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Disease‑related cellular protein 
networks differentially affected 
under different EGFR mutations 
in lung adenocarcinoma
Toshihide Nishimura1,8*, Haruhiko Nakamura1,2,8, Ayako Yachie3,8, Takeshi Hase3,8, 
Kiyonaga Fujii1,8, Hirotaka Koizumi4, Saeko Naruki4, Masayuki Takagi4, Yukiko Matsuoka3, 
Naoki Furuya5, Harubumi Kato6,7 & Hisashi Saji2

It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) 
affect downstream molecular networks and pathways. This study aimed to provide information 
on the influences of these mutations. The study assessed 36 protein expression profiles of lung 
adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression 
network analysis together with analysis of variance-based screening identified 13 co-expressed 
modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation 
demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen-
activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis 
for the L858R mutation identified various pathways related to cancer cell survival and death. With 
regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were 
upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, 
RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were 
moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, 
whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 
were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our findings may help identify 
potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.

Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) were identified as causes 
of non-small-cell lung cancer (NSCLC) in 20041,2. Somatic mutations in the kinase domain of the EGFR gene 
are detected in approximately 40% and 17% of lung adenocarcinomas in Asians3 and Caucasians4, respectively. 
The most common oncogenic mutations are small, in-frame deletions in exon 19 (44.8%) and a point mutation 
that substitutes Leu-858 with arginine (L858R) (39.8%)5. Importantly, activating mutations have been found 
to confer sensitivity to the small molecule tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib. 
These EGFR-TKIs (targeted therapies for patients with EGFR-mutant NSCLC) have been established as stand-
ard first-line treatments according to pivotal phase III trials that reported an improved objective response rate 
of approximately 70% and significantly longer progression-free survival (PFS) (range, 8.0–13.7 months) with 
EGFR-TKIs than with conventional chemotherapy6–8. Eventually, drug resistance occurs in most patients after 
1 year of treatment. Therefore, novel treatment strategies have been challenged to improve the survival benefit 
of first-line treatment. Basically, the efficacy of these EGFR-TKIs is limited based on the result of drug resistance 
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conferred by another mutation involving substitution of threonine 790 with methionine (T790M)9. Osimerti-
nib is an irreversible third-generation EGFR-TKI that is selective for sensitising EGFR and T790M mutations. 
The randomised phase III AURA3 trial demonstrated that the efficacy of osimertinib was significantly greater 
than that of platinum therapy plus pemetrexed in patients with T790M-positive advanced NSCLC10. The need 
for tissue re-biopsy to determine the T790M status can be a barrier to appropriate treatment selection. Plasma 
detection and semi-quantitation of the activating EGFR and T790M mutations are useful to predict the efficacy 
of osimertinib11. T790M in circulating tumour DNA was approved by the US FDA in 2016 as a diagnostic tool 
to predict osimertinib success, and minimally invasive assays are expected to gain prominence in the future. 
Recently, osimertinib was recommended as first-line treatment for patients with EGFR-mutant NSCLC according 
to the FLAURA trial that reported significantly better PFS and OS with osimertinib than with first-generation 
EGFR-TKIs (gefitinib or erlotinib)12,13.

A pivotal challenge is to understand how major driver mutations affect disease-related molecular networks 
in the context of lung cancer progression, malignancy and outcome and/or resistance regarding TKI therapies14.

Recent advances in high-accuracy mass spectrometry (MS) have made proteomics more compatible with shot-
gun sequencing and quantitative analysis of disease-related proteins expressed in clinical specimens14. Proteomic 
expression data obtained from such analyses can be used to extract key disease-related proteins and identify 
novel biomarkers and therapeutic targets15,16. A laser microdissection (LMD) technique enables the collection 
of target cells of a certain type from sections of formalin-fixed paraffin-embedded (FFPE) cancer tissue. We used 
label-free spectral counting and identification-based semi-quantitative shotgun proteomic analysis of microdis-
sected target cancerous cells of a certain type that characterised lung adenocarcinoma17–19.

We recently identified the key protein modules that characterise small-cell lung carcinoma and large-cell 
neuroendocrine lung carcinoma in systematic network analysis of clinical tissue proteome datasets by weighted 
gene co-expression network analysis (WGCNA)20. WGCNA is an extensively applied unsupervised gene cluster-
ing method that is based on the correlation network of gene expression21–25. We applied the WGCNA pipeline 
as well as analysis of variance (ANOVA) to identify the key protein modules and networks affected by the EGFR 
mutations L858R and Ex19del in patients with lung adenocarcinoma.

The main aim of this study was to understand how major driver mutations related to EGFR (L858R and/or 
Ex19del) affect downstream molecular networks and pathways, which would reflect disease nature and treatment 
outcomes in patients with lung adenocarcinoma (most abundant among NSCLC subtypes) who harbour these 
EGFR mutations. To our knowledge, such a study has not been conducted previously.

Results
Proteome datasets of lung adenocarcinoma.  MS-based proteomic analysis was conducted for 36 
FFPE tissue specimens of lung adenocarcinoma (35 involved the acinar subtype and one involved the papillary 
subtype). These specimens were selected for their preserved condition, tumour area and well-clarified pathologi-
cal diagnosis and EGFR mutation status (L858R mutation, nine specimens; Ex19del mutation, nine specimens; 
no Ex19del or L858R mutation, 18 specimens) (Table 1). Pre-surgical treatment was not performed in any of the 
cases. A total of 3,355 proteins were identified, and of these, about 85% were expressed commonly in the cancer 
cells of lung adenocarcinoma involving the three mutation statuses. The proportion of proteins unique to each 
mutation type was less than 0.5%, whereas the proportion of proteins expressed in only no EGFR mutation cases 
was about 5%.

Identification of key protein modules by WGCNA.  The hierarchical clustering of patients according 
to protein abundance showed limited correlation with the proteome landscape and the EGFR mutation type in 
lung adenocarcinoma (Fig. 1A). We constructed a weighted gene co-expression network and clustered all the 
identified proteins, and we found 81 protein modules (Fig. 1B,C), which were robustly appeared in the module 
stability analysis (Supplementary Fig. S1). In the WGCNA, a soft threshold power of 10 was selected to define 
the adjacency matrix according to the criteria of approximate scale-free topology, with a minimum module 
size of 5 and a module detection sensitivity deepSplit of 4. The clinical traits for patients were set according to 
the EGFR mutation status, with M1, M2 and NM traits corresponding to L858R mutation, Ex19del mutation 
and no Ex19del/L858R mutation, respectively. The correlations between resultant modules and clinical traits 
were determined to identify protein modules whose expressions were upregulated or downregulated in L858del, 
Ex19del or no Ex19del/L858R mutation samples. We identified few modules that showed moderate correlations 
with clinical traits (|r|> 0.5) (Supplementary Fig. S2).

