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In order to investigate the transmission mechanism of the infectious individual with Ebola virus, we establish an SEIT (susceptible,
exposed in the latent period, infectious, and treated/recovery) epidemic model. The basic reproduction number is defined. The
mathematical analysis on the existence and stability of the disease-free equilibrium and endemic equilibrium is given. As the
applications of the model, we use the recognized infectious and death cases in Guinea to estimate parameters of the model by
the least square method. With suitable parameter values, we obtain the estimated value of the basic reproduction number and
analyze the sensitivity and uncertainty property by partial rank correlation coefficients.

1. Introduction

Ebola virus disease (EVD) is first identified in theDemocratic
Republic of Congo (formerly Zäire) in 1976. It is a lethal viral
hemorrhagic fever and can cause a high case fatality rate lying
between 50 and 90% [1, 2]. Since 1976, the outbreak of Ebola
epidemic has happened more than 20 times, most of which
appeared inAfrica. Sudan (1976, 1979, and 2004), Democratic
Republic of Congo (1976, 1977, 1995, 2007, 2008, and 2012),
Gabon (1994, 1996, 2001, and 2002), Republic of Côte d’Ivoire
(1994), Uganda (2000, 2007, 2011, and 2012), and Republic of
the Congo (2001, 2002, 2003, and 2005) have reported EVD
epidemics [3, 4].

Mathematicalmodeling has emerged as an important tool
for gaining understanding of the dynamics of the spread
of EVD. Reference [5] established a stochastic discrete-time
susceptible-exposed-infectious-recovered (SEIR) model to
estimate parameters from daily incidence and mortality time
series for an outbreak of Ebola in the Democratic Republic
of Congo in 1995. Different from [5], reference [1] used both
onset and death date to constrain the optimization of SEIR
model parameters by Bayesian inference. To develop a better
understanding of Ebola transmission dynamics, [6] intro-
duced a compartmental model to quantify transmission in

different settings (illness in the community, hospitalization,
and traditional burial). Further, [7] used the above model to
analyze the temporal dynamics of Ebola.

The current Ebola outbreak began in December 2013
in Guinea [8], initially in the Prefecture of Gueckedou,
and shortly spread to other West African countries such as
Liberia, Sierra Leone, Nigeria, and Senegal [6, 9–11]. The
outbreak is the largest to date: as of 25th January 2015, 22,092
cases have been reported by World Health Organisation
(WHO), as well as 8,810 deaths [12], which contain 2,917
infected cases and 1,910 deaths of Guinea. Reference [13]
analyzed transmission dynamics of EVD in Nigeria and
showed the time window for successful containment of EVD
outbreaks caused by infected air travelers. Reference [14]
designed a model that is formulated by splitting the total
population into two main subgroups, namely a subgroup
of individuals in the community and another for those in
health-care settings.

To assess the effect these various intervention strate-
gies could have on controlling the spread of Ebola virus,
we develop a mathematical model for transmission, fitted
probabilistically to epidemiological data of reported cases in
Guinea. Experimental vaccines and treatments for Ebola are
under development, but they have not yet been fully tested
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Figure 1: Transfer diagram of SEIT epidemic model.

for safety or effectiveness. Thus, we establish an SEIT model
and apply it to analyze the spread of EVD in Guinea, where
𝑆, 𝐸, 𝐼, and 𝑇 denote the number of the susceptible, exposed
in the latent period, infectious, and treated/recovered popu-
lation, respectively. For the SEIT model, [15–17] constructed
a discrete version with latent age structure to investigate
tuberculosis transmission. Along the paper, we assume that
infected individuals in SEIT model can develop EVD by
contacting the exposed in the latent period or infectious
individuals.

This paper is organized as follows. Section 2 introduces
an SEIT model by a four-dimensional differential equations
system. In Section 3, the basic reproduction number 𝑅0 is
defined. Based on 𝑅0 < 1 and 𝑅0 > 1, the local stability
of the disease-free equilibrium and endemic equilibrium is
obtained according to Hurwitz criterion. In Section 4, by the
least square method we propose the estimation of parameters
by onset and death data in Guinea, which can be used
to calculate 𝑅0. Moreover, we provide the sensitivity and
uncertainty analysis of 𝑅0. Section 5 presents our concluding
remark.

2. Model Formulation

The transmission of EVD is by direct contact with body fluids,
secretions, tissues, or semen from the infectious individuals
[1], which starts with acute fever, diarrhea that can be bloody,
and vomiting followed by headache, nausea, and abdominal
pain [2]. Its incubation period ranges from 2 to 21 days (5–
12 days in most cases) [1]. Since the diseases had caused
the loss of thousands of lives and brought great pain to
families, there have been lots of mathematical models for
gaining understanding of the dynamics of the spread of EVD
[1, 2, 6, 7, 18, 19]. In this work, we establish an SEIT model
to extend the SEIR and SEIRS types and apply the model
to describe the dynamics of EVD during 2014 outbreak in
Guinea.

