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Radiation recall pneumonitis induced by
PD-1/PD-L1 blockades: mechanisms and
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Abstract

Background: The synergistic effect of radiotherapy (RT) in combination with immunotherapy has been shown in
several clinical trials and case reports. The overlapping pulmonary toxicity induced by thoracic RT and programmed
death 1/programmed death ligand-1 (PD-1/PD-L1) blockades is an important issue of clinical investigation in
combination treatment. Thus far, the underlying mechanism of this toxicity remains largely unknown.

Main text: In this review, we discuss the unique pattern of radiation recall pneumonitis (RRP) induced by PD-1
blockade. The clinical presentation is different from common radiation pneumonitis (RP) or RRP induced by cytotoxic
drugs. The immune checkpoint inhibitors may evoke an inflammatory reaction in patients’ previously irradiated fields,
with infiltrating lymphocytes and potential involvement of related cytokines. All RRP patients have showed durable
response to anti-PD-1/PD-L1. RRP is manageable; however, interruption of checkpoint blockades is necessary and
immunosuppressive treatment should be started immediately. Further analyses of the predictive factors, including RT
dosimetric parameters, tumor-infiltrating lymphocytes (TILs), and PD-L1 expression, are needed given the wide use of
immune checkpoint inhibitors and high mortality from lung toxicity with the combination treatment.

Conclusion: Immune checkpoint inhibitors may evoke an RRP in the patients’ previously irradiated fields. Interactions
between immune checkpoint inhibitors and radiotherapy should be studied further.
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Background
Programmed death 1 (PD-1) and programmed death
ligand-1 (PD-L1) blockades have shown clinical activity
and marked efficacy in the treatment of advanced non-
small cell lung cancer (NSCLC). Several PD-1/PD-L1
blockades have been approved by the Food and Drug
Administration (FDA) and the European Agency of Medi-
cine (EAM) in the treatment of NSCLC [1–7]. Pembroli-
zumab has been approved as first-line treatment for
advanced squamous or non-squamous NSCLC with PD-

L1 expression ≥ 50% and as second-line treatment for ad-
vanced squamous or non-squamous NSCLC with PD-L1
expression ≥ 1% [8, 9]. The use of nivolumab and atezoli-
zumab has been approved for advanced squamous or
non-squamous NSCLC, independent of PD-L1 status,
after at least one previous chemotherapy regimen [2, 10–
12]. Durvalumab has been approved as consolidation ther-
apy after chemo-radiotherapy in unresectable stage III
NSCLC [13].
The synergistic effect of radiotherapy (RT) in combin-

ation with immunotherapy has been reported in several
case reports and clinical trials [14, 15]. Since the potential
pulmonary toxicity induced by thoracic RT and PD-1/PD-
L1 blockades could overlap, pneumonitis is an important
point of clinical investigation in combination treatment.
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Thus far, the nature of this toxicity remains largely un-
known. Herein, we discussed the unique pattern of radi-
ation recall pneumonitis (RRP) induced by PD-1 blockade.
With the dramatic increase in checkpoint immunotherapy
usage, this new pattern of immunotherapy-related toxicity
merits increased awareness with a focus on the clinical
characteristics, underlying mechanisms, and management
strategies.

Main text
Clinical and patients characteristics
Based on the previous trials and meta-analysis, all-grade
and grade 3–4 pneumonitis occurred in 3–5% and 1%,
respectively, of patients with NSCLC who received PD-
1/PD-L1 blockades [10, 16, 17]. The incidence of pneu-
monitis may be higher when combined with RT, but the
clinical data were limited. Louvel et al. reported two
cases of pneumonitis in six patients who received con-
comitant PD-1/PD-L1 blockades with SBRT [18]. In a
secondary analysis of the KEYNOTE-001 trial, which
studied the use of pembrolizumab for patients with ad-
vanced NSCLC, all-grade pneumonitis occurred more
frequently in patients who received previous thoracic RT
than in those with no previous thoracic RT (63% vs.
40%) [19]. In the phase 2 randomized PEMBRO-RT trial,
92 patients were randomized to receive pembrolizumab
either alone or after radiotherapy (3 fractions of 8 Gy) to
a single tumor site. Pneumonitis occurred more often in
the pembrolizumab combined with radiotherapy group
than in the control group (26% vs. 8%) [15].
RRP is characterized by an inflammatory reaction within