Among the 81 modules, only the WM44 module was significant with regard to the EGFR Ex19del mutation 
status (r = 0.51, p < 0.05). However, several WGCNA modules were suggested to be not significant but relatively 
characteristic to the three clinical traits (Supplementary Fig. S2). The WM23 module was characteristic to the 
M1 trait (r = 0.36, p < 0.05). The WM12 and WM15 modules showed positive correlations with the M2 trait 
(r = 0.44, p < 0.05 and r = 0.46, p < 0.05, respectively) and negative correlations with the NM trait (r =  − 0.41, 
p < 0.05 and r =  − 0.56, p < 0.05, respectively). The WM9, WM21, WM39 and WM64 modules were moderately 
characteristic to the NM trait.

Statistical analysis of the protein interaction network associated with protein identified by 
ANOVA.  WGCNA is a powerful computational framework to identify co-expression of protein modules. 
However, traditional trait analysis involving the correlations between eigen components of WGCNA modules 
and clinical traits might overlook important modules for investigating differential disease mechanisms. ANOVA 
can identify individual proteins with significant differences in proteome abundance among different patient 
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Sample no Gender Age
Histological 
type Subtype

Surgical 
method

Tumor size 
on CT (mm)

Pathological 
max. size 
(mm)

Pathological 
stage Clinical stage

EGFR mutation positive/
negativea

Patient 1 F 58 AD Acinar Radical lobec-
tomy 18 20 pIA cIA Positive

Ex19 
E746-A750 
del

Patient 2 F 75 AD Acinar Radical lobec-
tomy 46 40 pIB cIB Positive

Ex19 
E746-A750 
del

Patient 3 F 72 AD Acinar Radical lobec-
tomy 52 39 pIB cIIA Positive

Ex19 
E746-A750 
del

Patient 4 F 72 AD Acinar Radical lobec-
tomy 13 20 pIA cIA Positive

Ex19 
E746-A750 
del

Patient 5 M 74 AD Acinar Radical lobec-
tomy 18 17 pIA cIA Positive

Ex19 
E746-A750 
del

Patient 6 M 71 AD Acinar Radical lobec-
tomy 26 51 pIV cIV Positive

Ex19 
E746-A750 
del

Patient 7 F 71 AD Acinar Radical lobec-
tomy 27 28 pIA cIA Positive

Ex19 
E746-A750 
del

Patient 8 F 40 AD Acinar Radical lobec-
tomy 26 14 pIIB cIA Positive

Ex19 
E746-A750 
del

Patient 9 F 70 AD Acinar Radical lobec-
tomy 24 22 pIA cIA Positive

Ex19 
E746-A750 
del

Average ± SD M(22.2%) / F 
(77.8%) 67 ± 10.6 27.8 ± 12.2 27.9 ± 11.9

Patient 10 M 72 AD Acinar Limited 
resection 18 7 pIB cIA Positive L858R

Patient 11 F 76 AD Acinar Radical lobec-
tomy 43 25 pIA cIB Positive L858R

Patient 12 M 71 AD Acinar Radical lobec-
tomy 42 37 pIIIA cIB Positive L858R

Patient 13 M 73 AD Acinar Radical lobec-
tomy 46 30 pIA cIB Positive L858R

Patient 14 F 64 AD Acinar Radical lobec-
tomy 26 18 pIIA cIA Positive L858R

Patient 15 M 64 AD Acinar Radical lobec-
tomy 27 30 pIB cIA Positive L858R

Patient 16 F 69 AD Acinar Radical lobec-
tomy 45 32 pIV cIV Positive L858R

Patient 17 F 76 AD Acinar Limited 
resection 22 15 pX cIA Positive L858R

Patient 18 M 73 AD Pap Radical lobec-
tomy 33 35 pIB cIB Positive L858R

Average ± SD 70.9 ± 4.2 33.6 ± 10.1 25.4 ± 9.5

Patient 19 M 69 AD Acinar Limited 
resection 15 12 pX cIA Negative

Patient 20 F 80 AD Acinar Radical lobec-
tomy 54 45 pIB cIIA Negative

Patient 21 M 73 AD Acinar Radical lobec-
tomy 42 30 pIIIA cIB Negative

Patient 22 M 72 AD Acinar Radical lobec-
tomy 36 22 pIA cIB Negative

Patient 23 M 63 AD Acinar Limited 
resection 14 11 pX cIA Negative

Patient 24 M 66 AD Acinar Limited 
resection 18 9 pX cIA Negative

Patient 25 F 69 AD Acinar Limited 
resection 7 8 pX cIA Negative

Patient 26 M 55 AD Acinar Limited 
resection 12 20 pIV cIV Negative

Patient 27 M 82 AD Acinar Limited 
resection 25 15 pX cIA Negative

Patient 28 F 70 AD Acinar Limited 
resection 45 45 pX cIIB Negative

Continued
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groups, whereas it cannot identify co-expressed protein modules that might have synergistic and functional 
protein groups.

Therefore, we conducted ANOVA-based screening of WGCNA modules to further identify key protein mod-
ules in order to investigate the differential disease mechanisms associated with the different EGFR mutations. 
ANOVA identified 240 differentially expressed proteins. These proteins were classified into eight groups accord-
ing to their expression patterns (namely, the combination of mutation types and their directions; p value by 
ANOVA < 0.05 and adjusted p value by the post-hoc pairwise t test < 0.05) (Fig. 2A). Among the eight groups, 
six groups had at least two differentially expressed proteins. The protein groups involved several key proteins 
and pathways that could be useful to investigate the differential disease mechanisms under different EGFR muta-
tions (Supplementary Fig. S3). The overlaps between the WGCNA-derived protein modules and ANOVA-based 
significantly expressed proteins were then assessed using the over-representation test. We identified 13 important 
WGCNA modules that showed significant overlap (maximum q-value among the groups < 0.05) with protein 
groups from ANOVA (Fig. 2B). These 13 modules included a total of 364 proteins.