The total host population is partitioned into susceptibles,
exposed (in the latent period), infectious, and treated/recov-
ered individuals, respectively, denoted by 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and
𝑇(𝑡) at time 𝑡. After one unit time, a susceptible individual can
be infected through contactingwith the exposed or infectious
individuals and enter the latent class or is still in the suscep-
tible class or dies. A latent individual may become infectious
and enter the infectious class or still stay in the latent class
or die. An infectious individual may be treated and enter the
treated/recovery class or stay in the infectious class or die.
For a treated individual, he (or she) may recover by effective
treatment. The recovered individual from Ebola depends on
good supportive care and the patients immune response.

People who recover from Ebola infection develop antibodies
that last for at least 10 years, possibly longer. However, it
is not known whether people who recover are immune for
life or whether they can become infected with a different
species of Ebola [20]. Thus, we consider that the recovered
individual may enter the susceptible class. Otherwise, the
treated individual may stay in the treated/recovered class, or
die. Figure 1 shows the relationship between the four variables
of our SEIT model.

Using Figure 1, we formulate the following SEIT model,
which is a four-dimensional differential equations model:

̇𝑆 = Λ − 𝛽10𝐼𝑆 − 𝛽20𝐸𝑆 − 𝜇𝑆 + 𝛾0𝑇,

𝐸̇ = 𝛽10𝐼𝑆 + 𝛽20𝐸𝑆 − 𝜀0𝐸 − (𝜇 + 𝜇10) 𝐸,

̇𝐼 = 𝜀0𝐸 − V0𝐼 − (𝜇 + 𝜇20) 𝐼,

𝑇̇ = V0𝐼 − 𝛾0𝑇 − (𝜇 + 𝜇30) 𝑇,

(1)

where Λ is the recruitment rate; the positive parameter 𝜇

is the rate of natural death; 𝜇10, 𝜇20, and 𝜇30 are nonneg-
ative constants and denote rates of disease-caused death.
Parameters 𝛽10 and 𝛽20 are the rate of the efficient contact
in the infected, latent, and exposed period; 𝜀0 and V0,
respectively, denote the transfer rates between the exposed
and the infectious, the infectious and treated infectious; and
𝛾0 denotes the rate of the effectively treated individuals. In
model (1), when 𝛾0 = 0, the SEIT model is an SEIR type.
If 𝛾0 ̸= 0, the SEIT model is an SEIRS type. Thus, the SEIT
model is a general version of SEIR or SEIRS type.

For convenience, denote 𝛽1 = 𝛽10/𝜇, 𝛽2 = 𝛽20/𝜇, 𝜇1 =

𝜇10/𝜇, 𝜇2 = 𝜇20/𝜇, 𝜇3 = 𝜇30/𝜇, 𝜀 = 𝜀0/𝜇, V = V0/𝜇, and 𝛾 =

𝛾0/𝜇. Further, define

𝜔1 = 1+ 𝜀 + 𝜇1,

𝜔2 = 1+ V+ 𝜇2,

𝜔3 = 1+ 𝛾 + 𝜇3.

(2)

Let 𝜏 = 𝜇𝑡; thenmodel (1) is equivalent to the following form:

𝑑𝑆

𝑑𝜏
=

Λ

𝜇
− 𝛽1𝐼𝑆 − 𝛽2𝐸𝑆 − 𝑆 + 𝛾𝑇,

𝑑𝐸

𝑑𝜏
= 𝛽1𝐼𝑆 + 𝛽2𝐸𝑆 − 𝜔1𝐸,

𝑑𝐼

𝑑𝜏
= 𝜀𝐸 − 𝜔2𝐼,

𝑑𝑇

𝑑𝜏
= V𝐼 − 𝜔3𝑇.

(3)
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3. Equilibria and Local Stability

It is clear that model (3) always has a disease-free equilibrium
𝑃0(𝑆0, 0, 0, 0) with 𝑆0 = Λ/𝜇. Let 𝑃

∗

= (𝑆
∗

, 𝐸
∗

, 𝐼
∗

, 𝑇
∗

) be the
endemic equilibrium; then we have

Λ

𝜇
− 𝛽1𝐼
∗

𝑆
∗

− 𝛽2𝐸
∗

𝑆
∗

− 𝑆
∗

+ 𝛾𝑇
∗

= 0,

𝛽1𝐼
∗

𝑆
∗

+ 𝛽2𝐸
∗

𝑆
∗

− 𝜔1𝐸
∗

= 0,

𝜀𝐸
∗

− 𝜔2𝐼
∗

= 0,

V𝐼
∗

− 𝜔3𝑇
∗

= 0.

