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Abstract
RNA levels are widely thought to be predictive of RNA function. However, the existence of

more than a hundred chemically distinct modifications of RNA alone is a major indication

that these moieties may impart distinct functions to subgroups of RNA molecules that share

a primary sequence but display distinct RNA “epigenetic”marks. RNAs can be modified on

many sites, including 50 and 30 ends, the sugar phosphate backbone, or internal bases,

which collectively provide many opportunities for posttranscriptional regulation through a

variety of mechanisms. Here, we will focus on how modifications on messenger and micro-

RNAs may affect the process of RNA interference in mammalian cells. We believe that tak-

ing RNA modifications into account will not only advance our understanding of this crucial

pathway in disease and cancer but will also open the path to exploiting the enzymes that

“write” and “erase” them as targets for therapeutic drug development.

Introduction
In higher multicellular eukaryotes, a crucial gene regulatory step takes place posttranscription-
ally through RNA interference using microRNAs (miRNA). miRNAs are 18–24 nt, short, non-
coding RNAs that target the RNA interference (RNAi) effector complex RNA-induced
silencing complex (RISC) to specific messenger RNAs (mRNAs) through partial base pairing
to sequences predominantly found in their 30 untranslated regions (30UTR) (Fig 1) [1]. This
mRNA–miRNA interaction can result in either decreased mRNA stability and/or inhibition of
translation into proteins, resulting in reduced protein expression (Fig 1). Canonical miRNAs
are themselves synthesized from larger RNA Polymerase II (RNAP II) transcripts and undergo
extensive processing until they reach the mature single-stranded form that is loaded into RISC
(Fig 1A). Based on sequence, every miRNA has many predicted target mRNAs, and conversely,
40%–50% of mRNAs have one or more predicted miRNA target sites (Fig 1B) [2]. However,
the rules that govern RNAi targeting are not well understood, making it difficult to predict
whether a putative mRNA–miRNA pair will result in an RNA interference event in a given cell
[3]. This could partially result from target competition, determined by the relative expression
of mRNAs with the miRNA targeting site or other noncoding RNAs acting as miRNA sponges
[4]. However, it is also possible that posttranscriptional events, such as RNA modifications,
regulate specific mRNA–miRNA interactions. It is conceptually easy to envision how a genetic
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mutation in DNA that is copied into the mRNA can lead to a loss of regulation by a miRNA.
An elegant example of this is a single nucleotide polymorphism (SNP) in the 30UTR of KRAS
that alters let-7 miRNA binding and leads to a higher incidence of non–small cell lung cancer
[5]. By extension, “epigenetic”modifications of RNAs could assume this role by not only regu-
lating the levels of messenger or miRNAs but also by masking or enhancing miRNA binding
sites. In this review, we will first provide a brief overview of different types of RNA modifica-
tions—including those to 50 and 30 RNA ends as well as internal base modifications such as
Adenine N6 and Cytosine C5 methylations—and RNA editing. These RNA modifications will
then be discussed based on the type of functional RNAs—messenger or miRNAs—that they
occur on to emphasize that miRNA modifications can affect both miRNA processing and
mRNA–miRNA interactions. We will further touch upon the challenges of detecting RNA
modifications, especially on small RNAs, highlighting recent technological advances that could
be exploited to determine the miRNA modification landscape. Finally, we will pinpoint the
consequences of the rising field of epitranscriptomics for our understanding of myriad diseases,
including cancer, and how RNAmodifications and the enzymes that write and erase them
could be exploited for diagnostic markers and drug development.