Functional enrichment analysis of selected WGCNA modules obtained by ANOVA‑based 
screening.  To characterise the key modules, we analysed the biological connectivity among the proteins 
in each module by mapping the module proteins in the human protein–protein interaction (PPI) network and 
among the biological pathways by pathway enrichment analysis (Supplementary Material, Fig. 3, 4 and 5).

WGCNA modules associated with the Ex19del mutation.  Three (WM15, WM44 and WM73) and four (WM9, 
WM39, WM50 and WM75) WGCNA modules significantly overlapped with ANOVA-group 1 and group 2, 
which included proteins significantly upregulated and downregulated under the Ex19del mutation, respectively 
(Supplementary Material).

Although there was only one protein interaction among proteins in the WM15 module, the enriched pathways 
of the WM15 module involved SUMOylation of intracellular receptors and negative regulation of the activity 
of TFAP2 (AP-2) family transcription factors. The SUMO-conjugating enzyme UBE2I (UBE9) in the module is 
associated with these two pathways. Li et al.26 performed an in-vivo experiment and demonstrated that upregu-
lated UBC9 enhances migration and invasion of lung cancer cells. Han et al.27 reported that, together with the 
upregulation of SUMO, the UBC9 genotype enhances the sensitivity of irinotecan-based chemotherapy against 
NSCLC. Interestingly, the enriched pathways of WM15 involve pathways associated with neurological disorders, 
and monoamine oxidase A (MAOA), a mitochondrial enzyme, is related to these pathways. Defective MAOA 
is associated with Brunner syndrome and the norepinephrine neurotransmitter release cycle. The expression 
of MAOA has been shown to increase in various cancers, including prostate cancer and glioma, although the 
biological role of MAOA in cancer progression is unknown. Recently, Liu et al.28 reported that the protein abun-
dance and gene expression levels of MAOA were higher in NSCLC tissues than in non-cancerous lung tissues. 
Furthermore, they suggested that MAOA might promote NSCLC by modulating epithelial-to-mesenchymal 
transition (EMT), as the expression levels of MAOA were negatively correlated with those of E-cadherin and 
positively correlated with those of N-cadherin, Slug and Twist in NSCLC. Additionally, Liao et al.29 performed 
a study involving prostate cancer and suggested that MAOA expression promotes cancer development and that 
inhibition of MAOA in the epithelial tissue is a useful treatment for adenocarcinoma.

The WM44 module was moderately correlated with the M2 trait, even in the WGCNA itself. The enriched 
pathways of WM44 involved cAMP-responsive element-binding protein (CREB) phosphorylation, including 

Sample no Gender Age
Histological 
type Subtype

Surgical 
method

Tumor size 
on CT (mm)

Pathological 
max. size 
(mm)

Pathological 
stage Clinical stage

EGFR mutation positive/
negativea

Patient 29 M 74 AD Acinar Limited 
resection 18 15 pX cIA Negative

Patient 30 F 62 AD Acinar Radical lobec-
tomy 19 22 pIA cIA Negative

Patient 31 M 65 AD Acinar Radical lobec-
tomy 31 30 pIA cIB Negative

Patient 32 M 68 AD Acinar Limited 
resection 26 23 pIA cIA Negative

Patient 33 M 63 AD Acinar Limited 
resection 34 27 pIA cIB Negative

Patient 34 M 60 AD Acinar Radical lobec-
tomy 28 21 pIA cIA Negative

Patient 35 F 22 AD Acinar Radical lobec-
tomy 17 20 pIIIA cIA Negative

Patient 36 M 70 AD Acinar Radical lobec-
tomy 28 25 pIA cIA Negative

Average ± SD 65.7 ± 12.4 26.1 ± 12.2 22.2 ± 10.3

Group comparison

p value_anova 0.517 0.333 0.439

Table 1.   Clinicopathological information of the 36 patients. a, negative means no L858R/Ex19del mutation.
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CREB phosphorylation through RAS activation, ribosomal S6 kinase (RSK) activation and extracellular signal-
regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) targeting. Among the proteins in this module, 
RPS6KA1 (RSK1) is associated with the pathways and phosphorylates members of the MAPK signalling pathway. 
Lara et al.30 demonstrated that RSK1 inhibits cell migration of NSCLC in siRNA analysis and suggested that 
RSK1 is a potential negative regulator of metastasis in lung cancer.

Yes-associated protein 1 (YAP1), a member protein of the WM73 module, is a critical downstream regulatory 
target in the Hippo signalling pathway, which is involved in development, growth, repair and homeostasis and 
especially plays a pivotal role in the development and progression of various cancers31. The enriched pathways 
of the WM73 module involve YAP1- and WW domain-containing transcription regulator protein 1 (WWTR1) 
(alternative name, transcriptional coactivator with PDZ-binding motif (TAZ)) (YAP/TAZ)-stimulated gene 
expression, and RUNX3 regulates YAP1-mediated transcription and dominantly indicates the participation 
of the Hippo signalling pathway. When the Hippo pathway is off, dephosphorylated YAP/TAZ accumulates 
and translocates into the nucleus to bind transcription factors (TEA domain family members [TEAD]), which 
transcribe genes involved in cell proliferation and anti-apoptosis function. Amphiregulin (AREG), a ligand for 
EGFR, which is one of the transcriptional targets of YAP, is known to cause resistance to chemotherapy and 
receptor tyrosine inhibitors, such as gefitinib, in patients with NSCLC32,33.