(4)

Define the basic reproduction number as

𝑅0 =
Λ (𝜀𝛽1 + 𝜔2𝛽2)

𝜇𝜔1𝜔2
. (5)

Based on (2), we know that 𝜔1, 𝜔2, 𝜔3 > 0 and 𝜔1𝜔2𝜔3 −

𝜀𝛾V > 0. When 𝑅0 > 1, solving (4) we obtain the endemic
equilibrium 𝑃

∗:

𝑆
∗

=
𝜔1𝜔2

𝜀𝛽1 + 𝜔2𝛽2
,

𝐸
∗

=
𝜔2𝜔3 (Λ (𝜀𝛽1 + 𝜔2𝛽2) − 𝜇𝜔1𝜔2)

𝜇 (𝜔1𝜔2𝜔3 − 𝜀𝛾V) (𝜀𝛽1 + 𝜔2𝛽2)
,

𝐼
∗

=
𝜀𝜔3 (Λ (𝜀𝛽1 + 𝜔2𝛽2) − 𝜇𝜔1𝜔2)

𝜇 (𝜔1𝜔2𝜔3 − 𝜀𝛾V) (𝜀𝛽1 + 𝜔2𝛽2)
,

𝑇
∗

=
𝜀V (Λ (𝜀𝛽1 + 𝜔2𝛽2) − 𝜇𝜔1𝜔2)

𝜇 (𝜔1𝜔2𝜔3 − 𝜀𝛾V) (𝜀𝛽1 + 𝜔2𝛽2)
.

(6)

Now, we discuss the local stability of equilibria. Firstly,
on the stability of disease-free equilibrium 𝑃0 we have the
following result.

Theorem 1. If 𝑅0 < 1, then disease-free equilibrium 𝑃0 =

(Λ/𝜇, 0, 0, 0) is locally asymptotically stable.

Proof. The Jacobian of model (3) is

𝐽 = (

−𝛽1𝐼 − 𝛽2𝐸 − 1 −𝛽2𝑆 −𝛽1𝑆 𝛾

𝛽1𝐼 + 𝛽2𝐸 𝛽2𝑆 − 𝜔1 𝛽1𝑆 0
0 𝜀 −𝜔2 0
0 0 V −𝜔3

) . (7)

Thus, the Jacobian at point 𝑃0 is

𝐽 (𝑃0) =
(
(
(

(

−1 −
𝛽2Λ

𝜇
−

𝛽1Λ

𝜇
𝛾

0
𝛽2Λ

𝜇
− 𝜔1

𝛽1Λ

𝜇
0

0 𝜀 −𝜔2 0
0 0 V −𝜔3

)
)
)

)

(8)

and its characteristic equation is given by det(𝜆𝐼 − 𝐽(𝑃0)) = 0,
where 𝐼 is the unit matrix, since

det (𝜆𝐼 − 𝐽 (𝑃0))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 + 1
𝛽2Λ

𝜇

𝛽1Λ

𝜇
−𝛾

0 𝜆 −
𝛽2Λ

𝜇
+ 𝜔1 −

𝛽1Λ

𝜇
0

0 −𝜀 𝜆 + 𝜔2 0
0 0 −V 𝜆 + 𝜔3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (𝜆 + 1)

⋅ (𝜆 + 𝜔3) [(𝜆 −
𝛽2Λ

𝜇
+ 𝜔1) (𝜆 + 𝜔2) −

𝜀𝛽1Λ

𝜇
] .

(9)

Clearly, there exist two roots 𝜆1 = −1 and 𝜆2 = −𝜔3, and
other roots satisfy

𝑓1 (𝜆) ≜ (𝜆 −
𝛽2Λ

𝜇
+ 𝜔1) (𝜆 + 𝜔2) −

𝜀𝛽1Λ

𝜇

= 𝜆
2

+ 𝑎1𝜆 + 𝑎2,

(10)

where

𝑎1 = 𝜔1 + 𝜔2 −
𝛽2Λ

𝜇
,

𝑎2 = 𝜔1𝜔2 −
Λ

𝜇
(𝛽2𝜔2 + 𝜀𝛽1) .

(11)

If 𝑅0 = Λ(𝜀𝛽1 + 𝜔2𝛽2)/𝜇𝜔1𝜔2 < 1, then 𝜔1 >

Λ𝜀𝛽1/𝜇𝜔2 + Λ𝛽2/𝜇 and 𝜔1𝜔2 > Λ𝜀𝛽1/𝜇 + (Λ𝛽2/𝜇)𝜔2. Clearly,
𝑎1, 𝑎2 > 0 and 𝑎1𝑎2 > 0. According to Hurwitz criterion, all
roots of 𝑓1(𝜆) have negative real parts. Hence, disease-free
equilibrium 𝑃0 is local asymptotical stability.

Next, on the stability of endemic equilibrium 𝑃
∗, we have

the result as follows.

Theorem 2. If 𝑅0 > 1, then endemic equilibrium 𝑃
∗ is locally

asymptotically stable.

