitfall is usually circumvented by computing some

sort of radial averaging of the EAP to obtain scalar measures directly related to the characteris-

tics of diffusion. These measures act as biomarkers candidates aimed at describing diffusivity,

anisotropy, intra-cellular vs. extra-cellular water movement, etcetera. Some prominent
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examples in this sense are the probability of zero displacement (or return-to-origin probability,

RTOP), the mean-squared displacement (MSD), the q-space inverse variance (QIV), or the

return-to-plane and return-to-axis probabilities (RTPP, RTAP) [19, 23, 24].

Although the use of these measures is not generalized among the clinical community, there

is a growing interest in the exploration of their potential clinical applicability. To date, the rele-

vance of scalar descriptors of the brain micro-structure has been proved on both ex vivo [12,

25, 26] and in vivo studies of healthy and diseased subjects [22, 23, 27–30]. In particular,

RTOP has also demonstrated to be a better indicator for cellularity and diffusion restrictions

than the DTI-related mean diffusivity (MD) [22] and, together with MSD, a proper measure

for the assessment of myelination [31]. These results were later confirmed by [29], where the

authors reinforced the hypothesis on RTOP to have greater sensitivity to reflect cellularity and

restricted diffusion.

The obvious drawback of this methodology is the need of acquiring very large data sets with

many q-space samples in different shells (some of them with very large b-values, which implies

an additional problem due to noise, eddy currents, non-linear effects, etcetera). Even when

sophisticated non-linear techniques based on compressed sensing are used, the number of gra-

dient images to be acquired vastly exceeds that needed for single-shell protocols like DT-MRI

or HARDI. This is clearly a practical limitation: a large number of samples goes together with

longer scanning times, subject movement, and patient discomfort that make them unfit for

clinical practice and for many clinical studies. Besides, some methods require b-values that not

every commercial MRI device is prepared to acquire.

The present paper delves into the question if scalar measures such as RTOP, RTPP, or

RTAP are intrinsically tied up to the computation of the whole, model-free EAP. More pre-

cisely, we hypothesize that a constrained model for radial diffusion may reveal valuable infor-

mation using simpler acquisition protocols, so that a set of apparent scalar measures probed at

one single shell will exhibit a sensitivity to micro-structural changes comparable to non-appar-
entmeasures computed from the full EAP. The rationale behind this is that state of the art

EAP techniques probe (instead of modeling) the actual radial behavior of the diffusion signal

just to subsequently collapse it in a radial integral (average), so that the extra information pro-

vided by multi-shell acquisitions is indeed marginalized. In other words, we intend to substi-

tute the whole average for all b-values with an apparent value at a single b-value.

To test our hypothesis, we have first reformulated RTOP, RTPP, and RTAP for a single-

shell acquisition based on different diffusion models, yielding to closed form expressions and

numerical implementations that are both robust and fast to compute. These apparentmeasures

at one shell are compared with their state of the art counterparts based on the whole EAP in a

set of experiments with real data sets. The figure of merit in such comparison is the ability to

discern voxels with different anisotropy configurations, i.e., the sensitivity to micro-structural

changes.

Background

The diffusion signal

The EAP, P(R), is the three dimensional Probability Density Function (PDF) of the water mol-

ecules inside a voxel moving an effective distance R in an effective time τ. It is related to the

normalized magnitude image provided by the MRI scanner, E(q), by the Fourier transform

[32]:

PðRÞ ¼
Z

R3

EðqÞe� 2pjq�Rdq ¼ FfjEðqÞjgðRÞ: ð1Þ
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The inference of exact information on the R–space would require the sampling of the whole

q–space to use the Fourier relationship between both spaces.

In order to obtain a closed-form analytical solution from a reduced number of acquired

images, a model for the diffusion behavior must be adopted. The most common techniques

rely on the assumption of a Gaussian diffusion profile and a steady state regime of the diffusion

process that yields to the well-known Diffusion Tensor (DT) approach. Alternatively, a more

general expression for E(q) can be used [8]:

EðqÞ ¼ expð� 4p2tq2
0
DðqÞÞ ¼ expð� b � DðqÞÞ; ð2Þ

where the positive function D(q) = D(q0, θ, ϕ)> 0 is the Apparent Diffusion Coefficient

(ADC), b = 4π2τkqk2 is the so-called b-value and q0 = kqk, and θ, ϕ are the angular coordinates

in the spherical system. According to [33], in the mammalian brain, this mono-exponential

model is predominant for values of b up to 2,000s/mm2 and it can be extended to higher values

(up to 3,000s/mm2) if appropriate multi-compartment models of diffusion are used.

Advanced diffusion scalar measures

Although the EAP provides the global information about the diffusion in every voxel of the

brain, that information must be properly translated to be used in clinical trials or to study the

features of particular tissues. Regardless of the method used to estimate the EAP, it must pro-

vide a set of metrics to inspect the changes of complex brain micro-structures, e.g., multiple

compartments or restricted diffusion. Some of the most relevant measures usually derived

from the EAP are:

1. Return-to-origin probability (RTOP): also known as probability of zero displacement, it is

related to the probability density of water molecules that minimally diffuse within the diffu-

sion time τ. It is known to provide relevant information about the white matter structure

[23, 24, 34], and has demonstrated to be a better indicator for cellularity and diffusion

restrictions than the DTI-related mean diffusivity (MD) [22]. It is defined as the value of

P(R) at the origin, related to the volume of the signal E(q):

RTOP ¼ Pð0Þ ¼
Z

R3

EðqÞdq: ð3Þ

2. Return-to-plane probability (RTPP), defined as:

RTPP ¼
Z

R2

PðR?ÞdR? ¼
Z

R
EðqkÞdqk; ð4Þ

where qk denotes the direction of maximal diffusion. It is known to be a good indicator of

restrictive barriers in the axial orientation, and it is related to the mean pore length [12].

3. Return-to-axis probability (RTAP), defined as:

RTAP ¼
Z

R
PðRkÞdRk ¼

Z

R2

Eðq?Þdq?; ð5Þ

where q? is the set of directions perpendicular to qk (the one with maximal diffusion). It is

also a directional scalar index and an indicator of restrictive barriers in the radial orienta-

tion. According to [12], RTPP and RTAP values can be seen as the decomposition of the

RTOP values into two components, parallel and perpendicular to the maximum diffusion.
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Remarkably, each one of these measures is computed in the q-space as an integral in eitherR,

R2, or R3, which in the spherical coordinates system translates to an integral over the radial

coordinate q� kqk that averages the measured signal E(q) over all shells.

