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This study aimed to preliminarily illustrate the cerebral hemodynamic correlates of

transcutaneous auricular vagal nerve stimulation (taVNS) in consciousness restoration.

Arterial spin labeling (ASL) was adopted with functional magnetic resonance imaging

(fMRI) to measure cerebral blood flow (CBF) changes before and after taVNS in 10

qualified patients with disorders of consciousness (DOC). Before taVNS, five patients

responded to auditory stimuli (RtAS), and five did not respond to auditory stimuli (nRtAS).

The RtAS DOC patients obtained favorable prognoses after the 4-week taVNS treatment,

whereas the nRtAS ones did not. Simultaneously, taVNS increased CBF of multiple brain

regions in the RtAS DOC patients, but hardly in the nRtAS ones. In conclusion, the

preserved auditory function might be the prior key factor of the taVNS responders in

DOC patients, and taVNS might alleviate RtAS DOC by activating the salience network,

the limbic system, and the interoceptive system.

Keywords: functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL), cerebral blood flow (CBF),

transcutaneous auricular vagal nerve stimulation (taVNS), disorders of consciousness (DOC), responded to

auditory stimuli (RtAS), non-responded to auditory stimuli (nRtAS)

INTRODUCTION

Emergency healthcare and reanimation techniques have decreased the mortality
of patients with severe traumatic brain injury (TBI) and hypoxic-ischemic
encephalopathy (HIE) significantly in recent decades. However, some patients with
TBI or HIE manifest with very poor prognoses and finally suffer from disorders of
consciousness (DOC), a medical condition changed from complete self-awareness
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to inhibited or absent self-awareness and arousal (1), either
temporary or permanent. Increasing numbers of DOC patients
are laying an enormous burden on families, economies, and
societies worldwide. Thus, the exploration of a novel method to
restore consciousness is urgently needed.

Although new neuromodulation techniques, such as
transcranial direct current stimulation (tDCS) (2), transcranial
magnetic stimulation (TMS) (3), and low intensity focused
ultrasound pulse (LIFUP) (4), have been introduced (5), deep
brain stimulation (DBS), and spinal cord stimulation (SCS)
remain two mostly employed neurostimulation techniques
for DOC patients and show some promises in restoring
consciousness (6, 7). However, high costs, complicated processes,
and potential surgical side effects limited their applications.

Corazzol et al. applied vagal nerve stimulation (VNS) to treat
a patient lying in the vegetative state (VS) for 15 years following
TBI (8). After 1 month of stimulation, clinical examination
revealed reproducible, stable improvements in general arousal,
sustained attention, body motility, and visual pursuit. Scores on
the Coma Recovery Scale-Revised (CRS-R) test were improved,
indicating a transition from a vegetative to minimally conscious.
The results challenged the belief that DOC persisting longer
than 12 months is irreversible (9). However, the same as
DBS and SCS, VNS is expensive and invasive with irreversible
implants. The disadvantages block its clinical application in more
DOC patients.

The vagal nerve carries somatic and visceral efferents
and afferents distributed throughout the brain, either
monosynaptically or via the nucleus tractus solitarii (NTS)
(10). The vagal nerve has a branch of afferent projections in
the auricular concha and external ear channels (11). Thus,
transcutaneous auricular vagal nerve stimulation (taVNS) was
developed based on this anatomical characteristic (12, 13) and
was previously found to produce comparable efficacy with classic
VNS (14), which means taVNS is a promising form of classic
VNS (15).

Before the French team’s publication (8), our team also has
a peer-reviewed case report on the beneficial effects of taVNS
on the consciousness level of a 73-year-old female single patient
who developed into DOC after cardiopulmonary resuscitation
for 50 days (16). After a 4-week taVNS treatment, her CRS-
R scores rose from 6 to 13, and her diagnosis was changed
from VS to minimally conscious state (MCS). The BOLD
functional magnetic resonance imaging (fMRI) outcomes also
showed improved brain functional connectivity (FC). This was
the first case of taVNS in a DOC patient and the first report of
encouraging results from clinical conditions to brain FC.