the previously treated radiation field after administration
of specific treatment [20–22]. Most RRP reported previ-
ously was induced by chemotherapy, such as gemcitabine
and taxanes. Immunotherapy-induced RRP was rarely re-
ported and showed some differences from RRP induced
by chemotherapy. First, according to previous literature
[23, 24], the interval between the end of radiotherapy and
diagnosis of immunotherapy-induced RRP could be nearly
2 years [23]. The corresponding intervals for RRP induced
by chemotherapy ranged from 71 to 202 days [21]. Sec-
ond, the patients with immunotherapy-induced RRP often
had durable response to PD-1/PD-L1 blockades. In the
two RRP cases reported by Shibaki et al., the correspond-
ing intervals were 660 and 664 days; both of the cases
showed a durable response [14]. In the study of Eze et al.,
all 3 patients achieved a durable response [15]. Although
we cannot draw definitive conclusions based on the lim-
ited data [14, 15], this finding indicated that the occur-
rence of RRP might be related to favorable response to
PD-1/PD-L1 blockade immunotherapy. However, chemo-
induced RRP was not found to be related to the thera-
peutic effect of chemotherapy [20, 21, 25].

Age > 70 years and prior interstitial lung disease were
reportedly associated with higher incidence of
immunotherapy-related pneumonitis [26]. In a study con-
ducted by Suresh et al., the risk of pneumonitis was higher
for males than females, 0.25 vs. 0.19 per year [27]. In con-
trast, smoking status was not a risk factor in these patients
[28]. In the above studies, the histology of squamous carcin-
oma was more common in patients with immunotherapy-
related pneumonitis [29]. In addition, the absence of extra-
thoracic metastases was associated with increased incidence
of immunotherapy-related pneumonitis [26].
A study of 148 lung cancer patients who received de-

finitive chemoradiation was reviewed to identify factors
that may predict severe radiation pneumonitis (RP) [30].
The most significant factor for predicting RP was per-
formance status. The incidence of severe RP was 16% for
PS-1 patients and 2% for PS-0 patients, respectively. In
addition, females were more likely to develop severe RP
than males. Movsas et al. analyzed sociodemographic
factors of 1450 patients treated in nine prospective
RTOG trials [31]. They found that lower lobe primaries,
presence of family with cancer, married relationship, and
the interaction of female sex with low KPS status were
associated with grade > 3 radiation pneumonitis. A his-
tory of smoking was another potential factor predictive
of RP [32]. Previous radiation history was also associated
with higher incidence of RP [33]. In a pooled analysis, 88
studies were included to study the risk factors for pneu-
monitis after RT of the thorax [34]. Patient age and
tumor size were significantly associated with rate of
grade 2 or greater RP. However, histology, GTV, PTV,
and tumor location (central versus peripheral) were not
significant.
Considering the indicators for immunotherapy-related

pneumonitis and radiation pneumonitis, older patients
with large tumor size, low KPS status, and prior intersti-
tial lung disease should be cautious about the occur-
rence of RRP.

Therapy regimens
Based on previous studies, immunotherapy was often de-
livered after thoracic RT. The interval between thoracic
RT and immunotherapy varied from 1 day to 11.5
months, and the incidence of pneumonitis was between
0 and 17% [13, 15, 19]. It seemed there were no relation-
ships between the rate of pneumonitis and the time in-
tervals between RT and anti-PD-1/PD-L1 treatment, but
further studies are needed to clarify the associations be-
tween pneumonitis and therapy regimens that are deliv-
ered sequentially and concomitantly.
A higher incidence of pneumonitis was reported with

the use of PD-1 inhibitors compared with PD-L1 inhibi-
tors and in treatment-naïve patients [16]. The PD-1/PD-
L2 interactions with PD-1 inhibitors might be the reason
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for the higher incidence of pneumonitis in PD-1 inhibi-
tors. Preclinical experiments suggested that PD-1 block-
ades may increase PD-L2 availability for binding to
repulsive guidance molecule b (RGMb), which could
lead to pneumonitis [35].