Methods

Diffusion measures from single shell acquisitions

The estimation of a given magnitude is always a trade-off between the available data and the

complexity of the model. In this case, we consider a single shell acquisition compatible with

HARDI: moderated-to-high b-value (ranging from 2,000s/mm2 to 3,000s/mm2) and moder-

ated-to-large number of gradients. Since the amount of data is reduced, we are forced to

assume a restricted diffusion model consistent with single-shell acquisitions: the ADC will be

roughly independent from the radial direction within the range of b-values probed, so that

D(q) = D(θ, ϕ). This way Eq (2) becomes:

EðqÞ ¼ Eðq0; y; �Þ ¼ expð� 4p2tq2
0
Dðy; �ÞÞ: ð6Þ

With this model, the radial integral in q that defines all the previously introduced measures

can be analytically computed without the need to actually sample q itself. The corresponding

formulations can be simplified accordingly:

1. RTOP: By using the simplification in Eq (6), we can write Eq (3) in spherical coordinates

and integrate with respect to the radial component q0:

RTOP ¼

Z 1

0

Z 2p

0

Z p

0

expð� 4p2tq2

0
� Dðy; �ÞÞq2

0
siny d� dy dq0

¼
1

4

ffiffiffi
p
p

ð4p2tÞ
3=2

Z

S

1

Dðy; �Þ3=2
dS;

ð7Þ

where
R
S denotes the integral in the surface of a sphere S of radius one. This way, the inte-

gration in the whole q-space in Eq (3) reduces to the integration on the surface of a single

shell.

2. RTPP: The diffusion signal D(q) in the maximum diffusion direction is given by D(r0),

with r0 = qk. Since that direction does not depend on q0, we can integrate with respect to

the radial component:

RTPP ¼

Z 1

� 1

expð� 4p2tq2

0
Dðr0ÞÞdq0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ð4p2tÞ

r ffiffiffiffiffiffiffiffiffiffiffi
1

Dðr0Þ

r

:

ð8Þ

3. RTAP: Let θ0 be the angle that parameterizes the equator normal to the maximum diffusion

direction and D(θ0) the diffusion signal at that equator. Once more, D(θ0) does not depend

on the radial component and the integral can be solved:

RTAP ¼

Z 1

0

Z 2p

0

expð� 4p2tq2

0
Dðy0ÞÞ q0 dy

0 dq0

¼
1

2 � 4p2t

Z 2p

0

1

Dðy0Þ
dy0:

ð9Þ
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The original integral reduces to the line integral of a function in a plane perpendicular to

the maximum diffusion direction.

Although the mono-exponential assumption in Eq (6) may seem restrictive, it has been suc-

cessfully adopted before for single-shell, HARDI models to accurately describe several pre-

dominant diffusion directions within the imaged voxel [7, 8, 35, 36]. Moreover, it allows to get

rid of the dense sampling required by the original formulations of RTOP, RTPP, and RTAP, as

long as the volumetric integrals over the whole q-space are replaced by surface integrals over

one single shell.

On the other hand, the mono-exponential model will roughly hold only within a limited

range around the measured b-value, but diffusion features will diverge for very different b-val-

ues. For this reason, the measures derived this way must be seen as apparent values at a given

b-value, related to the original ones but dependent on the selected shell. In what follows, they

will be referred to as Apparent Measures Using Reduced Acquisitions (AMURA).

Numerical implementation

We propose a robust numerical implementation of the integrals that define the apparent
RTOP and RTAP, as well as the formula for the apparent RTPP, based on Spherical Harmonics

(SH) expansions:

1. RTOP: the integral of a signal H(θ, ϕ) over the surface of the unit sphere S relates to the

0–th order coefficient (DC component) of its SH series expansion, C0,0{H(θ, ϕ)}:

C0;0fH y; �ð Þg ¼
1
ffiffiffiffiffiffi
4p
p

Z

S
Hðy; �ÞdS; ð10Þ

so that the RTOP becomes:

RTOP ¼
1

ð4pÞ
2
t3=2

C0;0fðDðy; �ÞÞ
� 3=2
g: ð11Þ

2. RTPP: The value of RTPP previously defined in Eq (8) depends on D(r0), the ADC evalu-

ated at the direction of maximum diffusion. In order to avoid the variability that a maxi-

mum operator may introduce, we calculate the index over a regularized version of D(θ, ϕ).

Let us call DSH(θ, ϕ) a version of the original diffusion signal regularized using SH. Then,

we can write the RTPP as

RTPP ¼
1
ffiffiffiffiffiffiffiffi
4pt
p

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSHðr0Þ

p ; ð12Þ

where r0 denotes the maximum diffusion direction.

3. RTAP: The value of
R 2p

0
Dðy0Þ� 1dy0 is the line integral of D(θ0)−1 along an equator perpen-

dicular to the direction of maximum diffusion r0, i.e., the Funk-Radon Transform (FRT) of

D(θ0)−1 evaluated at r0, GfDgðr0Þ [37]:

RTAP ¼
1

2 � 4p2t
G

1

Dðy0Þ

� �

ðr0Þ ¼ 2Cðr0Þ; ð13Þ

whereC(r) is the pQ-Balls whose definition and SH-based numerical implementation are

addressed in [38, 39].
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An overview of AMURA, together with the specific numerical implementation of each

apparentmeasure, is presented in Table 1.

Experiments and results

Setting-up of the experiments

As explained above, AMURA measures rely on the expansion of spherical functions at a given

shell in the basis of SH, for which the implementation described in [40] is used: even SH orders

up to 6 are fitted with a Laplace-Beltrami penalty λ = 0.006. RTAP is computed from pQ-Balls

with this same design for SH expansions [39]. For the sake of repeatability, in vivo data have

been chosen exclusively from publicly available databases:

1. From the Human Connectome Project (HCP), five volumes were chosen: MGH 1007,

MGH 1010, MGH 1016, MGH 1018 and MGH 1019, acquired in a Siemens 3T Connec-

tome scanner with 4 different shells at b = {1,000,3,000,5,000,10,000} s/mm2, with {64, 64,

128, 256} gradient directions each, in-plane resolution 1.5 mm2, and slice thickness 1.5

mm. Acquisition parameters are TE = 57 ms and TR = 8800 ms. These data were obtained

from the Human Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp).

The HCP project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at

Massachusetts Gen eral Hospital; Arthur W. Toga, Ph.D., University of Southern Califor-

nia, Van J. Weeden, MD, Martinos Center at Massachusetts General Hospital) is supported

by the National Institute of Dental and Craniofacial Research (NIDCR), the National Insti-

tute of Mental Health (NIMH) and the National Institute of Neurological Disorders and

Stroke (NINDS). HCP is the result of efforts of co-investigators from the University of

Southern California, Martinos Center for Biomedical Imaging at Massachusetts General

Hospital (MGH), Washington University, and the University of Minnesota.