After the case report, we then showed that only auditory-
function-preserved patients with DOC are reversible by taVNS
(17). In the same survey, we also focused on arterial spin
labeling (ASL) with fMRI in the brain of these DOC patients,
which uses magnetically labeled arterial blood water protons as
an endogenous tracer and is a non-ionizing and non-invasive
measurement of cerebral blood flow (CBF) (18, 19), and the
most effective approach uses magnetically labeled arterial blood
water (20). Arterial spin labeling perfusion is commensurate
with other more invasive methods such as PET and dynamic

susceptibility contrast-enhanced MRI (DSC-MRI) perfusion
(21), with higher accuracy and acceptance, and without specific
ethics requirements in humans (22, 23). For DOC patients,
especially the ones in VS, the increment of CBF is the basis
of their brain functional recovery (24). Nevertheless, the ASL-
fMRI results of the study were neither sufficiently illustrated nor
adequately discussed previously. Thus, in this study, we aimed
to preliminarily illustrate the cerebral hemodynamic correlates of
taVNS in consciousness restoration.

METHODS

Ethics
This is an open-label pilot study within a clinical trial (Trial
registration: ChiCTR-INR-16008745). The study was reviewed
and approved by the Ethics Committee of the Institute of
Acupuncture and Moxibustion, China Academy of Chinese
Medical Sciences (Approval Number: 2016062001). Written
informed consent to participate in this study and to publish the
work was provided by the legal guardians of the patients.

Participants and Scales Assessing
Patients were recruited from the Department of Neurosurgery,
PLA Army General Hospital, Beijing, China, for this study.
Inclusion criteria were patients in VS, MCS, and coma following
severe brain damage after the acute brain insult for at least 2
days. Patients were excluded when there was a contraindication
for MRI (e.g., presence of ferromagnetic aneurysm clips and
pacemakers), MRI acquisition under sedation or anesthesia,
uncertain clinical diagnosis (25), and data could not be further
processed in the further ASL-fMRI analysis.

The patients’ consciousness states were assessed twice, before
(T0) and after (T1) the taVNS treatment, using the JFK Coma
Recovery Scale (JFK CRS-R) (26), which includes six subscales
addressing auditory, visual, motor, oromotor, communication
(language), and arousal processes. The elapsed time between
eligibility and baseline assessments was within 24 h.

Also, their prognoses were judged via the Glasgow Outcome
Scale (GOS). Glasgow Outcome Scale provides a measurement
of outcome ranging from 1 to 5 (1, dead; 2, vegetative
state/severe disability; 3, able to follow commands/unable
to live independently/moderate disability; 4, able to live
independently/unable to return to work or school; 5, good
recovery/able to return to work or school) (7, 27). In this study,
any GOS score ≤ 2 was defined as “unfavorable prognosis,”
whereas a score from 3 to 5 was defined as “favorable prognosis”
(7, 28, 29).

No other treatments, including drugs that could modify
cortical excitability, were administered. And we followed the
CONSORT checklist in this study.

The taVNS Treatment
The points for taVNS were placed in the concha area, where
there are principal vagal nerve branch distributions (11, 14,
30). Both the cymba concha (100% auricle branch of the
vagal nerve) and the cavity of concha (45% auricle branch
of the vagal nerve and 55% great auricular nerve) (11) were
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stimulated (Supplementary Figure 1). After the stimulation
areas were sterilized, ear clips with plate electrodes were
attached to the area (auricular concha) at the stimulation site
(Supplementary Figure 1) of both ears. Stimulation parameters
were adjusted according to our previous study (16): (1) density
wave to 20Hz, and pulse width to 0.5ms; (2) intensity: 4–6mA
(this intensity will cause slight pain to the ears in conscious
people, which is mostly tolerable). The treatment lasted 30min
continuously and was carried out twice a day (8:00 and 16:00) for
4 weeks.