Proof. By (7), the matrix of the linearization of model (3) at
equilibrium 𝑃

∗ is

𝐽 (𝑃
∗

)

= (

−𝛽1𝐼
∗

− 𝛽2𝐸
∗

− 1 −𝛽2𝑆
∗

−𝛽1𝑆
∗

𝛾

𝛽1𝐼
∗

+ 𝛽2𝐸
∗

𝛽2𝑆
∗

− 𝜔1 𝛽1𝑆
∗ 0

0 𝜀 −𝜔2 0
0 0 V −𝜔3

) .

(12)

The corresponding characteristic equation is

𝑓2 (𝜆) ≜ det (𝜆𝐼 − 𝐽 (𝑃
∗

))

= 𝜆
4

+ 𝑏1𝜆
3

+ 𝑏2𝜆
2

+ 𝑏3𝜆 + 𝑏4,

(13)
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where

𝑏1 = 𝛽1𝐼
∗

+ 𝛽2𝐸
∗

− 𝛽2𝑆
∗

+ 𝜔1 + 𝜔2 + 𝜔3 + 1,

𝑏2 = (𝜔1 + 𝜔2 + 𝜔3) (𝛽1𝐼
∗

+ 𝛽2𝐸
∗

+ 1)

− ((1+ 𝜔2 + 𝜔3) 𝛽2 + 𝜀𝛽1) 𝑆
∗

+ 𝜔1 (𝜔2 + 𝜔3)

+ 𝜔2𝜔3,

𝑏3 = (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝛽1𝐼
∗

+ 𝛽2𝐸
∗

)

− ((𝜔2𝜔3 + 𝜔2 + 𝜔3) 𝛽2 + 𝜀 (1+ 𝜔3) 𝛽1) 𝑆
∗

+ 𝜔1 (𝜔2𝜔3 + 𝜔2 + 𝜔3) + 𝜔2𝜔3,

𝑏4 = (𝜔1𝜔2𝜔3 − 𝜀𝛾V) (𝛽1𝐼
∗

+ 𝛽2𝐸
∗

) .

(14)

Denote𝐴 = (Λ(𝜀𝜔3𝛽1+𝜔2𝜔3𝛽2)−𝜇𝜔1𝜔2𝜔3)/𝜇(𝜔1𝜔2𝜔3−𝜀𝛾V).
Based on (6), we have

𝛽1𝐼
∗

+ 𝛽2𝐸
∗

=
𝜀𝛽1 + 𝜔2𝛽2

𝜀
𝐼
∗

= 𝐴. (15)

Thus,

𝑏1 = 𝐴 +
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔2 + 𝜔3 + 1,

𝑏2 = (𝜔1 + 𝜔2 + 𝜔3) 𝐴 +
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔2 + 𝜔3

+ 𝜔2𝜔3,

𝑏3 = (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴 + 𝜔2𝜔3 +
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
,

𝑏4 = (𝜔1𝜔2𝜔3 − 𝜀𝛾V) 𝐴.

(16)

The calculation of 𝑏
𝑖
, 𝑖 = 1, 2, 3, 4, is placed in Appendix A.

In order to obtain the local asymptotical stability of𝑃
∗, we

need to verify the following conditions according to Hurwitz
criterion: (i) 𝑏

𝑖
> 0 for 𝑖 = 1, 2, 3, 4; (ii) 𝑏1𝑏2 − 𝑏3 > 0; and (iii)

𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏
2
1𝑏4 > 0:

(i) Since 𝛽1, 𝛽2, 𝜔1, 𝜔2, 𝜔3 > 0 and 𝜔1𝜔2𝜔3 − 𝜀𝛾V > 0, it is
easy to get 𝑏1, 𝑏2, 𝑏3, 𝑏4 > 0.

(ii) For 𝑏1𝑏2 − 𝑏3, we have

𝑏1𝑏2 − 𝑏3 = (𝜔1 + 𝜔2 + 𝜔3) 𝐴
2

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝐴

+ (𝜔1 + 𝜔2 + 𝜔3) 𝐴

+
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴

+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝐴

+
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 𝜔2𝜔3)

+
𝜀𝜔1𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2

+
𝜀𝜔1𝜔2𝛽1 + 𝜀𝜔1𝜔2𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+

𝜀𝜔1𝜔
2
3𝛽1

𝜀𝛽1 + 𝜔2𝛽2

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2

+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1)

+ 𝜔2𝜔3 (𝜔2 + 𝜔3) .

(17)

Clearly, 𝑏1𝑏2 − 𝑏3 > 0.
(iii) Based on (16) and (ii), we have 𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏

2
1𝑏4 > 0.

Because the expression of 𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏
2
1𝑏4 is too

long, we place it inAppendix B. According toHurwitz
criterion, all roots of 𝑓2(𝜆) have negative real parts.
Hence, endemic equilibrium 𝑃

∗ is local asymptotical
stability.