Among the WM9, WM39, WM50 and WM75 modules, the WM39 and WM50 modules showed dense PPI 
subnetworks where most of the proteins interacted with each other (Fig. 3A), and both modules were enriched 
with proteins related to translation initiation pathways (Fig. 3B,C). Especially, proteins in the subnetwork of 
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Figure 1.   Gene modules identified by weighted gene co-expression network analysis (WGCNA). (A) Patient 
clustering according to protein abundance with the EGFR mutation profiles. The red, orange and white cells 
below the patients indicate the EGFR mutation types, i.e., Ex19del mutation, L858R mutation and no EGFR 
mutation, respectively. (B) Gene dendrogram obtained by clustering dissimilarity according to topological 
overlap with the corresponding module. The coloured rows correspond with the 81 modules identified by 
dissimilarity according to topological overlap. (C) Heatmap for the proteome abundance of eigen proteins 
in the 81 protein modules by WGCNA. The rows and columns are the protein modules and EGFR mutation 
types, respectively. The red and blue colours indicate high and low protein abundances, respectively, of an 
eigen protein in a protein module. M1, M2 and NM indicate patients with the L858R mutation, those with the 
Ex19del mutation and those without EGFR mutations. The names of the eigen proteins in the protein modules 
are indicated in parentheses.
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A

B

Ex19del
mutation

L858R
mutation

Group 1 UP NS 39 Up-regulated Specifically under Ex19del mutation WM15, WM44, WM73

Group 2 DOWN NS 68 Down-regulated specifically under Ex19del mutation WM50, WM75, WM39, WM9

Group 3 NS UP 66 Up-regulated Specifically under L858R mutation WM53, WM23, WM8

Group 4 NS DOWN 2 Down-regulated specifically under L858R mutation None

Group 5 UP UP 33 Up-regulated  specifically under both EX19del/L858R
mutations

WM15, WM12, WM14

Group 6 DOWN DOWN 32 Down-regulated specifically under both EX19del/L858R
mutations

WM64

Group 7 UP DOWN 0 Up-regulated under Ex19del mutation and down-regulated
under  L858R mutation

N/A

Group 8 DOWN UP 0 Down-regulated under Ex19del mutation and up-regulated
under  L858R mutation

N/A

Group
Pattern

# of
proteins Notes Modules

Module ID Module Name Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Max q -
value

WM53 pink 1.00000 1.00000 0.00015 1.00000 1.00000 1.00000 0.00015

WM15 darkolivegreen 0.02705 1.00000 1.00000 1.00000 0.00017 1.00000 0.00017

WM23 darkviolet 1.00000 1.00000 0.00043 1.00000 1.00000 1.00000 0.00043

WM50 orangered4 1.00000 0.00150 1.00000 1.00000 1.00000 1.00000 0.00150

WM44 mediumpurple2 0.00576 1.00000 1.00000 1.00000 1.00000 1.00000 0.00576

WM73 thistle1 0.00576 1.00000 1.00000 1.00000 1.00000 1.00000 0.00576

WM75 thistle3 1.00000 0.00717 1.00000 1.00000 1.00000 1.00000 0.00717

WM39 lightsteelblue1 1.00000 0.00927 1.00000 1.00000 1.00000 1.00000 0.00927

WM9 coral1 1.00000 0.01252 1.00000 1.00000 1.00000 1.00000 0.01252

WM12 darkgreen 1.00000 1.00000 1.00000 1.00000 0.01252 1.00000 0.01252

WM14 darkmagenta 1.00000 1.00000 1.00000 1.00000 0.01252 1.00000 0.01252

WM64 salmon4 1.00000 1.00000 1.00000 1.00000 1.00000 0.03433 0.03433

WM8 brown4 1.00000 1.00000 0.04227 1.00000 1.00000 1.00000 0.04227

Figure 2.   Overlapping proteins from analysis of variance (ANOVA) and those from weighted gene 
co-expression network analysis (WGCNA). (A) ANOVA analysis results. Each row represents results for 
each protein group (expression patterns, the number of proteins and list of proteins in the group). The red 
and blue cells in the ‘Ex19del mutation’ and ‘L858R mutation’ columns indicate that the proteins in the group 
are significantly upregulated and downregulated, respectively, in samples with the mutations (p value by 
ANOVA < 0.05 and adjusted p value by the post-hoc pairwise t test < 0.05), whereas grey cells in the columns 
indicate that the proteins in the group are not upregulated/downregulated in samples with the mutations. The 
fourth column shows the number of proteins in each protein group. The fifth column provides notes for each 
protein group. The WGCNA modules with significant overlap with each protein group are listed in the sixth 
column (‘Modules’ column). (B) Overlap in proteins between the groups by ANOVA and the modules by 
WGCNA. Each row in the embedded table represents overlap analysis results for each module. The first and 
second columns in the table represent module ID and colour name of the module. The third, fourth, fifth, sixth, 
seventh and eighth columns indicate the q values for overlap in proteins between a module by WGCNA and 
six protein groups by ANOVA (Benjamini–Hochberg correction is performed on the p values of the overlap 
analysis to calculate the q-values). In the six columns, significant q-values are highlighted in red. The ninth 
column represents the value of the most significant q-value (max q-value) in each module. The 13 modules with 
max q-values < 0.05 are listed in order.
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the WM39 module were involved in the nonsense-mediated decay (NMD) pathway that is a key component to 
maintain the quality and quantity of transcripts through elimination of mRNA with a premature stop codon. 
Tumours exploit the NMD pathway to optimise gene expression for their survival, i.e., tumours downregulate the 
expression of tumour suppressor genes by fine-tuning the NMD pathway34. The greatly downregulated proteins 
RPS13, PRL10A and RPS7 under the Ex19del mutation were involved in the subnetwork of the WM39 module 
and had important roles in the disease mechanisms associated with this mutation status. Upregulation of RPS13 
is associated with multi-drug resistance in gastric cancers35. Recently, Shi et al.36 reported that upregulation and 
downregulation of RPL10 respectively increased and decreased viability, migration and invasion of tumour cells 
in epithelial ovarian cancer. Furthermore, downregulation of RPS7 has been shown to promote the migration of 
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Figure 3.   Analysis results for three protein modules (WM15, WM44 and WM73) and four protein modules 
(WM9, WM39, WM50 and WM75) that overlap with proteins upregulated and downregulated under the 
Ex19del mutation, respectively. (A) Protein interaction networks for the seven protein modules. Diamond 
nodes in red and blue represent the proteins upregulated and downregulated under the Ex19del mutation, 
respectively. Rectangle nodes in red represent proteins upregulated under the L858R mutation. Circle nodes in 
red and blue represent proteins upregulated and downregulated under both EGFR mutations, respectively. The 
eigen protein in each module is denoted by a yellow-green dot circle. Triangle nodes in white represent proteins 
in each protein module. Triangle nodes in grey represent the EGFR protein. B and C. Pathway enrichment 
analysis using Go Biological Process (B) and Reactome pathway databases (C) for the seven protein modules. 
The vertical axis shows the pathway names, and the bars on the horizontal axis represent the − log10 (p value) of 
the corresponding pathway. The different colours of the bars are in accordance with the corresponding modules. 
Dashed lines in orange, magenta and red indicate p values < 0.05, < 0.01 and < 0.001, respectively.
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tumour cells in ovarian37 and prostate38 cancers through representative PI3K/AKT and MAPK cancer signalling 
pathways and EMT, respectively.