This acquisition included 40 different baselines that were averaged to improve their SNR.

The SNR of each of the individual baselines is high enough to make a Gaussian approxima-

tion feasible with a small error. Under this approximation we can assure that the average

operator provides an unbiased output image [41].

2. From the Public Parkinson’s Disease database (PPD), 53 subjects from a cross-sectional

Parkinson’s Disease (PD) study comprising 27 patients together with 26 age, sex, and

education-matched control subjects. Data were acquired on a 3T head-only MR scanner

(Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with an

8-channel head coil. Diffusion-weighted (DW) images were acquired with a twice-refo-

cused, spin-echo sequence with EPI readout at two distinct b-values b = {1,000, 2,500} s/

mm2, and along 120 evenly spaced encoding gradients. For the purposes of motion correc-

tion, 22 unweighted (b = 0) volumes, interleaved with the DW images, were acquired.

Acquisition parameters are TR = 6800 ms, TE = 91 ms, and FOV = 211 mm2, no parallel

Table 1. Survey of the q-space measures gathered by AMURA, along with their specific numerical implementations.

MEASURE DEFINITION NUMERICAL IMPLEMENTATION

RTOP
¼

1

4

ffiffiffi
p
p

ð4p2tÞ
3=2

Z

S

1

Dðy; �Þ3=2
dS ¼

1

ð4pÞ
2
t3=2
C0;0fðDðy; �ÞÞ

� 3=2
g

RTPP
¼

1
ffiffiffiffiffiffiffiffi
4pt
p

1
ffiffiffiffiffiffiffiffiffiffiffi
Dðr0Þ

p ¼
1
ffiffiffiffiffiffiffiffi
4pt
p

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSHðr0Þ

p

RTAP
¼

1

2 � 4p2t

Z 2p

0

1

Dðy0Þ
dy0

¼ 2Cðr0Þ, see [39]

https://doi.org/10.1371/journal.pone.0229526.t001
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imaging and 6/8 partial Fourier were used. More information can be found in [42]. These

data were acquired at the Cyclotron Research Centre, University of Liège. Available: https://

www.nitrc.org/frs/?group_id=835.

Consistency of apparent, single-shell measures

Since AMURA are intended to reveal similar micro-structural changes as multi-shell EAP esti-

mators, each one of the apparent RTOP, RTPP, and RTAP are expected to correlate well with

their multi-shell counterparts, meaning the anatomical information they assess is closely

related. To check this point, AMURA is compared against three state of the art EAP estimation

techniques not requiring dense samplings of the q-space: RBFs with constrained ℓ2 regulariza-

tion as described in [19], MAP-MRI with anisotropic basis and radial order 6 [12], and MAPL

with anisotropic basis, radial order 8, and regularization weighting λ = 0.2 [21].

In order to attain an affordable complexity for this experiment, the study is restricted to

three different axial slices for each selected volume as depicted in Table 2.

For each volume and slice, the three measures are calculated with RBFs, MAP-MRI, and

MAPL using either 3 shells (b = {1,000, 3,000, 5,000} s/mm2), or 2 shells (b = {1,000, 3,000}

s/mm2). AMURA are calculated using one single shell at either b = 3,000s/mm2 or

b = 5,000s/mm2. This sum up 8 different calculations of each of RTOP, RTPP and RTAP for

each volume and slice as illustrated in Fig 1, where those voxels with FA bellow 0.2 have been

masked.

A simple visual inspection suggests that indeed all the 8 different computations of RTOP,

RTPP, and RTAP provide congruent information about the anatomies imaged. This qualita-

tive evidence is confirmed in Table 3, where the correlation coefficients ρ between each pair of

measures are computed. In precise terms, let frig
N
i¼1

be the values of the measure defined at

each row of Table 3, and fcig
N
i¼1

the values of the measure defined at each column; the set

i = 1. . .N gathers all those voxels with FA above 0.2. Then:

rrc ¼

XN

i¼1

ðri � �rÞðci � �cÞ

ðN � 1Þsr sc
; for : �x ¼

1

N

XN

i¼1

xi and sx ¼
1

N � 1

XN

i¼1

ðxi � �xÞ2:
ð14Þ

Results for RTOP show a strong correlation, in some cases over 90%, between the measure

estimated with AMURA and the calculation given by the other techniques, particularly those

based on MAP. It is worth noticing that AMURA-RTOP correlates better with MAP-RTOP

than RBF-RTOP does, even when RBF is computed from 3 shells (left column) and AMURA

is using as few as 64 gradients (b = 3,000s/mm2) or 128 gradients (b = 5,000s/mm2) in one sin-

gle shell.

For RTPP, though the absolute correlations between each pair of computations are clearly

weaker than for RTOP, AMURA still exhibits a higher consistency towards MAP-based mea-

sures than RBF does. At the sight of Fig 1, the noisier nature of RTPP could probably explain

Table 2. Selected slices from each diffusion volume from the HCP.

Volume Slice numbers Volume Slice numbers

MGH 1007 42, 52, 65 MGH 1018 31, 41, 51

MGH 1010 46, 54, 60 MGH 1019 40, 50, 64

MGH 1016 42, 55, 68

https://doi.org/10.1371/journal.pone.0229526.t002
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Fig 1. Visual assessment of the consistency of AMURA. (Top) Slice 42 of the MGH1016 volume from HCP; (Bottom) Slice 51 of the MGH1018. AMURA

is calculated with one single shell at the specified b-value. MAPL, MAP-MRI and RBF are calculated using either 2 or 3 shells at the maximum b-value

specified. For the sake of visual comparison, RTOP and RTAP have been gamma-corrected as specified.

https://doi.org/10.1371/journal.pone.0229526.g001
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the net decrease in the correlations. Interestingly, the computation of RTPP with 2 shells

seems more consistent between multi-shell techniques than it is with 3 shells. For example, the

correlation between RBF-RTPP and MAPL-RTPP falls as low as 10%.

Since RTAP provides cleanermaps than RTPP (see Fig 1), the discussion becomes similar

to the case of RTOP: the overall correlations between the different computations are much

higher in this case, with AMURA correlating up to 90% with MAPL and MAP-MRI. Once

again, RBF-RTAP seems less consistent with MAP-like-RTAP than AMURA-RTAP.

Summarizing, AMURA provide information that closely resembles that computed with

multi-shell methods. Moreover, AMURA are more consistent with MAP-like measures than

other multi-shell methods like RBF. This might suggest that the deviations introduced by the

election of different basis functions and different numerical schemes in each multi-shell

method could indeed surpass the error AMURA introduce as a consequence of modeling

(instead of sampling) the radial behavior of E(q).