RT dosimetric factors
RT dose and fractionation, which often affect clinical
management decisions with respect to tumor control
and lung tolerance, are important. Dosimetric param-
eters have been widely assessed as predictors for the
development of radiation pneumonitis. In a study
conducted by Jenkins and Watts, dosimetric parame-
ters, pulmonary function, and clinical parameters were
analyzed in patients who received RT at the same
dose and with an identical technique for NSCLC. The
fractional volume of lung receiving > 5–20 Gy, mean
lung dose (MLD), absolute volume of lung spared
from receiving > 5–15 Gy, craniocaudal position of the
isocenter, total lung capacity, and transfer coefficient
for carbon monoxide (KCOc) were significantly corre-
lated with the risk of pneumonitis [36]. As reported,
MLD of 15 Gy, 17.5 to 20 Gy, 22.5 to 25 Gy, and
27.5 Gy resulted in 0%, 13%, 21%, and 43% incidence
of all grades of RP, respectively [37]. In a meta-
analysis, MLD and the percent volume of the total
lung receiving a dose greater than 20 Gy (V20) were
significant factors for higher risk of grade 2 or greater
RP. Another study demonstrated that MLD from total
lung excluding-plan target volume (Lung-PTV) may
be more accurate and promising to predict acute
symptomatic radiation pneumonitis in intensity-
modulated radiation therapy (IMRT)-treated lung can-
cer patients [38]. With the development of radiation
equipment, IMRT and stereotactic body radiation
therapy (SBRT) have been widely used in the treat-
ment of lung cancer. The incidence of grade > 3 RP
was lower when using IMRT than when using 3-
dimensional techniques (3DCRT), since IMRT could
allow for extensive reductions of radiation dose to
normal lung tissues [39]. MLD and the volume of the
total lung receiving a dose greater than 5, 7, and
10 Gy were also associated with RP for SBRT [40]. In
addition, proton beam therapy has been increasingly
used for the treatment of lung cancer and may fur-
ther reduce radiation dose to normal lung tissues and
reduce the risk of RP [41]. As for immunotherapy-
related pneumonitis, in a retrospective study, the rela-
tionship between chest-RT and development of
immune-related pneumonitis in NSCLC patients
treated with anti-PD-1/PD-L1 was analyzed. However,
no RT parameter was significantly associated with
pneumonitis [42]. Since RP is correlated with the
dose delivered to a particular fractional volume of the

lung, RT dose and fractionation, especially MLD, de-
serve attention and potential pneumonitis should be
monitored in patients receiving combination
treatment.

Radiographic patterns
In the majority of RRP cases, the area of pneumonitis
matched the irradiated area. The most common radio-
graphic pattern of RRP on chest CT was the cryptogenic
organizing pneumonia (COP) pattern, followed by the
non-specific interstitial pneumonia (NSIP) pattern, the
hypersensitivity pneumonitis (HP) pattern, and the acute
interstitial pneumonia (AIP)/acute respiratory distress
syndrome (ARDS) pattern. The radiographic patterns
were associated with volume of irradiated area and the
toxicity grades of RRP. AIP/ARDS was correlated with the
highest grade (grade 3), then the COP pattern as grade 2,
and the HP and NSIP patterns had the lowest grade 1.
Ground glass opacities (GGO), reticular opacities, and
consolidations were observed in some cases of RRP.

Underlying mechanisms
Thoracic radiotoxicities can produce both acute and
long-term lung toxicities that occur months to years
after treatment. Around 15% of patients experience
pneumonitis within 2 to 3 months after thoracic RT [43,
44]. Pulmonary fibrosis can be considered a recovery of
lung injury after radiation. The gamma delta T cells
(γδT) cells help prevent progression of fibrosis and sup-
press CD4+ cell recruitment [45]. Several groups have
found abundant lymphocytes infiltrating the lung tissues
and elevated CD4/CD8 ratios in bronchoalveolar lavage
fluid from patients with radiation pneumonitis [43, 46–
50]. In addition, the T helper type 22 (TH22) and fol-
licular helper T (TFH) cells may have possible effects on
the host defense against bacteria and viruses in the lung
[51, 52]. Previously, it was assumed that immunotherapy
via PD-1/PD-L1 blockade works by reinvigorating pre-
existing exhausted tumor-infiltrating lymphocytes
(TILs). Recently, it was indicated that the majority of
tumor-specific TILs after immunotherapy have T cell re-
ceptors (TCRs) that were not identified pre-treatment,
suggesting that the TILs are newly recruited post-
therapy [53]. A dynamic monitoring of the changes of
the specific T cell populations and phenotypes during
immunotherapy in previous irradiated models could help
monitoring the RRP and the anti-tumor response.
Transforming growth factor β (TGF-β) plays a part in