WGCNA modules associated with the EGFR L858R mutation.  The WM8, WM23 and WM53 modules sig-
nificantly overlapped with ANOVA-group 3, which included proteins specifically upregulated under the L858R 
mutation (Supplementary Material). PPI subnetworks were found in the WM53 and WM8 modules, which 
reflected specific disease mechanisms associated with the L858R mutation (Fig. 4A). As shown in Fig. 4B,C, 
the WM53 module was significantly enriched with proteins from the Golgi to endoplasmic reticulum (ER) 
retrograde traffic system (ARFGAP1, COPG2, GBF1, GOSR1, NBAS, NSF, RAB6B and STX6). The enriched 
pathways of the WM23 module involved the p75 neurotrophin receptor (p75NTR)-interacting protein (NRAGE) 
signalling death through JNK and cell death signalling via NRAGE, neurotrophin receptor interacting factor 
(NRIF) and p75NTR-associated cell death executor (NADE). The WM8 module was associated with immune 
pathways, including PD-1 signalling, interferon-gamma signalling and regulation of leukocyte activation (CD74, 
CTSH, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DRB1 and HLA-DRB5) (Fig. 4B,C).

WGCNA modules associated with both Ex19del and L858R mutations.  The WM15, WM12, WM14 and WM64 
modules significantly overlapped with ANOVA-group 5 and group 6, which included proteins that were upregu-
lated and downregulated, respectively, in the same direction in both Ex19del and L858R mutations (Supplemen-
tary Material). Among the four modules, the WM12 and WM64 modules showed PPI subnetworks (Fig. 5A). 
The PPI subnetwork in the WM64 module was tightly associated with the proteins in cytosolic chaperonin 
TRiC/CCT pathways (Fig. 5B,C). Interestingly, the proteins CCT5 and EEF1 in the subnetwork are known to 
be potential tumour-associated antigens that could be useful in the development of a diagnostic biomarker for 
NSCLC39.

Comparative analysis of causal network inactivation or activation predicted by Ingenuity 
Pathway Analysis.  The primary reasons for performing ANOVA-based screening of WGCNA modules 
were identification of clinically significant modules and their key networks/upstream regulators and further 
investigation of the disease mechanisms affected differentially under the different driver EGFR mutations in 
lung adenocarcinoma. We conducted an analysis of upstream regulators and causal networks for the 13 mod-
ules by using Ingenuity Pathway Analysis (IPA, https​://www.ingen​uity.com) software40. Comparative analysis of 
predicted causal networks was then performed especially for the three modules significantly associated with the 
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Figure 4.   Analysis results for three protein modules (WM8, WM23 and WM53) that overlap with proteins 
upregulated under the L858R mutation. (A) Protein interaction networks for the three protein modules. (B) 
Pathway enrichment analysis using Go Biological Process. (C) Pathway enrichment analysis using Reactome 
pathway databases. The legend for each panel is the same as that for Fig. 3.
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Ex19del mutation (WM15, WM44 and WM73) and the three modules significantly associated with the L858R 
mutation (WM53, WM23 and WM8) (Figs. 6 and 7).
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Figure 5.   Analysis results for four protein modules (WM12, WM14, WM15 and WM64) that overlap with 
proteins upregulated or downregulated under both L858R and Ex19del mutations. (A) Protein interaction 
networks for the four protein modules. (B) Pathway enrichment analysis using Go Biological Process. (C) 
Pathway enrichment analysis using Reactome pathway databases. The legend for each panel is the same as that 
for Fig. 3.
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All causal networks for the WM15 module were suggested to be quite similar in their extent of activation or 
inhibition in all clinical traits. CD80/CD86 (group) (z-score > 3.0), major histocompatibility complex (MHC) 
(complex) (z-score > 3.2) and NCAM2 (z-score > 2.8) were highly activated causal networks, and THBD (trans-
membrane receptor) (z-score <  − 2.8), CD37 (z-score <  − 2.4) and SOCS1/3 (z-score <  − 2.0) were highly inhibited 
causal networks (Fig. 6A).

CD80/CD86 (known as B7, B7-1/B7-2 or Cd152I) is an immune-checkpoint protein from the B7 family, 
which has seven members, including B7-DC (PD-L2), B7-H1 (PD-L1) and B7-H2 (ICOSL), and it binds CD28 
and CTLA-4. Costimulatory pathways of the B7/CD28 family provide positive and/or negative secondary signals 
to antigen-experienced effector T cells. Together with the activation of MHC complex networks, costimulatory 
signal pathways upregulating the expression of inhibitory B7 molecules, which promote tumour immune eva-
sion, appear to be activated41,42. In this context, CD37 (TSPAN26), which is highly inhibited, is known to play 
important roles in T cell–B cell interactions (a balance between immune response and tolerance), and it is widely 
expressed in normal and malignant mature B cells. CD37 has been reported to directly mediate transduction 
associated with survival and apoptosis43, and recently, it has been suggested to be a biomarker for PD-1 blockade 
in diffuse large B-cell lymphoma44. THBD (also known as thrombomodulin, fetomodulin, and CD141) is not 
only a thrombin receptor but also an oncodevelopmental antigen, which is considered to modulate cancer cell 
behaviour related to anticoagulant activity45.

Among causal networks predicted for the WM44 module, those upregulated and differentially associated 
with the Ex19del mutation were interleukin 2 receptor alpha (IL2RA) (z-score = 2.0), ADP-ribosylation factor 
1 (ARF1) (z-score = 1.41) and mothers against decapentaplegic homolog 4 (SMAD4) (z-score = 1.73), whereas 
the highly inhibited network was peroxisome proliferator-activated receptor alpha-retinoid X receptor alpha 
(PPARα-RXRα) (z-score =  − 2.24) (Fig. 6B).