Sensitivity of apparent single-shell measures to tissue properties

Though AMURA provide anatomical maps that closely resemble those yielded by multi-shell

methods (see Fig 1), it is not necessarily implied that they have the same capabilities to distin-

guish analogous tissue properties. Such capabilities are first put to the test by means of a classi-

fication problem where two classes are defined depending on the values of either RTOP,

RTPP, or RTAP computed from MAPL with 4 shells, see Fig 2. This way, MAPL becomes a

bronze standard given its high consistency with both MAP-MRI and AMURA (it shows also

the strongest correlations with RBF, see Table 3), and assuming it probes actual micro-struc-

tural information. The problem design is as follows:

1. Once the background of the image is removed, the histogram of either RTOP, RTPP, or

RTAP is computed from the bronze standard (MAPL). A threshold is selected in the valley

right after the main lobe for each MAPL-measure (for RTOP: 2 � 106mm-3; for RTPP:

90mm-1; for RTAP: 1.5 � 104mm-2). Classes 1 and 2 are defined as either below or above this

threshold, see Fig 2(A).

Table 3. Correlation coefficients between the different methods to estimate RTOP, RTPP and RTAP. The higher the better. AMURA are computed from one single

shell at either b = 3,000s/mm2 (3k) or b = 5,000s/mm2 (5k). Multi-shell methods are always compared between them with the same number of shells (2 or 3).

3 shells 2 shells

RBF MAPL MAP-MRI RBF MAPL MAP-MRI

RTOP AMURA 3k 0.7636 0.8616 0.9202 0.8051 0.9047 0.9027

AMURA 5k 0.7629 0.9538 0.9151 0.7264 0.8950 0.8278

RBF – 0.7320 0.6408 – 0.7746 0.7136

MAPL – – 0.8356 – – 0.7334

RTPP AMURA 3k 0.2565 0.7035 0.6811 0.6464 0.7497 0.6423

AMURA 5k 0.2295 0.6077 0.4530 0.3155 0.3884 0.2415

RBF – 0.1041 0.1139 – 0.7089 0.6096

MAPL – – 0.9416 – – 0.8678

RTAP AMURA 3k 0.4918 0.8800 0.9305 0.7846 0.8955 0.9341

AMURA 5k 0.5145 0.9382 0.9406 0.8009 0.8993 0.9049

RBF – 0.4740 0.4706 – 0.7739 0.8170

MAPL – – 0.8885 – – 0.8451

https://doi.org/10.1371/journal.pone.0229526.t003
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2. From each of the other methods (MAP-MRI, RBF, AMURA, and MAPL itself with less that

4 shells), RTOP, RTPP, and RTAP are computed and used as discriminant features of each

voxel.

3. In case a given method were actually providing the exact same micro-structural informa-

tion as the bronze standard, such features should suffice to mimic the exact same classifica-

tion designed in Fig 2(A). Otherwise, both false positives (class 1 voxels tagged as class 2)

and false negatives (class 2 voxels tagged as class 1) will appear that reflect discrepancies in

the information measured.

4. Such discrepancies are quantified by means of a Receiver Operating Characteristics (ROC)

curve: for a given measure, corresponding values are computed using each method; these

values are further classified using amoving threshold ranging from the minimum computed

value to its maximum. This way, each value of themoving threshold defines a classification

that is compared to the bronze standard in step 1 in search for false positives and false nega-

tives. The ROC curve is the graphic relating these two rates as the threshold moves. Finally,

three standard Figures of Merit (FoM) related to the ROC are reported: the area under the

curve (AUC), the sensitivity at the optimum threshold, and the specificity at the optimum

threshold, see Fig 2(B).

The results are gathered, respectively, in Table 4 (RTOP), Table 5 (RTPP), and Table 6

(RTAP). In all cases, the closer to 1 is the better. While AMURA are computed from one shell,

the other methods use either 2 shells (at maximum b = 3,000s/mm2), 3 shells (at maximum

b = 5,000s/mm2) or 4 shells (at maximum b = 10,000s/mm2).

As can be seen, AMURA scores high FoMs in all cases, even above those obtained with

MAP-MRI (which is a non-improved version of MAPL itself). For example, the apparent value

of AMURA-RTOP at any shell scores higher than any of the computations from MAP-MRI

regardless on the number of shells it uses (Table 4). Indeed, this same comment holds true for

the other two measures, with the exception of the specificity of RTPP with MAP-MRI at 4

shells (Table 5) and the specificity of RTAP with MAP-MRI at 4 shells (Table 6). In the same

way as in Table 3, the measures computed with RBF tend to deviate from those based on MAP

Fig 2. Conceptual description of the problem designed to test the sensitivity of AMURA to micro-structural changes. (A) The pixels in the image are split

into 2 classes by thresholding the corresponding MAPL measure (RTOP in the example). (B) Each one of the methods to be tested: MAPL, MAP-MRI, RBF, or

AMURA (AMURA in the example) is used to compute this same measure, and a ROC curve is calculated with the classes defined in (A) as the target.

https://doi.org/10.1371/journal.pone.0229526.g002
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even if the number of shells increases. Finally, it is worth noticing that the apparent values

obtained with AMURA at either b = 3,000s/mm2 or b = 5,000s/mm2 score pretty close to

MAPL when the outermost shell at b = 10,000s/mm2 is suppressed from the bronze standard.

Summarizing, not only AMURA strongly correlate with measures derived from multi-shell

techniques, but they seem to distinguish tissue properties as well as the other methods do.

Table 4. ROC FoMs for RTOP (the closer to 1, the better). MAPL with 4 shells at a maximum b = 10,000s/mm2 is the bronze standard.

AUC MAPL AMURA RBF MAP-MRI

b = 3000 0.8796 0.8285 0.6887 0.6839

b = 5000 0.9343 0.9205 0.7251 0.7035

b = 10000 1.0000 0.9771 0.7762 0.7219

Sensitivity MAPL AMURA RBF MAP-MRI

b = 3000 0.8114 0.7527 0.6108 0.6123

b = 5000 0.8802 0.8520 0.6480 0.6378

b = 10000 1.0000 0.9213 0.7318 0.6402

Specificity MAPL AMURA RBF MAP-MRI

b = 3000 0.9114 0.8367 0.7915 0.8109

b = 5000 0.9454 0.9334 0.8480 0.8285

b = 10000 1.0000 0.9623 0.9359 0.8788

https://doi.org/10.1371/journal.pone.0229526.t004

Table 5. ROC FoMs for RTPP (the closer to 1, the better). MAPL with 4 shells at a maximum b = 10,000s/mm2 is the bronze standard.