RNAModifications
There are more than a hundred chemically distinct RNA modifications [6] (http://mods.rna.
albany.edu) that can be divided into several subcategories depending on their chemical struc-
ture, the target site on the RNA polymer, and the functional type of RNA. Here, we will focus

Fig 1. Simplified schematic of (A) the miRNA biogenesis pathway and (B) the interaction between the mRNA and
miRNA. (A) The primary miRNA precursor (pri-miRNA) is synthesized by RNAP II. The pri-miRNA is first cleaved by Drosha to
release a hairpin loop–shaped RNA called pre-miRNA. The loop of this pre-miRNA is further cleaved by Dicer to generate a
miRNA duplex. The miRNA duplex is dissociated and the passenger strand (dashed line) is discarded while the guide strand is
loaded onto the Argonaute protein to form an active RISC complex. (B) Example of miRNA–target mRNA interaction by base-
pairing mainly at the seed region of miRNA (nt 2–8) but also on other downstream regions of the miRNA. In the mRNA, the
coding region is represented as a double line. N.B. The asterisks indicate the m7G cap (7-methyl-guanosine with 50, 50-
triphosphate linkage).

doi:10.1371/journal.pgen.1006139.g001
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on the modifications that have been detected in the two RNAs directly relevant to RNA inter-
ference: mRNAs and miRNAs. As in other RNAs, mRNA and miRNA modifications can be
added to their 50 and 30 ends or internally to specific bases. During transcription by RNAP II,
both mRNAs and pri-miRNAs receive a 7-methylguanosine cap (m7G) on their 50 end and a
poly-A tail on their 30 end (Fig 1) [1]. For more details on these RNA modifications, we refer
you to this excellent review by Bentley [7]. Other end modifications specific to miRNA inter-
mediates are 50 phosphomethylation [8] and the untemplated addition of one [9] or more
[10] uridylyl residues on the 30 end (Fig 2). The most prevalent internal modifications are
adenosine to inosine (A to I) editing and methylations on the carbon 5 of the pyrimidine ring
on cytosines, m5C (essentially the same modification catalyzed by the bona fide epigenetic
DNA methyltransferases), and the nitrogen on carbon 6 of the purine ring on adenosines,
m6A (Fig 2).

RNA end modifications
Apart from the cotranscriptional m7G capping and polyadenylation of mRNAs and pri-miR-
NAs, two end modifications, 50 phosphomethylation (50Pme2) and 30 uridylation, have been
shown to regulate the biogenesis and stability of specific miRNAs in mammalian cells.

50 phosphomethylation. A key feature of the miRNA biogenesis pathway is the generation
of 50 mono-phosphate (50P) ends by Drosha and Dicer (Fig 1). The 50P is bound by specific,
positively charged pockets within Dicer and Ago2 to ensure efficient and accurate pre-miRNA
processing as well as miRNA–RISC stability [12–15]. The BCDIN3D RNAmethyltransferase
methylates both available oxygen moieties of the 50P on specific pre-miRNAs, including pre-
miR-145 (Figs 2 and 3) [8]. This methylation abolishes the negative charge of the 50P and
makes the 50 end bulkier, resulting in reduced processing of pre-miRNAs by Dicer [8]. It is also
important to note that 50 ends are commonly modified on commercially available small inter-
fering RNAs (siRNA) to stimulate Ago2/RISC loading. For example, in the ON-TARGETplus
siRNA duplexes from Dharmacon, only the antisense oligonugleotide is 50 monophosphory-
lated in order to limit off-target effects by minimizing the loading of the unphosphorylated
sense siRNA onto Ago2/RISC. These examples highlight the importance of the 50P end in the
RNAi pathway and suggest several potential levels of regulation involving the 50 end.

30 uridylation. Uridylation consists in the untemplated addition of one or more uridilyl
residues on the RNA 30 end. Uridylation of let-7 family pre-miRNAs by terminal uridylyl
transferase enzymes (TUTases) constitutes a beautiful example of how the degree of modifica-
tion is critical for determining the fate of the modified miRNA precursors. Indeed, the pre-
ferred substrate of Dicer is a pre-miRNA with a 2 nt 30 overhang [9]. Thus, on class II let-7 pre-
miRNAs, which have a 1 nt 30 overhang, the addition of one uridine or monouridylation by
TUT7/4/2 restores a 2 nt 30 overhang and stimulates Dicer processing [9]. However, oligouri-
dylation of pre-miRNAs by TUT7/4 has the opposite effect, preventing their processing and
leading to their degradation [10,16]. Oligouridylation can be stimulated by at least two differ-
ent processes: either by the reprogramming factor and oncogenic driver LIN28 [10,16] or,
in the absence of LIN28, by abnormal 50 overhangs or trimmed 30 ends [17]. Interestingly,
DIS3L2 has the dual ability to recognize the oligo-U tail [18] and to degrade the oligouridylated
pre-miRNA through its 30 ! 50 exonuclease activity [19].