4. Application of the Model

In this section, model (1) will be applied to analyze the
characteristics of EVD, which is equivalent to system (3).
In order to estimate its parameters and calculate the basic
reproduced number 𝑅0, we use the onset and death data of
EVD to fit the observed variables by least square method.

4.1. Data Sets. The 2014 Ebola outbreak began in Guinea.The
patient zero is a 2-year-old toddler named Emile Ouamouno,
who lived in the village ofMeliandou, sitting close to Guinea’s
borders with Sierra Leone and Liberia. The boy was infected
in December 2013 and it is not clear exactly how he got
infected [8]. In December, Emile had a fever, black stool, and
started vomiting. Four days later, on December 6, he was
dead. Within a month, so were his young sister, his mother,
and his grandmother.

In March 22, 2014, the Ministry of health of Guinea has
reported the acute infectious disease named EVD, which
began with fever, severe diarrhea, vomiting, and high case
fatality rate (59%). WHO publicly announced outbreak of
EVD on its web site on March 23; 49 cases and 29 deaths
were officially reported in March 22 [21]. By January 25,
2015, 2,917 reported cases of Ebola in Guinea were identified,
of which 1,910 individuals had died. From the first case in
December 1, 2013, to January 18, 2015, in Guinea, the Ebola
epidemics lasted 400 days, but the recorded data starting time
and evolution of the epidemic is March 22, 2014. Therefore,
the onset and death data were collected fromMarch 22, 2014,
to January 25, 2015 [22]; see Figures 2 and 3.

4.2. Least Square Method for Parameters Estimation. In this
subsection, we use the least square method to estimate the
parameters of model (1). The spread of EVD started in
December 2013, inwhich thewhole population ofGuineawas
11,745,000 in this year [23]. Based on the data sets (see Figures
2 and 3), we know that 𝐼(0) = 49, 𝑇(0) = 49 − 29 = 20, and
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Figure 2: Number of recognized infectious cases.
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Figure 3: Number of recognized death cases.
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Figure 4: Ebola disease-caused death rate of recognized infectious cases.

𝑆(0) = 11, 745, 000−49 = 11, 744, 951.Moreover, since Ebola
incubation period ranges from 5 to 12 days in most cases
[1], then we take 5 days as the incubation period. Therefore,
𝐸(0) = 37 (that is the reported infected cases at the fifth day
minus the reported infected cases at the first day).

In model (1), there are ten parameters that correspond to
the recruitment rate Λ, the natural and disease-caused death
rates 𝜇, 𝜇10, 𝜇20, and 𝜇30, the efficient contact rates in the
infected and the latent period 𝛽10 and 𝛽20, and the transfer
rates 𝜀0, V0, and 𝛾0. Among these parameters, parts of them
need to be fixed and others will be estimated as follows:

(P1) The recruitment rate Λ can be given by birth rate,
which is the total number of births per 1,000 of a
population in a year. Based on [24–26], the 2014 birth

rate of Guinea is 0.03602. Thus, Λ = (0.03602/365) ×

11, 744, 951 = 1, 159.

(P2) The natural death rate 𝜇 is typically expressed in
units of deaths per 1,000 individuals per year. Thus,
we use the natural death rate 𝜇 = 0.0097/365 =

2.657 × 10−5 of Guinea in 2013 [27]. For two disease-
caused death rates 𝜇10 in the latent period and 𝜇30 in
treated/recovery period, their values are smaller than
that of 𝜇20 in the infectious period. Thus, we assume
that 𝜇10 = 𝜇30 = 0. The rate 𝜇20 will be estimated.
In order to provide the value range of 𝜇20, we use the
method in which the accumulative death number is
divided by the accumulative cases.Then, it is obtained
that 0.5 ≤ 𝜇20 ≤ 0.8 (see Figure 4).



6 Computational and Mathematical Methods in Medicine

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Day

Ac
cu

m
ul

at
ed

 in
fe

ct
io

us
 p

op
ul

at
io

n

Observed infectious value
Estimated value

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

Day

Ac
cu

m
ul

at
ed

 d
ea

th
 p

op
ul

at
io

n

Observed death value
Estimated value

Figure 5: Real values and fitting values of the accumulative infectious cases and death cases.

(P3) In this paper, we consider that Ebola virus during the
latent and exposed period is contagious. In general,
the efficient contact rates 𝛽10 and 𝛽20 are different.
In order to reduce the risk of human-to-human
transmission, WHO raises the awareness of the risk
factors of Ebola infection and the protectivemeasures
[28, 29].Thus, we consider that 0 < 𝛽10 ≤ 𝛽20 < 1 and
all of them will be estimated.

(P4) Since Ebola incubation period ranges from 2 to 21
days (5–12 days in most cases) [1], the transfer rate 𝜀0
is set following the constraint 2 < 1/𝜀0 < 21; that is,
0.04761 < 𝜀0 < 0.5. For the transfer rates V0, we will
estimate it and let it satisfy 0 < V0 < 1.