Figure 6.   Comparative analysis results of causal networks predicted for three protein modules (WM15, WM44 
and WM73) that overlap with proteins upregulated under the Ex19del mutation. (A) WM15 (|z-score|> 2.0), (B) 
WM44 (|z-score|> 1.2) and (C) WM73 (|z-score|> 1.5). The top causal networks with high activation z-scores 
are compared and shown with their hierarchical clustering together with the mutation status using the Ingenuity 
Pathway Analysis comparison. Orange and blue indicate upregulation and downregulation, respectively. Causal 
networks surrounded by red/blue frames are activated/inhibited according to the definition |z-value|≥ 2.0. 
Causal networks dotted in red/blue are likely to be upregulated/downregulated differentially among the three 
mutation types.
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IL2RA is a cytokine receptor of the IL2R family, which is expressed in many types of cancers, including leu-
kaemia, lymphoma, lung cancer, breast cancer, head and neck cancer and prostate cancer. It participates in vari-
ous pathways, including inducible costimulator (iCOS)-iCOS ligand signalling in T-helper cells, IL-2 signalling 
and the PD-1/PD-L1 cancer immunotherapy pathway. Its high expression in tumours is correlated with a poor 
prognosis46. ARF1 is a small G protein that regulates reorganisation of the actin cytoskeleton and plays a major 
role in protein trafficking in cells. Overexpression of ARF1 has been reported to result in cell proliferation and 
migration through the PI3K signal pathway in ovarian cancer47 and proliferation of breast cancer cells through 
regulation of the retinoblastoma protein48. SMAD4 participates in SMAD4-dependent TGF-β signalling, which 
is common during tumour development and progression, and it might act as a tumour suppressor by inhibiting 
cell proliferation. However, SMAD4 also promotes cell motility and the EMT process in most epithelial cells49. 
PPARα-RXRα pathways play key negative roles regarding inflammation.

With regard to the WM73 module, the highly upregulated causal networks associated with the Ex19del 
mutation were Rock (group) (z-score = 1.89), EPM2A (z-score = 2.53), HNF1A (z-score = 2.33), RPS6KA1 
(z-score = 2.11) and OPRD1 (δ-opioid receptor) (z-score = 1.67), and the inhibited networks were GSKIP 
(z-score =  − 2.11) and aurora kinase (AURK) (z-score =  − 1.73) (Fig. 6C).

Rock (group) (Rho-associated coiled‑coil containing protein kinase 1 and 2 [ROCK1 and 2]) is highly impor-
tant in oncogenesis, and it promotes the invasive and metastatic growth of a variety of human cancers50. ROCK1 
and ROCK2 have been reported to play crucial roles in cell cycle progression and tumorigenesis51 and to be 
required for NSCLC anchorage-independent growth and invasion50. Thus, Rock has been a promising therapeutic 
target for NSCLC. GSKIP is a glycogen synthase kinase-3 (GSK3) β-interacting protein, which is involved as a 
negative regulator of GSK3-β in the Wnt signalling pathway52. Interestingly, the AURK (A, B and C) network 
was mostly downregulated in lung adenocarcinoma patients with the Ex19del mutation. It is known that residual 
disease and acquired resistance in response to EGFR TKIs requires aurora kinase A (AURKA) activity53.

The top canonical pathways predicted for the WM8 module among all the clinical traits were the anti-
gen presentation pathway (p = 2.00 × 10−17), allograft rejection signalling pathway (p = 2.51 × 10−12), OX40 

Figure 7.   Comparative analysis results of causal networks predicted for three protein modules (WM8, WM53 
and WM23) that overlap with proteins upregulated under the L858R mutation. (A) WM8 (|z-score|> 1.2), (B) 
WM53 (|z-score|> 2.6) and (C) WM23 (|z-score|> 1.3). The legend is the same as that for Fig. 6.
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signalling pathway (p = 3.16 × 10−12; z-score =  − 2), PD-1/PD-L1 cancer immunotherapy pathway (p = 1.26 × 10−11; 
z-score =  − 2) and T helper 1 pathway (p = 3.16 × 10−11; z-score = 2). In all mutation types, CIITA and IFNG net-
works were activated (z-scores = 2.45) but scaffold attachment factor B (SAFB), KRAS, CSF3, SIRT1 and POR 
networks were downregulated (z-scores ranging from − 1.73 to − 2.00) (Fig. 7A).

CIITA (MHC class II transactivator) acts as a regulator of MHC class II gene transcription (‘master control 
factor’), which is involved in antigen processing and presentation pathways. IFNG encodes interferon-gamma and 
is the most powerful MHC inducer that triggers both MHC-I and MHC-II expressions. SAFB is a nuclear matrix 
protein that binds to the scaffold or the matrix attachment region (S/MAR) in DNA54, and its downregulation has 
been reported to be significantly associated with poor survival among patients with colorectal cancer (CRC)55.

No causal networks differentially upregulated or downregulated under the L858R mutation were identified 
for the WM53 module. Networks related to each other, which included Erbb2-Erbb3 dimer (z-score > 2.5), ERBB 
(z-score > 2.8) and ERBB2 (z-score > 1.9), appeared to be associated more differentially with the Ex19del mutation 
(Fig. 7B). CDC like kinase 2 (CLK2) was highly inhibited under the L858R mutation (z-score =  − 2.6). Loss of 
CLK2 in luminal breast cancer cells has been reported to result in the upregulation of EMT-related genes and a 
switch to the mesenchymal splice variants of several genes56.

For the WM23 module, under the L858R mutation, no networks were differentially upregulated, but the 
RB1 and DOK1 networks were differentially downregulated (Fig. 7C). RB1 is a well-known tumour suppressor 
protein (pRb), and DOK1 (docking protein 1) is also a tumour suppressor, which shows repressed expression in 
many human tumours owing to hypermethylation of its promotor region57.

Discussion
Understanding disease-related molecular mechanisms and profiles in lung adenocarcinoma affected differently 
depending on the type of EGFR gatekeeper mutation would be greatly useful in deciding treatment strategies 
that benefit the outcomes of individual patients. Our new analytical workflow combining ANOVA and WGCNA 
identified several protein modules and networks that were potentially associated with disease mechanisms driven 
by distinct EGFR mutations.