Functional MRI Data Acquisition
Patients received fMRI scanning sessions before and after
the treatment. The elapsed time between the MRI scans and
treatment was within 24 h. Most of the scans were carried out
at around 15:00. A 3.0 TMR scanner (HD750, General Electronic
Co., USA) was used for this study equipped with an eight-channel
head coil. A wedge-shaped foam padding was used to minimize
head motions.

Structure imaging included 3D-T1-weighted. Arterial spin
labeling sequences were obtained during the eyes-open status.
Patients’ ASL sequences with significant motion degradation
were excluded from the analysis.

The raw ASL images were acquired twice by three-
dimensional ASL sequences (31–33). The 3D ASL, including
M0 image and perfusion different image, was obtained with the
parameters as follows: TR= 4,632ms, TE= 10ms, slice thickness
= 4mm, field of view (FOV)= 24× 24 mm2, post labeling delay
(PLD) = 1,500ms. In addition, T1-weighted three-dimensional
high-resolution structural images were obtained using a sagittal
BRAin Volume imaging (BRAVO) sequence with TR = 7.8ms,

TE = 3.0ms, TI = 600ms, flip angle of 9◦, and 186 slices with a
voxel size of 1× 1× 1 mm3.

ASL Pre-processing
Arterial spin labeling pre-processing used ASLtbx based
on SPM12 (Statistical Parametric Mapping, available at
www.fil.ion.ucl.ac.uk/spm/software/Spm12) on the Matlab
platform (R2013b; Math Works, Natick, MA).

Before calculating the CBF map, the orientation of each
3D ASL and 3D T1 image should be reset to the center of
the image matrix at the midpoint of the AC-PC line. The
CBF (ml/100 g/min) map of 3D ASL was calculated using the
mean Perf difference image, and M0wm (M0wm was extracted
from a white matter mask) by using batch scripts provided
in ASLtbx (34). Perfusion difference image was registered to
individual T1 image so that they could be later normalized
to Montreal Neurological Institute (MNI) template space for
next smoothing. We normalized CBF within the ASL images to
avoid major variations in CBF due to cardiac blood flow and
pressure liabilities. The normalized CBF map was smoothed with
an isotropic Gaussian filter with a full-width-at-half-maximum
(FWHM) = 6 mm3 to filter noise for later group analysis.
We then performed whole-brain voxel-wise analyses of the
images within the general linear model framework using SPM12.
The analyses were constrained to gray matter tissue only by
thresholding the analysis mask to 40% of the mean gray matter
image of our sample.

ASL Statistics Analysis
After pre-processing, we extracted mean CBF from 92 regions
of interest using the AAL parcellation toolbox. The following
data analysis processing was conducted on SnPM13, alongside

TABLE 1 | Patients’ demographics and clinical characteristics.

ID State Grouping before

taVNS treatment

Gender Age Course Cause Prognosis GOS CRS-R (T0)