progression of radiation-related fibrosis [54]. Rube and
Chen et al. observed that the serum levels of TGF-β and
IL-6 were elevated prior to and after radiotherapy and
correlated with radiation-induced pneumonitis [55, 56].
Tumor necrosis factor (TNF)-α leads to TGF-β1 induc-
tion and is known to contribute to fibrosis development
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[57]. Hence, it has become a target molecule to monitor
the progression of fibrosis. The cytotoxic actions of TNF
also play an important role in anti-PD-L1 treatment.
Nuclear factor–kB (NF-kB) signaling is crucial in regu-
lating the production of TNF-α, which was associated
with the function of cytotoxic T lymphocytes and matur-
ation of dendritic cells in the use of PD-1/PD-L1 block-
ades for cancer treatment [58]. Elevated TNF was
observed with a combination treatment of anti-PD-L1
and radiation [59]. The potential synergy may also acti-
vate inflammation-mediated injury.
In addition, interleukins (IL)-4, IL-6, IL-10, IL-13, IL-

17, and IL-18 are demonstrated to be associated with
radiation-related pneumonitis and the therapeutic effects
of anti-PD-1/PD-L1 [60]. Buttner et al. observed in-
creased IL-4 gene transcription and synthesis in lung tis-
sues after radiation, and substantial IL-4 secretion by
macrophages in radiation-induced fibrosis [61]. Wilson
et al. demonstrated that IL-17A gene knockout could de-
crease the severity of lung injury in mice, demonstrating
the important role of IL-17A in fibrosis and inflamma-
tion [62]. IL-4 and IL-13 were also shown to facilitate fi-
brosis by promoting TGF-β [63]. This finding may
explain the associations between RRP and response to
anti-PD-1/PD-L1 in our case and previous reports. The
cytokines resulting in pneumonitis also play a pivotal
role in PD-1/PD-L1 blockade immunotherapy.
Brickey et al. investigated the role of myeloid differenti-

ation primary response 88 (MyD88) in regulating nuclear
factor kappa-B (NF-kB) activating responses and innate
immunity in post-radiation lung tissues. They found that
MyD88 was instrumental for regulating inflammatory pro-
cesses that aid in recovery from radiation [55, 64]. The ac-
tivation of cGMP–AMP synthase–stimulator of interferon
genes (cGAS-STING) signaling and ROS/RNS also plays
an important role in lung injury mediated by non-
infectious inflammatory processes [65, 66]. The major sig-
naling pathways involved in immunotherapy-induced RRP
are shown in Fig. 1. The activations and interactions of
these inflammatory-related signals also contributed to the
therapeutic effects of anti-PD-1/PD-L1, with or without
radiotherapy. Anti-PD-1/PD-L1 therapy may have evoked
an inflammatory reaction mediated by the lymphocytes,
cytokines, and proteins as a result of radiation exposure in
patients’ previously irradiated fields (Fig. 2).

Immunologic factors
Understanding the molecular and cellular processes of
RRP helps in finding biomarkers that predict the risk for
developing radiation pneumonitis during checkpoint im-
munotherapy. Tumor-infiltrating lymphocytes (TILs)
were strongly associated with response to anti-PD-1/PD-
L1 immunotherapies [67]. Since increased rates of lym-
phocytes, macrophage, and neutrophils were found in

bronchoalveolar lavage (BAL) fluid from the majority of
RPP patients, high TILs are most likely associated with
RRP. However, the predictive effect was limited by the
invasive operation. A number of researchers have re-
ported the predictive effects of circulating lymphocytes
[68–70]. The percentage of circulating B cells and T
lymphocytes may reflect the body’s immune status and
may be a potential therapeutic target for the treatment
of pneumonitis [71]. Further, circulating and lung Th17
cells contributed to pulmonary fibrosis and inflamma-
tion [72]. An imbalance of circulating Th17 cells and
regulatory T (Treg) cells was associated with the deteri-
oration of pulmonary injury [73].
Transforming growth factor α (TGF-α), a protein