The pathways of SUMOylation and transitions between epithelial and mesenchymal states (EMT/MET) 
were centrally associated with the WM15 module. SUMOylation is a reversible post-translational modification, 
which is crucial to regulate several key disease mechanisms including DNA damage repairing system, immune 
responses, carcinogenesis, cell cycle progression, and apoptosis. SUMOylation regulates the transcription activ-
ity of the AP-2 family, which is one of the transcription factors controlling transitions between epithelial and 
mesenchymal states (EMT/MET)58. The top IPA network constructed from member proteins was associated 
with cell-to-cell signalling and interaction, small molecule biochemistry and cancer, where both SENENBP1 
and MAOA were upregulated. The eigen protein selenium-binding protein 1 (SELENBP1) (also known as SBP1 
or hsP56), a member of the selenoprotein family, mediates intercellular transport of selenium and is known to 
interact with various other proteins including TGF-β, HIF-1α, von Hippel-Lindau protein-interacting deubiq-
uitinating enzyme 1, TWIST1 (a critical regulator of EMT) and tumour protein p53. It has been reported that 
downregulation of SELENBP1 is often associated with tumour progression in various epithelial cancers, including 
lung cancer, and with poor clinical outcomes59. SELENBP1 is currently considered a tumour suppressor that 
regulates cell proliferation, senescence, migration and apoptosis. Interestingly, SELENBP1 demonstrated a clear 
bimodality in its protein abundance distribution across all 36 samples (Supplementary Material), suggesting two 
modes involving high and low expressions of the protein, which appear to depend on the EGFR mutation status 
(positive and negative). Our observation might suggest a bimodal response of the SELENBP1 gene regulatory 
system, which delineates the survival of two cancer cell populations with different origins60.

The activation of the ERK/MAPK pathway via phosphorylation of the members, which is a major downstream 
via cascades of signals by EGFR activation, is likely associated with the WM44 module. The WM73 module 
evidently suggested participation in the Hippo signalling pathway that might interact with the ERBB/EGFR 
signalling pathway, forming a positive feed‐forward loop to drive cancer development and progression.

The WM23, WM53 and WM8 modules appeared to be involved in various pathways related to cancer cell 
survival and death, such as the Golgi to ER retrograde traffic system; NRAGE signalling death through JNK and 
cell death signalling via NRAGE, NRIF and NADE; and immune pathways including PD-1 signalling, MHC class 
II antigen presentation and interferon-gamma signalling. The Golgi apparatus has been recognised for its central 
role in tumour cell survival, which is regulated by ARF1 activated by ARF guanine nucleotide exchange factors.

More than 280 causal networks, which were predicted to be upregulated or downregulated with |activation 
z-scores|> 1.0, were elucidated for the WM15, WM44 and WM73 modules and for the WM53, WM23 and WM8 
modules, using IPA comparative analysis. Hierarchical clustering by the mutation status suggested that causal 
networks predicted for the WM15, WM44 and WM23 modules were associated with the Ex19del mutation 
and that those predicted for only the WM8 module were associated with the L858R mutation (Figs. 6 and 7). 
Thus, more causal networks were suggested to be associated with the Ex19del mutation, and they involve the 
upregulation of Rock (group), RPS6KA1, EPM2A, HNF1A, ARF1, IL2RA, SMAD4, Erbb2-Erbb3 dimer and 
ERBB and the downregulation of AURK, GSKIP, NEULOG1, CLK2 and PTPN9. On the other hand, under the 
L858R mutation, causal networks involving RB1, TSC22D3 and DOCK1 were downregulated, although various 
causal networks involving F2, NTRK2 and VEGFA were moderately upregulated (Fig. 7C). Causal networks 
predicted for the WM15, WM73 and WM23 modules were clustered as one group with regard to both L858R 
mutation and no Ex19del/L858R mutation. Such profiles of causal networks in activation might imply that the 
downstream biological networks are influenced by factors other than the L858R mutation, which have not been 
identified. Causal networks common to all the mutation types included highly upregulated CD80/CD86 (B7), 
MHC, CIITA and IFGN and highly downregulated CD37 and SAFB. For most patients in this study, it was 
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interestingly suggested that costimulatory immune-checkpoint pathways by B7/CD28 were activated, whereas 
those by PD-1/PD-L1 were inhibited. This result seems consisitent with clinical findings that the PD-1/PD-L1 
cancer immunotherapy pathway is not activated in early-stage lung adenocarcinomas.

With regard to the therapeutic effects of EGFR-TKIs in EGFR mutation-positive NSCLC, PFS was found to 
differ depending on the mutation subtype (Ex19del or L858R), and PFS tended to be longer in patients with 
Ex19del than in those with Ex21 L858R, regardless of the EGFR-TKI therapies received (osimertinib and standard 
TKIs)12. Various studies have been attempted to provide explanations for this difference in therapeutic outcomes 
according to the EGFR mutation type. Several hypotheses have been proposed. First, L858R-positive EGFR is 
highly phosphorylated, which might result in a poor prognosis owing to its high cell-proliferative capacity, 
according to cell-line assessments61. Second, L858R-positive NSCLC harbours many miscellaneous compound 
mutations other than EGFR mutation62, whereas Ex19del-positive NSCLC is more likely to be relatively pure 
with regard to the oncogene mutation that drives proliferation and is mainly dependent on the EGFR pathway, 
which would result in a long PFS with EGFR-TKIs. Our comparative analysis results for causal networks among 
the EGFR mutation types might support the latter hypothesis, because there were no activated or inhibited 
causal networks particularly related to downstream EGFR signalling or uniquely related to the L858R mutation. 
However, further investigation is required. At present, EGFR-TKI therapy has clinical efficacy limitations with 
regard to L858R-positive NSCLC. Therefore, combination therapy involving EGFR-TKIs and other drugs, such 
as anticancer drugs and angiogenesis inhibitors, is considered to be more effective for L858R-positive NSCLC. 
Indeed, therapy involving an anti-VEGF antibody (bevacizumab, an angiogenesis inhibitor) after an EGFR-TKI 
(erlotinib) demonstrated particularly effective outcomes, with an increase in PFS among patients with L858R-
positive NSCLC63.

In conclusion, we successfully applied WGCNA combined with ANOVA-based protein screening to clinical 
proteomic datasets from 36 patients with lung adenocarcinoma. Our results could lead to the identification of 
activated or inactivated disease-related networks that are possibly affected under distinct EGFR mutations. Addi-
tionally, our findings may help in the development of therapeutic strategies to improve patient outcomes. A fur-
ther in-depth network-based investigation on the tumorigenesis of lung adenocarcinoma under different EGFR 
mutations will provide clinically important information on proteogenomic landscapes in lung adenocarcinoma.