AUC MAPL AMURA RBF MAP-MRI

b = 3000 0.7884 0.6900 0.5736 0.5550

b = 5000 0.8647 0.7657 0.4632 0.6038

b = 10000 1.0000 0.8261 0.4735 0.6488

Sensitivity MAPL AMURA RBF MAP-MRI

b = 3000 0.6761 0.5803 0.5008 0.5000

b = 5000 0.7516 0.6332 0.4807 0.5295

b = 10000 1.0000 0.7077 0.4828 0.5677

Specificity MAPL AMURA RBF MAP-MRI

b = 3000 0.7828 0.7162 0.7260 0.6608

b = 5000 0.8440 0.7469 0.5171 0.7442

b = 10000 1.0000 0.7713 0.5440 0.8284

https://doi.org/10.1371/journal.pone.0229526.t005

Table 6. ROC FoMs for RTAP (the closer to 1, the better). MAPL with 4 shells at a maximum b = 10,000s/mm2 is the bronze standard.

AUC MAPL AMURA RBF MAP-MRI

b = 3000 0.9218 0.8959 0.7338 0.7592

b = 5000 0.9537 0.9446 0.6543 0.7717

b = 10000 1.0000 0.9755 0.7456 0.7993

Sensitivity MAPL AMURA RBF MAP-MRI

b = 3000 0.8516 0.8204 0.6309 0.6844

b = 5000 0.8864 0.8808 0.5911 0.6997

b = 10000 1.0000 0.9223 0.6900 0.7430

Specificity MAPL AMURA RBF MAP-MRI

b = 3000 0.9232 0.8848 0.8266 0.8473

b = 5000 0.9480 0.9152 0.6665 0.8612

b = 10000 1.0000 0.9482 0.7728 0.9205

https://doi.org/10.1371/journal.pone.0229526.t006
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Interestingly, the micro-structural properties described by multi-shell techniques do not seem

to converge even if the q-space sampling is improved.

Potential of apparent single-shell measures in clinical setups

The previous experiment relies on an artificial classification of voxels depending on MAPL as

a bronze standard. To further test the capabilities of AMURA to probe tissue properties, we

have devised an additional experiment involving the clinical data in the PPD database. Though

PD is known to affect the substantia nigra or the gray matter more than the standard white

matter tracts commonly studied in group-wise analyses based on DMRI, significant differences

have also been reported in several white matter regions such as the corpus callosum, the corti-

cospinal tract, or the fornix [43]. Accordingly, we have focused on commonly-studied white

matter tracts that are segmented for each volume in the PDD database based on the ENIG-

MA-DTI template [44] (ENIGMA project web page: http://enigma.ini.usc.edu/; template data

and processing protocols for DTI: https://www.nitrc.org/projects/enigma_dti) and the JHU

WM atlas [45] as follows:

1. The FA is calculated as a reference value using MRTRIX (http://www.mrtrix.org) for

b = 1,000s/mm2. Its value is registered against the ENIGMA-DTI FA template using

deformable image registration based on the local cross-correlation between the images [46].

2. The JHU WM atlas classifies 48 disjointed white matter regions in the image space of the

ENIGMA-DTI template. Their segmentations are back-projected onto the image space of

each subject in the PDD database using the output deformation field of the registration.

Working on the original image space avoids interpolation artifacts as well as side effects

induced by the higher resolution of the ENIGMA-DTI template as compared to the PDD

subjects.

3. The ENIGMA-DTI template comprises segmentations of both the whole white matter

tracts and their FA skeletons. Back-projection is repeated for both segmentations, hence

both a full segmentation of each tract and its pseudo-skeleton (central core) is available in

the original image space (see Fig 3).

Fig 3. Registration-based segmentation of WM tracts of a control subject in the PDD database. (Left) Whole tracts.

(Right) Pseudo-skeletons.

https://doi.org/10.1371/journal.pone.0229526.g003
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4. Outliers are removed from the segmentations by eliminating those voxels with abnormal

values (i.e. values outside the range [0, 1]) of the FA and “Westin’s scalars”, Cp, Cl, Cs [5].

Each segmented tract is characterized by one single scalar measure: for AMURA, the appar-
ent RTOP, RTPP, and RTAP at b = 2,500s/mm2 are averaged over each pseudo-skeleton. As in

the previous section, their MAPL counterparts (using the 2 available shells) are targeted to as

the state of the art. Additionally, a tensor model-driven version of the indices (at b = 2,500s/

mm2) is tested as a sort of end of scale (see Appendix for the implementation details). Finally,

the raw FA is also included in the analysis since it is the standard index to test in group studies

[43].

Among the 48 tracts in the JHU WM, we have found statistically relevant differences mainly

at the corpus callosum, which is in agreement with the related literature [43]. Table 7 shows

the results for two-sample, pooled variance t-tests over Gaussian-corrected data between con-

trols and patients for each of the measures considered and at each of the three sections of the

corpus callosum segmented in the JHU WM (genu –GCC–, body –BCC–, and splenium –

SCC–).

RTPP-related measures result in discriminant markers for this particular problem at the

genu and the splenium of the corpus callosum. Remarkably, the raw FA is only able to find dif-

ferences at the splenium, meanwhile RTAP and RTOP are unable to plot significant differ-

ences in a consistent way. To further understand why RTPP consistently finds significant

differences, and how this is related to the information it measures, its actual distribution

(PDF) inside the pseudo-skeleton of each segment (GCC, BCC, SCC) is estimated by using

Parzen windowing in Fig 4.

AMURA-RTPP is able to consistently distinguish between two different populations within

each region of the corpus callosum. Meanwhile these two groups are also discriminated at the

genu by the other approaches, this is not the case at the body and, above all, at the splenium,

where even the MAPL-RTPP fails to find the valley between the two populations. Specifically,

statistically significant differences between controls and patients appear wherever there is a

change in the relative distribution of voxels between the two populations, i.e., at both the genu

and the splenium. This provided, and anytime the separation between the two populations can

be easily identified at AMURA − RTPP = 27mm−1, the segmentation of the corpus callosum

depending on its apparent RTPP is straightforward by thresholding. Such processing has been

applied to each subject in the database (both controls and patients), and the resulting

Table 7. Two-sample t-tests for each measure and at each section of the corpus callosum (the lower the better).

The p-values represent the probability that the measure has identical means for both controls and patients. Differences

with statistical significance above 99% (resp. 95%) are highlighted in green (resp. amber).