before the taVNS

treatment

CRS-R (T1) after

the taVNS

treatment

P01 VS RtAS Male 41 10 days+ HIE Favorable 3 A1V0M2O1C0Ar2 A2V3M2O1C0Ar2

P02 VS nRtAS Male 43 50 days+ HIE Unfavorable 2 A0V0M2O1C0Ar2 A1V1M2O1C0Ar2

P03 VS nRtAS Male 31 90 days+ cerebral

hemorrhage

Unfavorable 2 A0V0M2O1C0Ar2 A1V1M2O1C0Ar2

P04 MCS RtAS Male 23 90 days HIE Favorable 4 A2V3M2O1C0Ar2 A4V5M5O2C2Ar3

P05 MCS RtAS Female 27 300 days Brain injuries due

to traffic accident

Favorable 3 A3V3M3O1C0Ar3 A3V3M3O1C0Ar3

P06 MCS RtAS Male 42 50 days+ Cerebral

hemorrhage

Favorable 5 A1V0M3O1C0Ar2 A4V1M6O3C2Ar3

P07 VS nRtAS Male 39 30 days+ Brainstem

hemorrhage

Unfavorable 2 A0V0M2O0C0Ar0 A0V0M2O0C0Ar0

P08 VS nRtAS Male 29 60 days+ HIE Unfavorable 2 A0V0M1O0C0Ar2 A1V2M2O0C0Ar2

P09 VS nRtAS Female 19 15 days Brain injuries due

to traffic accident

Unfavorable 2 A0V1M2O0C0Ar1 A1V1M2O1C0Ar2

P10 VS RtAS Female 73 90 days+ HIE Favorable 3 A1V1M1O1C0Ar2 A3V3M3O2C0Ar2

VS, vegetative state; MCS, minimally conscious state; RtAS, response to auditory stimulus; nRtAS, non-response to auditory stimulus; HIE, hypoxic-ischemic encephalopathy; GOS,

Glasgow Coma scale; CRS-R, Coma Recovery Scale-Revised. The subscales for the CRS-R are Auditory Function (A), Visual Function (V), Motor Function (M), Oromotor Function (O),

Communication (C), and Arousal (Ar).
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FIGURE 1 | Patients’ CRS-R total and subitems scores before and after taVNS. *P < 0.05, before taVNS vs. after taVNS; n.s., not significant; P > 0.05; before taVNS

vs. after taVNS.

SPM12b installation. SnPM refers to an implementation of
Statistical non-Parametric Mapping by Andrew Holmes and
Tom Nichols (35). The voxel-wise comparison was used in
SnPM to examine CBF increment from pre-taVNS to post-
taVNS, with 5,000 permutations. Regions with significant CBF
changes were defined as ROIs, and the ROI-based CBF change
ratio [CBF change ratio = (post_CBF – pre_CBF)/pre_CBF]
was calculated.

Clinical Data Analysis
To compare the consciousness recovery state before and after
the taVNS treatment, the patients’ CRS-R total scores and
six subscales’ scores of each group were analyzed with t-
tests, respectively. GraphPad Prism 6 software was used to
analyze the data. Differences with P < 0.05 were considered
statistically significant.

RESULTS

Demographic Information
The demographic information was shown in Table 1. Briefly,
we recruited seven males and three females, aged from
19 to 73 years old; three of them were with MCS, while
seven of them were with VS. In these patients, five of
them were caused by HIE, two by brain injuries due to

traffic accidents, two by a cerebral hemorrhage, and one by
brainstem hemorrhage.

Clinical Characteristics
According to the first auditory score (Table 1), five patients fell
into the responded to auditory stimuli (RtAS) group [subscale
Auditory Function (A) ≥ 1: Auditory startle], and the other five
fell into the non-responded to auditory stimuli (nRtAS) group
[subscale Auditory Function (A)= 0: None].

Through the GOS assessment (Table 1) (7, 29), after the
taVNS treatment, five patients can be classified as favorable
prognoses (GOS > 2), while the other five patients can be
classified as unfavorable prognoses (GOS≤ 2).

The data illustrated that patients, who responded to auditory
stimuli [RtAS, CRS-R (T0) subscale Auditory Function (A) ≥
1] before the taVNS treatment, were going to have favorable
prognoses (GOS > 2) after the treatment. Simultaneously,
patients, who did not respond to auditory stimuli [nRtAS, CRS-
R (T0) subscale Auditory Function (A) = 0] before the taVNS
treatment, were going to have unfavorable prognoses (GOS ≤ 2)
after the treatment.

All patients’ CRS-R subitems and total scores before and after
the taVNS treatment were presented inTable 1 and Figure 1. The
data showed that taVNS only improved the total scores of the
RtAS group significantly (P < 0.05). As a result, we reported that
only the RtAS DOC patients were responsive to taVNS (17).
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TABLE 2 | CBF increased brain regions by taVNS.