(P5) Based on [2, 5], we know that the effective treated rate
3.5 < 1/𝛾0 < 10.7; that is, 0.093 < 𝛾0 < 0.2857.

Based on the conditions (P1)–(P5), parameters of model
(1) to be estimated are 𝛽10, 𝛽20, 𝜇20, 𝜀0, V0, and 𝛾0. We list their
estimated values in Table 1.

4.3. Numerical Simulations. Using the parameter values in
Table 1, numerical simulations of model (1), respectively, give
the comparison curves between the real values and fitting
values of the accumulative infectious cases and accumulative
death cases fromMarch 22, 2014, to January 25, 2015 [22]; see
Figure 5.

Through Figure 5, we observed that the EVD infection
still does not get the effective control. This point can be
confirmed by threshold value 𝑅0. Based on the estimated
values of parameters in Table 1, we have 𝑅0 = Λ(𝜀𝛽1 +

𝜔2𝛽2)/𝜇𝜔1𝜔2 = 4.16, where 𝛽
𝑖

= 𝛽
𝑖0/𝜇, 𝑖 = 1, 2. Since 𝑅0 > 1,

byTheorem 2, endemic equilibrium 𝑃
∗ of model (1) is locally

asymptotically stable. This indicates that EVD infection still
infects humans and will be endemic in Guinea without the
effective control measures.

Table 1: The estimated values of model parameters by least square
method (unit: year−1).

Parameters Definition Initial values Estimates

𝛽10

Contact rate in
infectious
period

5.0138 × 10−11 6.474 × 10−11

𝛽20

Contact rate in
latent and
exposed period

9.3133 × 10−8 5.685 × 10−9

𝜇20

Disease-caused
death rate in
infectious
period

0.5061 0.6647

𝜀0

Transfer rate
from latent and
exposed to the
infectious

0.4 0.0596

V0

Transfer rate
form the
infectious to
treatment state

0.5140 0.8613

𝛾0
Effective treated
rate 0.2 0.2999

4.4. Sensitivity and Uncertainty Analysis of 𝑅0. Because 𝑅0
is an important threshed value for the spread of EVD, we
perform uncertainty and sensitivity analysis of 𝑅0 in model
(1) using partial rank correlation coefficients (PRCCs) [30].
Based on (1), (2), and (5), we get the expression of 𝑅0 as
follows:

𝑅0 =
Λ (𝜀0𝛽10 + 𝛽20 (𝜇 + V0 + 𝜇20))

𝜇 (𝜇 + V0 + 𝜇20) (𝜇 + 𝜀0 + 𝜇10)
. (18)

Among all parameters of model (1), we only analyze the
influence of seven parameters in determining the magnitude
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Figure 6: PRCCs for the effect of six parameters on 𝑅0.

of 𝑅0 except the fixed numbers Λ, 𝜇, 𝜇10, and 𝜇30, which have
been discussed in Section 4.2. The ordering of these PRCCs
directly corresponds to the level of statistical influence, the
impact that uncertainty in the estimate of a parameter has
on the variability of 𝑅0. A positive PRCC value indicates
that an increase in that parameter leads to an increase in 𝑅0,
while a negative value shows that increasing that parameter
decreases 𝑅0. For the Ebola SEIT model, seven parameters
were significantly different from 0 (𝑝 value < 0.05). Among
these parameters, 𝛽10, 𝛽20, 𝜇20, and V0 have a positive
influence on 𝑅0, while 𝜀0 and 𝛾0 have a negative influence on
𝑅0; see Figure 6.

5. Conclusions

In this paper, we establish the SEIT model to analyze the
dynamical properties of EVD transmission in Guinea. One
of the reasons is that there is still no effective treatments for
EVD and the current response is only support treatment [31].
In particular, if parameters 𝛾0 = 0 or 𝛾0 ̸= 0, the SEIT model
will become the SEIR or SEIRS types.

The SEIT model is formed by four-dimensional differ-
ential equations. In order to understand the transmission
of Ebola virus, we discuss the local stability of the disease-
free equilibrium and the endemic equilibrium by basic
reproduction number𝑅0 < 1 and𝑅0 > 1. Since there exist ten
parameters in the expression of 𝑅0, it is important to estimate
the value of each parameter. By the least square method and
the recorded data in Guinea we obtain the estimation of
seven parameters except for four fixed constants in Table 1.
In Table 1, we observe that the effective treated rate is only
0.2999, and the disease-caused death rate in infectious period
is 0.6647.Thus, it is urgent to provide the effective vaccines to
cure the infectious people and protect the susceptible.

With suitable parameter values, we obtain estimation
value of 𝑅0. The result shows that the Ebola virus still infects
people in Guinea and does not disappear in short time.
Without the effective control measures, the EVD may be

endemic in Guinea. By the PRCCs method, we analyze the
sensitivity and uncertainty of 𝑅0. The result shows that the
rates of the efficient contact, especially in latent and exposed
period, lead to the significant increase in 𝑅0 (see Figure 6).