Tensor Tensor MAPL

FA RTOP RTPP RTAP RTOP RTPP RTAP

GCC 0.087 0.357 0.028 0.174 0.557 0.021 0.322

BCC 0.055 0.165 0.749 0.130 0.334 0.420 0.172

SCC 0.014 0.135 0.036 0.030 0.164 0.015 0.069

AMURA

RTOP RTPP RTAP

GCC 0.334 0.011 0.214

BCC 0.193 0.470 0.137

SCC 0.272 0.003 0.144

https://doi.org/10.1371/journal.pone.0229526.t007

PLOS ONE Micro-structure diffusion scalar measures from reduced MRI acquisitions

PLOS ONE | https://doi.org/10.1371/journal.pone.0229526 March 9, 2020 14 / 25

https://doi.org/10.1371/journal.pone.0229526.t007
https://doi.org/10.1371/journal.pone.0229526


segmentations have been projected onto the image space of the ENIGMA template to compute

the average segmentation shown in Fig 5.

The two populations identified by AMURA-RTPP correspond to a clean segmentation of

the corpus callosum distinguishing between its lowermost (closer to the cerebrospinal fluid)

and its uppermost (closer to the cingulum) sections, so that we can reasonably argue that

Fig 4. PDFs of RTPP computed from either the tensor model, MAPL, or AMURA (plus the FA) and within each of GCC, BCC, or SCC. (Red) Patients; (Green)

Controls. (Dashed line) Bootstrap PDF from 100 iterations with 15 subjects each; (Solid line) Global PDF for all controls/patients. The p-values are referred to the t-tests

reported in Table 7.

https://doi.org/10.1371/journal.pone.0229526.g004

Fig 5. Average segmentation of the corpus callosum in the space of the ENIGMA template by AMURA-RTPP thresholding at 27

mm−1. The cingulum (CG) is also rendered in the 3D view for reference purposes. A sagittal slice of the average FA of the PDD is also

shown for reference.

https://doi.org/10.1371/journal.pone.0229526.g005
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AMURA-RTPP is actually able to discern micro-structural properties that remain hidden with

DT-related measures (see Fig 4).

Variability of apparent measures depending on the acquisition parameters

Since AMURA provide apparentmeasures at a given shell, the question of how much these

measures depend on the actual shell measured naturally arises. As long as AMURA have been

designed for reduced acquisition protocols, it also makes sense to check their sensitivity to the

number of diffusion samples taken at a given shell. To put this to the test, a set of experiments

have been designed using volume MGH 1016: the variability with the b-value is probed by sub-

sequently computing AMURA with each of the available shells at either b = 3,000s/mm2,

b = 5,000s/mm2, or b = 10,000s/mm2. For the variability with the number of diffusion gradi-

ents, we start with the 128 samples at b = 5,000s/mm2 and uniformly subsample this set to

obtain either 32, 48, 64, 80, 96, 112, or 128 diffusion directions subsets (a “uniform” subsam-

pling of n gradients among the original 128 is here defined as those n directions that minimize

the overall electrostatic repulsion energy amongst all ð
128

n Þ combinations. The optimization is

carried out using heuristic rules). To plot such a huge amount of information, only those vox-

els of MGH 1016 with FA above 0.2 are included, and they are further clustered depending on

their FA using fuzzy c-means. This results in 5 classes with centroids CL = {0.24, 0.36, 0.51,

0.66, 0.86}, for which the median of each AMURA measure is used as a representative, see Fig

6. AMURA seem extremely robust to the number of acquired gradients even in the case of

very heavy subsamplings. This is as expected, since Fig 6 shows mean values but not variances.

On the contrary, all three measures show a clear dependency with the b-value since the

assumption that D(θ, ϕ) is roughly constant holds only within a limited range of b-values. In

any case, the monotonical behavior of each cluster is preserved for both RTOP and RTAP, i.e.

Fig 6. Apparent values of AMURA as a function of the number of acquired gradients (top) or the b-value (bottom) for subject MGH 1016. Each line correspond

to a cluster of FA values computed from 5-fold fuzzy c-means. AMURA as a function of the number of gradients (top) are depicted at b = 5,000s/mm2.

https://doi.org/10.1371/journal.pone.0229526.g006
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an increasing value of the FA comes along with an increasing value of RTOP and RTAP for all

shells. Since both RTOP and RTAP resemble anisotropy maps, see Fig 1, this is as expected.

This is not necessarily the case for RTPP, whose graphics for each cluster cross each other as

the b-value varies. If the experiment is repeated for RTPP using a clustering of its own (i.e., by

running fuzzy c-means over RTPP itself at b = 5,000s/mm2, yielding five centroids CL = {20.72,

22.80, 24.35, 25.92, 27.83}), a perfect monotonical behavior is of course obtained as shown in

Fig 7.

A similar test may be run over the multi-shell techniques. In this case we are interested in

checking the variability of the measures depending on the number of shells used (either 2, 3,

or 4). The same five volumes and 3 slices in Table 2 are used, and the fuzzy c-means clustering

above described is repeated yielding centroids CL = {0.24, 0.33, 0.45, 0.58, 0.76}. Fig 8 demon-

strates that indeed multi-shell measures do depend on the sampling scheme (number of

shells).

Specifically, including the fourth shell at b = 3,000s/mm2 heavily alters the measured

RTOP, RTPP, and RTAP in all cases. Note that, while the monotonical behavior of RTOP and

RTAP holds for MAP-like estimators, this is not always the case for RBF (which, in the light of

this experiment, seems particularly unstable). As it was pointed out in the previous paragraph,

RTPP is not necessarily expected to monotonically increase with the FA in any case.

Computational issues and execution times

AMURA relies on SH expansions computed as linear, regularized LS problems. On the con-

trary, multi-shell methods depend on heavily non-linear, sparsity-driven, possibly constrained

optimization problems. The linear nature of LS usually yields to well-behaved, stable solutions,

meanwhile non-linear optimization usually arises numerical issues.

Besides, the computational load of LS is noticeably more modest (it reduces to invert one

single matrix for the whole volume or even the whole cohort), to the point that AMURA can

be several orders of magnitude faster than multi-shell techniques. This is illustrated here

through volume MGH 1016 from the HCP. The measures of interest are computed on a quad-

core Intel(R) Core(TM) i7-6700K 4.00GHz processor under Debian GNU/Linux 8.6 SO. The

Fig 7. AMURA-RTPP as a function of the number of acquired gradients (left) or the b-value (right) for subject MGH 1016. Each line correspond to a

cluster of RTPP values computed from 5-fold fuzzy c-means. AMURA-RTPP as a function of the number of gradients (left) is depicted at b = 5,000s/mm2.

https://doi.org/10.1371/journal.pone.0229526.g007
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available code for RBFs (https://github.com/LipengNing/RBF-Propagator) was run under

MATLAB 2013b (The MathWorks, Inc., Natick, MA) and the DIPY 0.13.0 library (http://nipy.

org/dipy) under Python 3.6.4 (scipy 1.0.0) was used for MAP-MRI and MAPL. AMURA is

implemented in MATLAB without multi-threading to report the results in Table 8.