RNA base modifications
Base modifications constitute the most diverse body of known RNAmodifications [6]. They
have mostly been analyzed in tRNAs, which have the advantage of being abundant and thus
amenable to biochemical purification and analysis [20]. However, the development of new
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Fig 2. List of knownmessenger or miRNAmodifications, with chemical structures, abbreviation, writers, erasers, and
readers. *The Drosophila dTET enzyme has recently been shown to hydroxylate 5meC on RNA [11].

doi:10.1371/journal.pgen.1006139.g002
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methods using next-generation sequencing on modified RNA enriched through specific affin-
ity purification methods has allowed the analysis of a set of modifications on the less abundant
RNAs, including mRNAs.

A to I editing. A to I editing corresponds to the conversion of adenosine to inosine by
removal of the amino group at carbon 6 of the adenine ring (Fig 2). On mRNAs and miRNAs,
A to I editing is catalyzed by the ADAR1/2 (adenosine deaminase acting on RNA) proteins
(Fig 2) (extensively reviewed in [21]). Inosine changes the base pairing properties of the edited
adenosine, as the inosine at the wobble nucleotide in a tRNA anticodon can form two hydrogen
bonds with either C, U, or A bases, while inosine in mRNA is read as a G base during transla-
tion. Consequently, A to I editing in mRNAs leads to specific changes in protein sequence [22]
but may also alter miRNA binding sites in their 30UTRs [23]. However, miRNA–mRNA inter-
actions are most commonly altered by A to I editing in the seed sequence of the guide strand of
the miRNA [24]. Additionally, by affecting base paring, A to I editing perturbs double-stranded
structures in pri- and pre-miRNAs that alter Drosha and Dicer processing of these precursors
[24,25]. Thus, A to I editing provides a clear example of how an RNAmodification affects
RNAi by perturbing either mRNA–miRNA base pairing or RNA secondary structures.

Adenosine 6 methylation (m6A). m6A is the most abundant base modification in mRNA
[26] but has also recently been found on pri-miRNAs [27]. The m6A mark regained wide-
spread interest more than 30 years after its discovery on mRNA when He and coworkers dis-
covered that the fat- and obesity-associated protein FTO is a m6A demethylase [28]. m6A is
deposited on mRNA by a complex comprising the METTL3-METTL14 methyltransferases
andWTAP [29–31] and removed by the FTO and ALKBH5 jumonji demethylases [28,32].
RNA immunoprecipitation with anti-m6A antibodies coupled to next-generation sequencing
(m6A-RIP-seq) found this modification enriched in the proximity of stop codons and on
30UTRs [33,34] (see “Hopes and Challenges in the Rising RNAModification Field” for an over-
view of transcriptome-wide methods). Another related method using cross-linking of the anti-
m6A antibody to RNA (m6A-CLIP-seq) found that m6A is in fact enriched 150–400nt after
the start of the last exon, which coincides with the stop codon on most, but not all, mRNAs
[35]. Both m6A-RIP-seq and m6A-CLIP-seq methods showed significant m6A enrichment on
30UTRs [34,35], suggesting that m6A could regulate mRNA function through processes that
operate via the 30UTR, such as RNAi via miRNAs or alternative polyadenylation (APA). Meyer
et al. found that two-thirds of 30UTRs that contain a m6A modification also contain a predicted

Fig 3. Model for the mode of action of the BCDIN3D RNAmethyltransferase on the biogenesis of
specific miRNAs. BCDIN3D’s enzymatic activity consists in the methylation of the two available oxygen
moieties of the 50 monophosphate, which removes the 50 monophosphate charge and makes it bulkier. This
methylation blocks the processing of specific miRNAs [8], possibly through perturbing the interaction of the 50

monophosphate with its binding pocket in Dicer [8,14].