CBF improved regions MNI (mm) T-score Voxel

size

X Y Z

RtAS Thalamus (R) 18.29 −11.97 3.22 2.90 76

Superior Temporal Gyrus (L) −35.62 6.64 −25.75 5.10 81

Superior Frontal Gyrus (L) −24.93 66.99 −14.26 5.03 262

Precentral Gyrus (R) 42.35 −5.83 45.45 3.14 53

Precentral Gyrus (L) −64.67 −4.73 42.94 3.86 178

Postcentral Gyrus (L) −32.50 −16.64 46.28 2.54 54

Hippocampus (R) 33.16 −43.34 −11.74 10.16 64

Orbital Gyrus (L) −8.07 31.81 −41.40 4.57 131

Middle Temporal Gyrus (R) 73.64 −1.92 −16.82 3.06 92

Middle Frontal Gyrus (R) 29.52 −1.48 47.09 2.43 71

Middle Frontal Gyrus (L) −50.28 48.99 7.57 3.49 227

Midbrain (R) 15.89 −19.31 −18.89 5.49 188

Medulla (R) 2.78 −39.72 −43.98 10.61 64

Medulla (L) 0.62 −40.00 −45.80 2.79 116

Occipital Lobe (R) 5.66 −100.33 1.17 3.38 77

Occipital Lobe (L) −2.87 −95.73 4.40 3.88 113

Insula (L) −31.20 19.01 −12.56 3.93 112

Inferior Frontal Gyrus (L) −31.32 8.96 −24.28 6.67 92

Cerebellum (R) 15.61 −48.40 −46.67 22.86 811

Cerebellum (L) −39.97 −61.17 −45.69 9.80 147

Caudate (R) 11.86 9.38 6.32 5.66 115

Caudate (L) −5.26 15.76 7.70 3.97 83

Lentiform Nucleus (R) 33.11 −15.89 −10.23 4.06 107

Lentiform Nucleus (L) −33.14 −19.69 −4.75 2.58 69

nRtAS Cerebellum (L) −54.70 −71.41 −28.72 3.79 61

R, right; L, left; MNI, Montreal Neurological Institute. Voxel < 50 were excluded in

this study.

CBF Changes
As shown in Table 2 and Figure 2, taVNS increased CBF of
multiple brain regions in the RtAS DOC patients; the CBF
increment in the nRtAS group with the taVNS treatment
is relatively weak, which was merely prominent in the left
cerebellum. Cerebral blood flow changes ratio graphs, and some
ROI-based CBF changes between pre-taVNS and post-taVNS
in the RtAS group can be seen in Supplementary Figure 2 and
Supplementary Table 1.

DISCUSSION

VNS (8) and taVNS (16) have been identified as therapeutic
strategies for DOC (5). Signs of consciousness recovery after
taVNS were recorded in some severe TBI patients (36). It was
also suggested that taVNS is a feasible, safe, and effective tool for
DOC patients (37).

Initially, we designed a clinical trial, planning to use taVNS
and transcutaneous non-vagal nerve stimulation (tnVNS, as a
sham control group) in DOC patients. However, previous studies
(36, 37) and this one found that only a portion of DOC patients

is responsive to taVNS, which implied that designing a tnVNS
group is not yet necessary presently (and that the clinical trial
might have failed); however, finding the prior key factor(s)
of the taVNS responders in DOC patients is more valuable
and instructive to future studies. It has been reported that the
auditory network FC has good correspondence with the level
of consciousness (25), which is also estimated to be capable of
predicting the prognoses of DOC (38). Intriguingly, we found
that only RtAS DOC patients were responsive to taVNS (17).
Therefore, the evidence provides a possible answer that the
preserved auditory function might be the key factor.

The discovery of the key factor is indeed accidental. We
originally assumed that all DOC patients are responsive to
taVNS. Thus, this work formerly intended to reveal more detailed
neuroimaging evidence of how taVNS alleviates DOC. And the
results are also fortuitous and interesting.