On the other hand, it would be interesting to study more
properties of the present model. In particular, a study involv-
ing both stability properties of pulse vaccination strategy and
global stability is worth pursuing. We leave these for future
consideration.

Appendices

A. Calculation of 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑏
4

By (6), (16), and the definition of 𝐴, we obtain

𝑏1 = 𝛽1𝐼
∗

+ 𝛽2𝐸
∗

− 𝛽2𝑆
∗

+ 𝜔1 + 𝜔2 + 𝜔3 + 1

= 𝐴 − 𝛽2
𝜔1𝜔2

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔1 + 𝜔2 + 𝜔3 + 1

= 𝐴 + (𝜔1 −
𝜔1𝜔2𝛽2

𝜀𝛽1 + 𝜔2𝛽2
) + 𝜔2 + 𝜔3 + 1

= 𝐴 +
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔2 + 𝜔3 + 1.

(A.1)

Calculating 𝑏2, we have

𝑏2 = (𝜔1 + 𝜔2 + 𝜔3) (𝐴 + 1)

− ((1+ 𝜔2 + 𝜔3) 𝛽2 + 𝜀𝛽1) 𝑆
∗

+ 𝜔1 (𝜔2 + 𝜔3)

+ 𝜔2𝜔3

= (𝜔1 + 𝜔2 + 𝜔3) (𝐴 + 1)

− ((1+ 𝜔2 + 𝜔3) 𝛽2 + 𝜀𝛽1)
𝜔1𝜔2

𝜀𝛽1 + 𝜔2𝛽2

+ 𝜔1 (𝜔2 + 𝜔3) + 𝜔2𝜔3

= (𝜔1 + 𝜔2 + 𝜔3) (𝐴 + 1) +
𝜀𝜔1𝜔3𝛽1 − 𝜔1𝜔2𝛽1

𝜀𝛽1 + 𝜔2𝛽2

+ 𝜔2𝜔3

= (𝜔1 + 𝜔2 + 𝜔3) 𝐴

+
𝜔1 (𝜀𝛽1 + 𝜔2𝛽2) + 𝜀𝜔1𝜔3𝛽1 − 𝜔1𝜔2𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔2

+ 𝜔3 + 𝜔2𝜔3

= (𝜔1 + 𝜔2 + 𝜔3) 𝐴 +
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+ 𝜔2

+ 𝜔3 + 𝜔2𝜔3.

(A.2)
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For 𝑏3, we have

𝑏3 = (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝛽1𝐼
∗

+ 𝛽2𝐸
∗

)

− ((𝜔2𝜔3 + 𝜔2 + 𝜔3) 𝛽2 + 𝜀 (1+ 𝜔3) 𝛽1) 𝑆
∗

+ 𝜔1 (𝜔2𝜔3 + 𝜔2 + 𝜔3) + 𝜔2𝜔3

= (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝐴 + 1)

− (𝜔2𝜔3𝛽2 + 𝜀𝜔3𝛽1 + (𝜔2 + 𝜔3) 𝛽2 + 𝜀𝛽1) 𝑆
∗

+ 𝜔1𝜔2𝜔3

= (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝐴 + 1)

− ((𝜔2 + 𝜔3) 𝛽2 + 𝜀𝛽1)
𝜔1𝜔2

𝜀𝛽1 + 𝜔2𝛽2

= (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴 + 𝜔2𝜔3 +
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
.

(A.3)

Lastly, it is easy to get

𝑏4 = (𝜔1𝜔2𝜔3 − 𝜀𝛾V) (𝛽1𝐼
∗

+ 𝛽2𝐸
∗

)

= (𝜔1𝜔2𝜔3 − 𝜀𝛾V) 𝐴.

(A.4)

B. Calculation of 𝑏
3
(𝑏
1
𝑏
2

− 𝑏
3
) − 𝑏
2

1
𝑏
4

By calculating, we have

𝑏3 (𝑏1𝑏2 − 𝑏3) = (𝜔1 + 𝜔2 + 𝜔3) (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴
3
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2
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+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝜔2𝜔3𝐴

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝐴

+
𝜀𝜔1𝜔3𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2 𝐴

+
𝜀
2
𝜔
2
1𝜔3𝛽

2
1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴 + 𝐶1𝐶2,

(B.1)

where

𝐶1 = 𝜔2𝜔2 +
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
,

𝐶2 =
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 𝜔2𝜔3)

+
𝜀𝜔1𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2

+
𝜀𝜔1𝜔2𝛽1 + 𝜀𝜔1𝜔2𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
+

𝜀𝜔1𝜔
2
3𝛽1

𝜀𝛽1 + 𝜔2𝛽2

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2

+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1)

+ 𝜔2𝜔3 (𝜔2 + 𝜔3) .