doi:10.1371/journal.pgen.1006139.g003
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miRNA binding site [34]. Moreover, Ke et al. identified a significant overlap of m6A with Ago
binding sites in 30UTRs of mRNAs purified from mouse brains but not for other 30UTR bind-
ing proteins [35]. These correlations suggest a possible connection between m6A methylation
of mRNAs and RNAi. In addition, Ke et al. investigated the effect of knocking down the m6A
methylase complex on APA, finding that about one-sixth of examined genes changed their pre-
dominant APA with both types of switches, distal to proximal (63%) or proximal to distal
(37%) [35], upon m6A methylase depletion. Given that longer 30UTRs are more likely to be
regulated by miRNAs [36], APA could be another way for m6A to control RNAi. Importantly,
Alarcon et al. found by both m6A-RIP-seq and METTL3 CLIP-seq that METTL3 targets pri-
mary miRNAs for m6A methylation [27]. Moreover, DGCR8 interacts with m6A methylated
RNA, and m6A methylation stimulates pri-miRNA processing in vitro [27]. Consistent with
this, METTL3 knockdown led to a global downregulation of mature miRNAs [27]. Together,
these results suggest that m6A directly marks primary miRNAs for processing by Drosha/
DGCR8 (Fig 4). The m6A mark has been shown to increase the binding of specific “reader”
proteins, including YTHDC1, YTHDF1–3, and HNRNPC (Fig 2) [33,37–39]; however, the
identity of the full set of proteins that mediate binding of Drosha/DGCR8 to m6A methylated
pri-miRNAs remains to be determined [27,40]. Finally, it is interesting to note that m6A
strongly inhibits the activity of ADAR2 in vitro, suggesting yet another possible mode of action
for m6A [41].

Cytosine 5 methylation (m5C) and 5 hydroxymethylation (hm5C). m5C is the second-
most abundant base modification in mRNA, around 20 times less abundant than m6A [26].
This modification has been well studied in tRNAs where DNMT2 and NSUN2 m5C methylate
specific residues located on or around the anticodon and/or the variable loop of specific tRNAs
to protect them from cleavage (reviewed in [20]). Interestingly, a study that used genome-wide
bisulfite sequencing (see next section) showed that NSUN2 may also methylate mRNAs [42].
In addition, m5C showed a slight overrepresentation on 50 and 30UTR of mRNAs; however,
the significance of these findings for mRNA function remains obscure. Interestingly, hm5C has
recently been detected in RNA [43]. In DNA, hm5C by the Tet dioxygenase enzymes is thought

Fig 4. Model for howm6Amay stimulate pri-miRNA processing.m6A is deposited on pri-miRNA by
METTL3 and is thought to stimulate the recruitment of Drosha/DGCR8 for co-transcriptional processing of
pri-miRNA to pre-miRNA [27]. The question mark is to highlight that the identity of the full set of m6A readers
in pri-miRNAs is unknown. In yellow is shown RNAP II on DNA surrounded by nucleosomes.

doi:10.1371/journal.pgen.1006139.g004
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to be the first step towards demethylation [44], raising the intriguing possibility that m5C is a
reversible mark on RNA too (Fig 2).