Previous neurophysiologic taVNS/fMRI studies in healthy
subjects majorly focused on the BOLD signal (15, 39–41).
Because they applied different stimulating methods (sites
and parameters), they have different findings. In this study,
we deployed taVNS in DOC patients, in which both the
cymba concha and the cavity of concha (11) were stimulated
(Supplementary Figure 1). We found some overlapping brain
regions in RtAS DOC patients with the previous studies, such
as the thalamus, the caudate, the insula, and the frontal cortex.
Nevertheless, this study majorly focused on the altered ASL
signal in DOC patients. Meanwhile, neural networks and systems
based on the brain regions need to be interpreted to deepen the
study’s insight. In the former two works (8, 16), the primary
discoveries were the default mode network (DMN), the thalamo-
cortical network, and the centro-posterior network. A hypothesis
article has proposed three new possible neural networks (42): the
external fronto-parietal network (ExN), the salience network, and
the Mesocircuit model. This work provides some new evidence
and may confirm the salience network hypothesis.

Impaired consciousness was proportional to the reduction
in mean CBF regardless of pathology types (43). Therefore,
increment in CBF is the basis of consciousness recovery. The
results of this study showed that taVNS increased CBF ofmultiple
brain regions in the RtAS DOC patients, but hardly in the nRtAS
ones (Table 2 and Figure 2). Here, we disclose the details.

The First Level: Through the Vagal Nerve,
taVNS Might Modulate the Salience
Network and the Limbic System
The afferent vagal fibers connect to the NTS in the medulla,
which in turn projects connections to other locations in the
brain (44, 45). Previous studies confirmed that taVNS precisely
activated the NTS in healthy subjects (41). The results of this
study showed that taVNS increased CBF of the medulla in the
RtAS DOC patients, which indicated that taVNS might also
modulate the NTS directly in these patients.With themodulation
of NTS, the peripheral nerve stimulations can pass through
the vagal nerves and reach the thalamus (46). The thalamus
is the large mass of gray matter in the dorsal part of the
brain with several functions such as relaying of sensory signals,
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FIGURE 2 | CBF increment by taVNS. The RtAS group: taVNS increased the RtAS DOC patients’ CBF in this study in many brain regions presented in this figure:

STG (L) of temporal lobe; PFC (L) including SFG (L), MFG (L), and IFG (L); medulla; cerebellum (L) and cerebellum (R); precentral; caudate (R); HIPP (R); insula (L);

occipital (L); THA (R). Images displayed in Montreal Neurological Institute standard stereotaxic space, and coordinates are provided for each slice. STG (L), left

superior temporal gyrus; PFC (L), left prefrontal cortex including left superior frontal gyrus [SFG (L)], left middle frontal gyrus [MFG (L)], and left inferior frontal gyrus [IFG

(R)]; cerebellum (L), left cerebellum; cerebellum (R), right cerebellum; precentral, precentral gyrus; caudate (R), right caudate; HIPP (R), right hippocampus; insula (L),

left insula; occipital (L), left occipital lobe; THA (R), right thalamus. The nRtAS group: taVNS increased the nRtAS DOC patients’ CBF only in the left cerebellum.

Images displayed in Montreal Neurological Institute standard stereotaxic space and coordinates are provided for each slice. Cerebellum (L), left cerebellum.

Uncorrected P < 0.05, T > 1.97.

including motor signals, to the cerebral cortex (47, 48) and the
regulation of consciousness, sleep, and alertness, which also plays
a vital role in arousal and awareness (49). Through the medulla
and the thalamus, taVNS might modulate patients’ left insula,
which plays an essential role in consciousness (50). It has been
proposed that primates possess a unique mapping of autonomic

interoceptive information within the insula that forms the
substrate of conscious feelings (51). The insula is also one of the
core brain regions that anchor the salience network (52), which
segregates the most relevant internal and extrapersonal stimuli
(52) and is associated with individual differences in interoceptive
accuracy (53). This study showed that taVNS increased CBF of
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the insula in the RtASDOC patients, indicating that taVNSmight
activate these patients’ consciousness by improving their salience
network connectivity (42). Cerebral blood flow upregulations of
the insula directly accentuated some limbic-related areas such as
the hippocampus, which is also recognized as a critical structure
for autonoetic consciousness (54–56). taVNS also increased CBF
of other limbic-related regions such as the caudate, the middle
temporal gyrus (MTG), the orbitofrontal cortex (OFC), the
inferior frontal gyrus (IFG). Significantly, the IFG is involved in
evaluating linguistic, interoceptive, and emotional information
(57), including visuospatial attention (58), and the improvement
of these cognitive functions by taVNS might be one basis of
consciousness recovery in these RtAS DOC patients.