Though raw execution times are an ambiguous performance index (they can be dramati-

cally improved, for example, via GPU acceleration), they give a reasonable idea of the complex-

ity of each method. Note the reported times for most of the methods make them unfeasible to

be used on practical studies. In the case of RBF, they range from 5 to 24 days per volume,

something that goes beyond the capability of clinical groups. Even in the best of the cases,

MAPL is 17 times slower than AMURA. In all the cases, most of the time is spent in calculating

the EAP. In MAPL, for instance, only 0.6% of the calculation time corresponds to the

Fig 8. Measured values with multi-shell techniques as a function of the number of shells acquired. Each line correspond to a cluster from 5-fold fuzzy c-means.

https://doi.org/10.1371/journal.pone.0229526.g008

Table 8. Estimated execution times for the calculation of the measures with different methods. One single volume

(HCP MGH 1016) is processed.

Execution times

Method Two shells Three shells Four shells

RBFs 118h 10min 332h 40min 577h 12min

MAP-MRI 13h 43min 13h 46min 16h 20min

MAPL 2h 11min 2h 14min 2h 22min

AMURA 6min 41s 7min 17s 8min 28s

https://doi.org/10.1371/journal.pone.0229526.t008

PLOS ONE Micro-structure diffusion scalar measures from reduced MRI acquisitions

PLOS ONE | https://doi.org/10.1371/journal.pone.0229526 March 9, 2020 18 / 25

https://github.com/LipengNing/RBF-Propagator
http://nipy.org/dipy
http://nipy.org/dipy
https://doi.org/10.1371/journal.pone.0229526.g008
https://doi.org/10.1371/journal.pone.0229526.t008
https://doi.org/10.1371/journal.pone.0229526


measures, while the remaining 99.4% is spent in estimating the EAP. In the case of AMURA,

50% of the execution time corresponds to RTAP, since the estimation of the ODF is the most

expensive operation, followed by RTPP, which takes 40% of the time. RTOP is the fastest mea-

sure, since it takes only 16s, 29s, and 54s for the different shells.

Discussion and conclusions

AMURA are not intend to approximate the exact same numeric parameters as multi-shell

methods compute. On the contrary, their aim is inferring micro-structural information related

to, and with comparable discrimination power as, that revealed by MAP-MRI, MAPL, or RBF.

Fig 1 and Table 3 evidence the anatomical consistency of AMURA, both visually and numeri-

cally. Tables 4, 5, and 6 confirm they are able to discriminate tissue properties in a similar way

as multi-shell methods do.

With regard to the first issue, i.e. anatomical consistency, EAP-based measures explicitly

account for the radial behavior of the diffusion signal, which is actually sampled. With

AMURA, the radial behavior is not sampled but modeled as a mono-exponential decay. The

hypothesis leading to the computation of the whole EAP should be, therefore, that the study of

the whole EAP provides more specific/sensitive measures, i.e., there is certain anatomical

information encoded in the radial behavior of the EAP that would remain hidden with

AMURA. However, Table 3 highlights this is not always the case: different EAP-methods

bring in less consistent results among them than some of them exhibit with AMURA for anal-

ogous measures (RTOP, RTPP, or RTAP). Paradoxically, the similarity between RBF and

MAP-like methods even worsens as new shells with higher b-values are introduced.

As a first attempt to explain this behavior, we may recall that the measures computed are

merely scalars, i.e., the complex information gathered in the whole 3-D domain of the EAP is

somehow collapsed to one single number: the RTOP, for instance, is the value of the EAP at a

single point (zero), which corresponds to the integration of the diffusion signal in the whole q-

space, in a way that most of the information is lost in the average.

However, the averaging process behind the scalar measures does not explain why the corre-

sponding outputs obtained from the different EAP-based methods do not converge to analo-

gous values, or why the model-constrained AMURA measures seem to mimic MAPL values

better than model-free, EAP-based MAP-MRI and RBF in Table 3. Moreover, as the number

of shells and the number of samples per shell increase, MAPL, MAP-MRI, and RBF would be

expected to converge to exactly the same values, since all of them estimate the same mathemat-

ical entity (the EAP) and all of them use the same mathematical description of the related mea-

sures (RTOP, RTPP, and RTAP). The experiments here reported show this is not always the

case and, surprisingly, MAP-MRI and RBF tend to diverge from MAPL more than AMURA

does.

Obviously, the mono-exponential model introduces a non-negligible error in the estimated

measures. But the estimation of the EAP is by no means free of certain issues that compromise

its accuracy: first, the EAP is usually represented as a superposition of functions selected from

a basis or frame where the EAP is assumed to be sparse, which is only a rough approximation;

second, the estimation is usually grounded on non-linear, iterative procedures, whose numeri-

cal stability is not always guaranteed and whose actual convergence is often conditioned by

computational time restrictions; third, EAP estimation requires probing very strong diffusion

gradients that drastically worsen the SNR, which may have an uncertain impact depending on

the optimization method to be used; fourth, an additional side effect of the use of strong diffu-

sion gradients is that the linear Fourier transform relation between the EAP and the diffusion

signal, which is the keystone of all EAP-based methods, may no longer hold with accuracy due
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to non-linearity, diffraction, and/or non-negligible diffusion during the application of pulsed

gradients in a time δ (see Fig 8, where including the fourth shell in the estimation heavily

increases all measures for MAPL; this might suggest the Fourier model has been compromised

at this point).

The combination of these four factors (and possibly others) may affect each EAP-based

method in very different ways, and they could even represent a larger error than that intro-

duced by the mono-exponential model. This could possibly explain the discrepancies between

the measures computed with any of the three EAP-based methods, especially the higher devia-

tions of RBF when 3 shells (instead of 2) are used in Table 3. Of course, AMURA does not get

rid of this issue. But, once again, the goal of AMURA is not estimating the exact same values as

EAP-based methods: a shifted (level/contrast changed) version of a given measure will have

exactly the same discriminant power as its former version, and therefore it will be equally valu-

able. Going back to Fig 8, EAP-based measures do not always respect this principle: RBF, for

example, assigns very different, non-consistent relative values of RTAP among anatomies with

similar FA depending on the number of shells used. Since RTAP is somehow related to the

anisotropy (to the FA), this is by no means the expected behavior. MAP-like estimators, as well

as AMURA, get rid of this artifact for RTAP but not for RTPP. However, since RTPP is not as

closely related to the anisotropy as RTAP, and as long as AMURA-RTPP is still consistent with

MAP-RTPP, this seems acceptable.