Methods
FFPE tissue specimens and sample preparation.  Among 974 patients who underwent surgical lung 
cancer resection at St. Marianna University Hospital between 2000 and 2014, only 674 (69.3%) had tumours that 
were histologically confirmed adenocarcinomas. Pathological specimens were reviewed independently by two 
pathologists (H.N. and M.T.) to confirm that they satisfied the 2015 WHO classification of lung tumours (histo-
logical criteria)64. FFPE tumour tissue blocks from 36 surgical specimens of lung adenocarcinomas with known 
EGFR mutation statuses were obtained without patient identifiers from St. Marianna University School of Medi-
cine Hospital. Informed consent was obtained from all participating subjects, and the protocol was approved 
by the institutional review board of St. Marianna University School of Medicine (approval no. 3569) and was 
conducted in accordance with the Helsinki Declaration. For tissue microdissection, 10-μm-thick sections from 
the FFPE tumour blocks were cut onto DIRECTOR slides (OncoPlex Diagnostics Inc., Rockville, MD, USA). 
The sections were de-paraffinised and stained with hematoxylin using standard histological methods prior to 
dissection. Microdissection was performed using a Leica LMD7 Microdissection Microscope (Leica, Wetzlar, 
Germany). A total area of 4 mm2 with about 15,000 tumour cells was transferred from the FFPE sections via 
laser dissection directly into the cap of a 200-μL low-binding tube. Proteins were extracted and digested with 
trypsin using Liquid Tissue MS Protein Prep kits (OncoPlex Diagnostics Inc.) according to the manufacturer’s 
protocol65. Details of the procedures have been described in detail elsewhere17–19.

Liquid chromatography‑tandem mass spectrometry‑based proteomic analysis.  A label-
free quantitation approach using spectral counting by liquid chromatography–tandem MS (LC–MS/MS) was 
adopted for global proteomic analysis. The digested samples (5 μL for a single run) were analysed in tripli-
cate by LC–MS/MS using a reverse-phase LC system interfaced with a Q Exactive Orbitrap mass spectrometer 
(Thermo-Fisher Scientific, Bremen, Germany) via a nano-ESI device (AMR Inc., Tokyo, Japan). LC–MS/MS 
analysis has been described in detail previously19. The expression levels of identified proteins were assessed by 
spectral count-based protein quantification. The spectral count is the number of MS/MS spectra assigned to 
each protein.

WGCNA.  The similarity in protein expression patterns for all protein pairs was calculated according to their 
pairwise Pearson’s correlation coefficient, i.e., the similarity between proteins i and j was defined as (1 − ri,j)/2, 
where ri,j is the Pearson’s correlation coefficient of the protein expression patterns between these two proteins. 
We performed the network topology analysis for various soft-thresholding powers ranging from 1 to 100 in 
order to choose an optimal value to balance between independence and mean connectivity. The power had been 
set to 10 where scale independence score was above 0.90 and the network reaching to scale-free topology. Subse-
quently, from the resultant scale-free co-expression network, we generated a topological overlap matrix (TOM) 
that considers topological similarity between a pair of proteins in the network. By using the dissimilarity accord-
ing to the TOM (1 − TOM), we conducted hierarchical clustering to generate a tree that clustered proteins in its 
branches. Dynamic tree cutting was used to trim the branches to identify protein modules. A protein module 
was summarised by the top hub protein (referred to as the eigen protein) with the highest connectivity in the 
module. In order to identify protein modules associated with clinical traits, we calculated Pearson’s correlation 
coefficients between the eigen proteins and clinical traits. We used the flushclust library in R:Bioconductor to 
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get the hierarchical cluster where complete linkage method was applied. The euclidean distance and topologi-
cal overlap matrix (TOM) dissimilarity were used as a distance measure for the clustering. The module stability 
analysis was performed using Fast R function in WGCNA according to the reference66. WGCNA was conducted 
by using a Garuda Platform gadget (The Systems Biology Institute, Tokyo Japan) that implements the WGCNA 
pipeline based on WGCNA R-package21. The codes are available upon request.

Statistical analysis for differentially expressed proteins.  To identify differentially expressed pro-
teins, we conducted one-way ANOVA with a post-hoc statistical test (pairwise t test) for three patient groups 
(patients with the Ex19del mutation, those with the L858R mutation and those without bothf these mutations). 
In the statistical analysis, we identified proteins significantly upregulated/downregulated in samples with the 
mutations (p value by ANOVA < 0.05 and adjusted p value by post-hoc pairwise t test < 0.05). We conducted the 
statistical analysis using anova and lm fuctions in R programming language.

Protein–protein interaction network construction.  In order to construct a protein interaction net-
work (PIN) for a protein module as well as protein groups by ANOVA analysis, we used the STRING (The Search 
Tool for the Retrieval of Interacting Genes/Proteins) database (version 10.5)67. Proteins in a protein module 
(or those in protein groups by ANOVA analysis) were mapped in the PIN from the STRING database, and a 
subnetwork involving protein–protein interactions connecting these proteins was extracted. We regarded the 
subnetwork as a PIN for the protein module (or that for the protein groups by ANOVA analysis).

Functional enrichment analysis.  In enrichment analysis, the focused set of genes underwent the statisti-
cal over-representation test (Fisher’s exact test with FDR multiple test correction) on either the Go Biological 
Process or Reactome pathway database. We used the Web-based Gene SeT AnaLysis Toolkit (WebGestalt)68 for 
the analysis.

Comparative analysis of the causal networks and pathways predicted by IPA.  Canonical path-
ways, upstream regulators and causal networks were predicted using the IPA software40. Protein expression data 
(quantile-normalised for selected modules) were used as input datasets. Comparative analysis of the predicted 
causal networks (p value < 0.05) was performed to elucidate networks associated with the three clinical traits 
of Ex19del mutation, L858R mutation and no Ex19del/L858R mutation, where activation and inhibition of a 
predicted network were defined by z-values > 2.0 and <  − 2.0, respectively, and upregulation and downregulation 
were defined by z-values > 1.0 and <  − 1.0, respectively.

Data availability
The unfiltered mass spectrometry datasets generated and analysed in this study have been deposited in the PRIDE 
Archive (https​://www.ebi.ac.uk/pride​/archi​ve/) via the PRIDE partner repository and jPOST with the dataset 
identifiers PXD015862 and JPST000687, respectively.
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