coded by the TGFA gene, was a potential biomarker for
RRP. TGF-α was able to induce lung fibroblasts to myo-
fibroblasts and to stimulate collagen synthesis [74, 75].
Plasma TGF-α levels could be used to stratify patients
into groups at low, intermediate, and high risk to de-
velop RP [76, 77]. Monitoring plasma TGF-α levels may
be useful to predict RRP during the course of PD-1/PD-
L1 blockades.
IL-6 is an important cytokine responsible for inflam-

mation and RRP development [78]. It is synthesized and
secreted by various lung parenchyma cells and regulates
inflammatory and immune responses [79]. Hence, levels
of serum IL-6 could be used to estimate the inflamma-
tory status of the lung. However, immunotherapy could
also increase the level of IL-6, especially in good re-
sponders, which may disturb its predictive effects [80].
As a pivotal molecular target during treatment of anti-

PD-1/PD-L1, PD-L1 expression has been of concern. Ex-
pression of PD-1/PD-L1 in lung tissue may be related to

Fig. 1 Cytokines and relative signaling pathways potentially involved in
RRP. Tumor necrosis factor-α (TNF-α); transforming growth factor β
(TGF-β); interleukins 4, 6, 10, 13, 17, and 18 (IL-4, 6, 10, 13, 17, 18);
myeloid differentiation primary response 88 (MyD88); cGMP–AMP
synthase (cGAS)–stimulator of interferon genes (STING); nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB); reactive oxygen
species/reactive nitrogen species (ROS/RNS); extracellular regulated
protein kinases (Erk); and phosphatidylinositol 3-kinase (PI3K)
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immune-related pneumonitis. With limited data, we can-
not draw conclusions about the association of PD-1 or
PD-L1 expression with pneumonitis. Since the host im-
mune status plays an important role in both therapeutic
effects and lung injury with radiation combined with
anti-PD-1/PD-L1, further studies are needed to evaluate
its predictive effect.

Management strategies
Steroids and corticosteroids have been widely used in
different inflammatory diseases, such as radiation pneu-
monitis and some autoimmune diseases. Prednisone,
which could improve lung function and minimize lung
tissue toxicity and symptoms of radiation-induced pneu-
monitis, was the most commonly used drug [81]. In
grade 1 to 2 pneumonitis, treatment consists of oral ste-
roids with prednisone 1 mg/kg/day or equivalent. Ste-
roids should be tapered over 4 to 6 weeks after recovery,
and rechallenge of immunotherapy should be delayed
until the dose of steroids equals 10 mg of oral prednis-
one per day or less. In grade 3 to 4 pneumonitis, treat-
ment should consist of high-dose i.v. corticosteroids
with prednisolone 2–4 mg/kg daily or equivalent and im-
munotherapy should be discontinued permanently. If
there is no improvement in patient’s condition or im-
aging, additional immunosuppressive strategies should
be implemented. Tapering of steroids should be careful
and slow, over 6 weeks or more [82]. Also, concurrent
broad-spectrum antibiotics are recommended because of
the potential for overlapping presentation and infection
[83, 84].
In addition to steroids and corticosteroids as the main-

stay of treatment, angiotensin-converting enzyme inhibi-
tor could potentially reduce the risk of symptomatic
radiation pneumonitis in male patients and patients re-
ceiving low MLD with NSCLC [85, 86]. Oxygen therapy
was suggested as a supportive therapy. It could relieve
breathlessness by increasing the oxygen in blood and in
tissues. Further, some molecular approaches targeting

the intermediates involved in the development of inflam-
matory response in the lungs, such as DNA intercalator
and anti-TGF-β type 1 receptor, were studied in preclin-
ical practice [87, 88].

Conclusions
In conclusion, RRP induced by PD-1 blockade is the
unique pattern of radiation-related toxicity. The clinical
presentation was different from common RP and RRP
induced by cytotoxic drugs. The immune checkpoint in-
hibitors may have evoked an inflammatory reaction in
patients’ previously irradiated fields, with potential in-
volvement of infiltrating lymphocytes and related cyto-
kines. All RRP patients showed durable response to anti-
PD-1/PD-L1. It was manageable, and sufficient steroids
or corticosteroids are needed. A further analysis of the
predictive factors is needed with the wide use of immune
checkpoint inhibitors and high mortality of this kind of
lung toxicity with combination treatment.
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