Hopes and Challenges in the Rising RNAModification Field
The recent discovery of new writers, erasers, and readers of RNA modifications with important
cellular phenotypes has triggered the rebirth of the RNA modification field [45]. Despite their
pervasiveness, the function and the molecular mechanism of action of many RNA modifica-
tions, including m6A, remain obscure. Moving forward, the establishment of rigorous and sen-
sitive methodologies will be necessary to fill this important gap in our knowledge. A key step
toward achieving this goal is the ability to identify modified RNAs as well as to map base modi-
fications at the nucleotide resolution level. RNA modifications that change the base-pairing
properties or RNA sequence, such as editing and uridylation, can already be detected with
nucleotide resolution. However, other base modifications require a conversion or antibody-
mediated enrichment step. For example, in the case of m5C [42], sodium bisulfite treatment
leads to deamination of unmethylated cytosines to uracil, but leaves m5C cytosines intact. The
resulting uracils are amplified in the subsequent reverse transcription and PCR steps as thy-
mines, whereas m5Cs are amplified as cytosines. Sequence comparison between mock and
sodium bisulfite-treated RNAs then allows for determination of the position(s) and the ratio of
m5C. A similar method does not currently exist for m6A. The most commonly used method is
m6A-RIP-seq, in which m6A methylated RNAs are enriched with an anti-m6A antibody prior
to next-generation sequencing [33,34]. m6A-RIP-seq is effective in identifying approximate
m6A locations, but because the mRNA is sheared into ~100 nucleotide fragments that often
contain multiple putative m6A sites, it is not possible to resolve m6A at the nucleotide level. A
more recent method called m6A-CLIP/IP adds a step that uses ultraviolet (UV) light to cross-
link the anti-m6A antibody to the m6A-modified RNA fragment [35]. Upon antibody diges-
tion with proteinase K and sequencing, nucleotide insertions are observed adjacent to verified
m6A sites [35]. Interestingly, Ke et al. also observed frequent truncations at m6A sites with
both RIP and CLIP methods, suggesting that m6A may cause the reverse transcriptase to fall
off during cDNA synthesis [35]. These observations reveal a potential for biases introduced by
commonly used molecular biology enzymes when dealing with modified RNAs. On a positive
note, these biases could also be exploited to identify modification sites on RNA. For example, it
could be of interest to engineer reverse transcriptases that can incorporate another nucleotide
than thymine when encountering a m6A-modified adenosine during cDNA synthesis. Such
designer reverse transcriptases could in principle be adapted to any RNA modification.

The challenges mentioned above are applicable to all modified RNAs. However, another
challenge specific to the miRNA pathway is the lack of reliable methods to amplify and
sequence precursor miRNAs. While this may be a consequence of their supposed short half-life
as intermediates, it is also possible that it is the combination of their stable hairpin structure
and the presence of RNA modifications that makes them poor substrates for cDNA synthesis
and thus deep sequencing analysis. A similar problem is encountered with highly modified
tRNAs, despite their abundance [46]. To resolve this issue, two recent methods used a cocktail
of engineered demethylases to remove base methylations that act as roadblocks during cDNA
synthesis, resulting in significantly improved coverage and quantitative tRNA sequencing
[47,48]. The application of such methods to pre-miRNA sequencing could yield invaluable
insights into how these precursors regulate the miRNA pathway.

Accurately detecting RNAs and their modifications may prove to be important not only
from a basic scientist’s perspective, but also from a biomarker development point of view.
Indeed, the absence or presence of specific RNA modifications in disease setting may be more
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informative than simply measuring RNA levels. This is very likely given the involvement of the
writers, erasers, and readers of RNA modifications in cellular processes highly relevant to
human disease [20]. All methods used to date (bisulfite conversion, m6A-RIP-seq, etc.) require
large amounts of starting material that are often not available for patient derived samples.
Thus, the discovery of sensitive and high-resolution methods to detect RNA modifications
may be transformative for biomarker development and use in the clinic.

As highlighted throughout this review, an increasing number of observations point to the
important role played by RNA modifications in the miRNA biogenesis pathway and RNA
interference. Given the importance of miRNAs in numerous cellular processes and their dereg-
ulation in many diseases, including cancer, miRNA inhibitors and miRNA mimics are being
considered for therapeutic purposes [49]. While nucleic acid–based miRNA inhibitors or mim-
ics have shown excellent potential in the laboratory setting, their use in the clinic is problematic
because their uptake is usually limited to the liver and kidney [49]. For this reason, we believe
that the focus should instead be on regulators of the miRNA pathway, such as enzymes, writers,
or erasers of RNA modifications [50–52]. Enzymes are more likely to be targeted with small
molecule drugs and could possibly affect many miRNAs simultaneously. Thus, taking into
account RNA modifications will not only advance our understanding of the RNA interference
pathway in disease and cancer but will also open the path to exploiting the enzymes that write
and erase them as targets for therapeutic drug development.
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