The Second Level: Through the
Up-Conducting Pathway of the
Interoceptive System, taVNS Might
Modulate the Cerebral Cortex
The improved thalamic fundamental metabolic level leads to
the CBF upregulations of the cerebral cortex [somatosensory
cortex (occipital lobe, superior temporal gyrus—STG, and MTG)
and executive control cortex (prefrontal areas)] through the
up-conducting pathway of the interoceptive system (51, 59).
Meanwhile, the improved insula fundamental metabolic level
also leads to metabolic upregulations of the somatosensory
cortex and the prefrontal areas, which are also involved in the
interoceptive system (51, 60). The interoceptive system is crucial
for maintaining homeostatic conditions (61) in the body and,
potentially, aiding in self-awareness (62) and is fundamental
in human emotional well-being (59) and consciousness (51).
Traceabily, interoceptive signals are transmitted to the brain
via multiple pathways, and the vagal nerve is one of them
(51). Thence, taVNS might trigger the consciousness restoration
effects in the RtAS DOC patients by activating the interoceptive
system. It is worth mentioning that the STG is not merely
involved in auditory processing, including language, but also has
been implicated as a critical structure in social cognition (63, 64).
Therefore, CBF upregulations of the STG by taVNS might also
help to restore consciousness by improving these RtAS DOC
patients’ cognitive functions.

The Third Level: taVNS Might Modulate the
Thalamo-Cortical Loop
Previously, a consensus has been reached that disconnections
in long-range thalamo-cortical pathways are involved in
DOC’s situation (65). The caudate is one of the structures
that make up the dorsal striatum, a basal ganglia component
(66). The increment of CBF in these RtAS DOC patients’
caudate illustrated that taVNS might modulate the
(ganglia-)thalamo-cortical loop (67), which might reconnect the
very disconnections.

LIMITATIONS

Considering the small sample size and the lack of a control group,
we should interpret our data cautiously. One of the limits of this

open-label pilot study is that there were only 10 qualified DOC
patients enrolled, with only 5 being responsive to taVNS, which
can hardly illustrate all detailed mechanisms of the consciousness
restoration by taVNS. Moreover, before taVNS, patients in the
RtAS group already had better clinical conditions than those
in the nRtAS group: three patients of the RtAS group were
in MCS, and two were in VS, whereas all five of the nRtAS
subjects were in VS (Table 1); this indicated that the observed
differences in response between RtAS and nRtAS might have
been significantly influenced by differences in these patients’
baseline clinical conditions. It is also unclear whether a DOC
patient being responsive to auditory stimuli would respond to
any extended procedures, which presumably include auditory
stimuli rather than the actual procedure, such as taVNS. Also,
the benefits of taVNS require time to emerge in DOC patients;
however, we set the duration of the taVNS treatment for 4 weeks
in this study (17), limiting its effects for the patients (the French
team monitored the effects of VNS for more than 6 months in
that particular case) (5, 8). In addition, to map more detailed
mechanisms, other monitoringmethods, such as functional near-
infrared spectroscopy (fNIRS), electroencephalography (EEG),
and magnetoencephalography (MEG), need to be considered
in upcoming studies. Eventually, physiological parameters, such
as blood pressure, pulse rate, heart rate variability, and the
baroreflex, need to be tested in the future to measure tolerability
and parasympathetic activity.

CONCLUSION

This study newly demonstrated that taVNS might primarily
activate the salience network, the limbic system, and the
interoceptive system, which better illustrates how taVNS
alleviates RtAS DOC than the previous studies. The results
also indicated that the preserved auditory function might
be the prior key factor of the taVNS responders in DOC
patients. Therefore, future time-limited controlled trials
applying taVNS and tnVNS (as a sham control group)
on DOC patients should probably avoid enrolling the
nRtAS ones.
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