(B.2)

On the other hand,

𝑏
2
1𝑏4 = 𝜔1𝜔2𝜔3𝐴

3
+ 2

𝜀𝜔1𝛽1
𝜀𝛽1 + 𝜔2𝛽2

𝜔1𝜔2𝜔3𝐴
2

+ 2 (𝜔2 + 𝜔3 + 1) 𝜔1𝜔2𝜔3𝐴
2

+ (𝜔2 + 𝜔3 + 1)
2

𝜔1𝜔2𝜔3𝐴

+ (
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
)

2
𝜔1𝜔2𝜔3𝐴
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+ 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 1) 𝜔1𝜔2𝜔3𝐴

− 𝜀𝛾V𝐴
3

− 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜀𝛾V𝐴

2

− 2 (𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴
2

− (𝜔2 + 𝜔3 + 1)
2

𝜀𝛾V𝐴

− (
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
)

2
𝜀𝛾V𝐴

− 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴.

(B.3)

Therefore, we further have

𝑏3 (𝑏1𝑏2 − 𝑏3) − 𝑏
2
1𝑏4 = (𝜔1 + 𝜔2 + 𝜔3) (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴
3

− 𝜔1𝜔2𝜔3𝐴
3

+
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝜔1 + 𝜔2

+ 𝜔3) 𝐴
2

− 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜔1𝜔2𝜔3𝐴

2
+ (𝜔2 + 𝜔3)

⋅ (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝜔2 + 𝜔3

+ 1) 𝐴
2

− 2 (𝜔2 + 𝜔3 + 1) 𝜔1𝜔2𝜔3𝐴
2

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

2

+ (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝜔1 + 𝜔2 + 𝜔3) 𝐴
2

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴

2
+ (𝜔1 + 𝜔2 + 𝜔3)

⋅ 𝜔2𝜔3𝐴
2

+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴 + 𝜔2𝜔3 (𝜔2 + 𝜔3) (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴 − (𝜔2 + 𝜔3 + 1)
2

𝜔1𝜔2𝜔3𝐴

+
𝜀𝜔1𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2 (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴 − (
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
)

2
𝜔1𝜔2𝜔3𝐴

+
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 𝜔2𝜔3) (𝜔2𝜔3

+ 𝜔1 (𝜔2 + 𝜔3)) 𝐴

+
𝜀𝜔1𝜔2𝛽1 + 𝜀𝜔1𝜔2𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3))

⋅ 𝐴 − 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 1) 𝜔1𝜔2𝜔3𝐴

+
𝜀𝜔1𝜔

2
3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜔2𝜔3𝐴 + (𝜔1 + 𝜔2 + 𝜔3)

⋅ 𝜔2𝜔3𝐴 +
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝜔2𝜔3𝐴

+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝜔2𝜔3𝐴

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝐴

+
𝜀𝜔1𝜔3𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2 𝐴

+
𝜀
2
𝜔
2
1𝜔3𝛽

2
1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴 + 𝜀𝛾V𝐴

3
+ 2

⋅
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜀𝛾V𝐴

2
+ 2 (𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴

2

+ (𝜔2 + 𝜔3 + 1)
2

𝜀𝛾V𝐴 + (
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
)

2
𝜀𝛾V𝐴

+ 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴 + 𝐶1𝐶2

>
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

2

+ (𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) (𝜔1 + 𝜔2 + 𝜔3) 𝐴
2

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴

2
+ (𝜔1 + 𝜔2 + 𝜔3)

⋅ 𝜔2𝜔3𝐴
2

+
𝜀𝜔1𝜔

2
3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2𝜔3 + 𝜔1 (𝜔2 + 𝜔3)) 𝐴

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴

+
𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜔2𝜔3𝐴 + (𝜔1 + 𝜔2 + 𝜔3)

⋅ 𝜔2𝜔3𝐴 +
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝜔2𝜔3𝐴
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+ (𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝜔2𝜔3𝐴

+
𝜀𝜔1𝜔3𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3) (𝜔2 + 𝜔3 + 1) 𝐴

+
𝜀𝜔1𝜔3𝛽1 (𝜀𝜔1𝛽1 + 𝜀𝜔1𝜔3𝛽1)

(𝜀𝛽1 + 𝜔2𝛽2)
2 𝐴

+
𝜀
2
𝜔
2
1𝜔3𝛽

2
1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔1 + 𝜔2 + 𝜔3) 𝐴 + 𝜀𝛾V𝐴

3
+ 2

⋅
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
𝜀𝛾V𝐴

2
+ 2 (𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴

2

+ (𝜔2 + 𝜔3 + 1)
2

𝜀𝛾V𝐴 + (
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
)

2
𝜀𝛾V𝐴

+ 2
𝜀𝜔1𝛽1

𝜀𝛽1 + 𝜔2𝛽2
(𝜔2 + 𝜔3 + 1) 𝜀𝛾V𝐴 + 𝐶1𝐶2 > 0.

(B.4)
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