All in all, the apparent nature of AMURA makes corresponding measures heavily depen-

dent on the measured shell (see Fig 6), but a similar variability is also found in multi-shell

methods (Fig 8).

Once the consistency of AMURA has been thoroughly discussed, the big deal is their power

to resolve micro-structural features beyond the capabilities of conventional DT-MRI. Tables 4,

5, and 6 suggest that AMURA might be as good as the other multi-shell techniques to distin-

guish different populations based on tissue properties. Going back to the previous discussion,

the lack of consistency between the raw values of RTOP, RTPP, and RTAP computed with dif-

ferent multi-shell methods translates in similar discrepancies in the classification of white mat-

ter voxels. If AMURA correlated with MAPL stronger than the other multi-shell techniques

did, they indeed provide better overlapped classifications too. Remarkably, AMURA finds two

populations that more closely resemble those found by MAPL than MAP-MRI does, even

when MAPL and MAP-MRI share a good number of common features. This remains true for

all apparentmeasures at all available b-values. Hence, if we admit that EAP imaging provides

measures that actually relate to micro-structural properties [12, 22, 29, 31], corresponding

AMURA indexes should be assumed to probe actual tissue information as well. Once again,

this claim can be justified only under the hypothesis that the radial integration to compute sca-

lar measures blurs out a major part of the radial information within the q-space.

The experiment in Fig 4 supports this claim, at least for RTPP: while tensor-derived mea-

sures are not able to distinguish different populations within the corpus callosum, AMUR-

A-RTPP finds two distinct regions that can be easily identified in Fig 5. In other words,

AMURA-RTPP is measuring a micro-structural information that is not revealed with standard

DT-MRI. Paying attention to Fig 5, the two populations distinguished by AMURA-RTPP

become evident: in the outermost region, the corpus callosum is interleaved with the cingu-

lum, so that restricted diffusion prevails, the maximum diffusivity decreases, and the RTPP

increases (lobes at the right of the valley in Fig 4, rightmost column). In the innermost part, on

the contrary, the corpus callosum is closer to the CSF and non-restricted diffusion takes a

more relevant role: the maximum diffusivity increases and, as a consequence, the RTPP

decreases (lobes at the left of the valley in Fig 4). At the sight of Fig 4, MAPL seems to find only

subtle differences between these two populations, performing worse than AMURA.
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Nonetheless, the PDD database comprises only 2 shells, and hence it is not particularly well

suited for this technique.

In any case, RTPP yields statistically significant differences between controls and patients at

both the GCC and the SCC in all cases, see Table 7 (though the AMURA-RTPP yields a higher

significance). This is not the case for RTOP and RTAP. It is important to stress here that the

aim of the experiment is not demonstrating the clinical usefulness of AMURA in the particular

case of PD, but testing its capability to describe micro-structural features. In other words, the

fact that RTOP and RTAP are not able to find significant differences between controls and PD

patients only means that the micro-structural properties they describe do not seem to be

altered by this particular pathology and/or in this particular data set.

One further step in the present study would be the validation of AMURA as clinical bio-

marker candidates for diverse pathologies. Though Table 7 somehow points in this direction,

this aspect must be thoroughly tested. In this sense, one major advantage of AMURA is its

compatibility with nowadays standard acquisition protocols, so that they can be computed

over already existing data sets such as the PDD database. Indeed, in case several shells with dif-

ferent b-values are available in one such database (as it is the case with PDD), AMURA can be

trivially extended to fit the mono-exponential model to the entire data set and obtain more

robust markers. On the contrary, multi-shell methods like MAPL need ad-hoc new acquisi-

tions to attain satisfactory results, which complicates their clinical validation.

Moreover, since AMURA avoids the estimation of the actual EAP, the computation of its

related measures may be done in a fast and robust way, i.e., without imposing a computa-

tional burden to the standard protocols: some of the experiments in the present paper report

an acceleration about three orders of magnitude (103) compared to EAP-based measures, see

Table 8. A whole volume can be processed in 6 to 8 minutes, so that a clinical study with 200

different subjects could be finished in 26 hours. The same cohort would take 4808 days

(RBF), 135 days (MAP-MRI), or 19 days (MAPL), which obviously limits the applicability of

these methods. The computational simplicity of AMURA, however, does not only imply

faster execution times, but also more robust estimations due to its closed-form. As opposed,

EAP-based techniques usually estimate the whole EAP from multi-shell samplings based on

iterative procedures, which, as discussed above, lead to high discrepancies in the output

measures.

On the other side of the coin, the major drawback behind AMURA is the explicit assump-

tion of a specific radial behavior for the diffusion, which cannot fit the whole q-space. As a

consequence, the selection of a particular b-value may change the anatomical measures that

have been consequently dubbed apparent. However, as we have shown, this dependence on

the b-value can also be found in other state of the art methods (see Fig 8), whose outputs vary

with the number of shells used for the estimation of the EAP. This implies the results of clinical

trials could be compared against each other only if the same b-value is preserved across the

studies. This is by no means something new to diffusion imaging: it is well-known that a

change in the acquisition parameters (number of gradients, b-value, resolution, scanner ven-

dor, etcetera) seriously affects scalar measures like the FA or the MD [47, 48].

Appendix: Calculation of the structural measures using the

diffusion tensor

If a Gaussian diffusion propagator is assumed, P(R) is a mixture of independent and (nearly)

identically distributed bounded cylinder statistics and, by virtue of the central limit theorem,

their superposition is Gaussian distributed. The measured signal in the q–space is the (inverse)
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Fourier transform of the PDF and it can be expressed as:

EðqÞ ¼ F� 1
fPðRÞgðqÞ ¼ expð� 4p2tqTDqÞ; ð15Þ

which represents the well-known Stejskal–Tanner equation [49]. The diffusion tensor D is the

anisotropic covariance matrix of the Gaussian PDF P(R), and therefore it is a symmetric, posi-

tive–definite matrix with positive eigenvalues and orthonormal eigenvectors. If we use this

model to estimate the measures, we obtain:

RTOP ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4ptÞ
3

q � ðl1 � l2 � l3Þ
� 1=2

¼ RTPP � RTAP;

ð16Þ

RTPP ¼
1
ffiffiffiffiffiffiffiffi
4pt
p � ðl1Þ

� 1=2
; ð17Þ

RTAP ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4ptÞ
2

q � ðl2 � l3Þ
� 1=2

; ð18Þ

where λ1� λ2� λ3 are the three real, non-negative eigenvalues of D.
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