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Objective To predict fetal growth restriction (FGR) by whole-

genome promoter profiling of maternal plasma.

Design Nested case–control study.

Setting Hospital-based.

Population or Sample 810 pregnancies: 162 FGR cases and 648 controls.

Methods We identified gene promoters with a nucleosome

footprint that differed between FGR cases and controls based on

maternal plasma cell-free DNA (cfDNA) nucleosome profiling.

Optimal classifiers were developed using support vector machine

(SVM) and logistic regression (LR) models.

Main outcome measures Genes with differential coverages in

promoter regions through the low-coverage whole-genome

sequencing data analysis among FGR cases and controls. Receiver

operating characteristic (ROC) analysis (area under the curve

[AUC], accuracy, sensitivity and specificity) was used to evaluate

the performance of classifiers.

Results Through the low-coverage whole-genome sequencing data

analysis of FGR cases and controls, genes with significantly

differential DNA coverage at promoter regions (�1000 to

+1000 bp of transcription start sites) were identified. The non-

invasive ‘FGR classifier 1’ (CFGR1) had the highest classification

performance (AUC, 0.803; 95% CI 0.767–0.839; accuracy, 83.2%)

was developed based on 14 genes with differential promoter

coverage using a support vector machine.

Conclusions A promising FGR prediction method was successfully

developed for assessing the risk of FGR at an early gestational age

based on maternal plasma cfDNA nucleosome profiling.

Keywords Cell-free DNA, classifier, fetal growth restriction, low-

coverage whole-genome sequencing, non-invasive prediction.

Tweetable abstract A promising FGR prediction method was

successfully developed, based on maternal plasma cfDNA

nucleosome profiling.

Linked article This article is commented on by S Arora, p. 467 in

this issue. To view this mini commentary visit https://doi.org/10.

1111/1471-0528.16329.

Please cite this paper as: Xu C, Guo Z, Zhang J, Lu Q, Tian Q, Liu S, Li K, Wang K, Tao Z, Li C, Lv Z, Zhang Z, Yang X, Yang F. Non-invasive prediction

of fetal growth restriction by whole-genome promoter profiling of maternal plasma DNA: a nested case–control study. BJOG 2021;128:458–466.

*These authors contributed to this work equally.

458 ª 2020 The Authors. BJOG: An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd on behalf of
Royal College of Obstetricians and Gynaecologists.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1111/1471-0528.16292

www.bjog.org
Original Article

Genomics

https://orcid.org/0000-0002-5448-6734
https://orcid.org/0000-0002-5448-6734
https://orcid.org/0000-0002-5448-6734
mailto:
mailto:
mailto:
https://doi.org/10.1111/1471-0528.16329
https://doi.org/10.1111/1471-0528.16329
https://doi.org/10.1111/1471-0528.16292
https://doi.org/10.1111/1471-0528.16292


Introduction

Fetal growth restriction (FGR) refers to the fetus that fails to

reach its biological growth potential. The most widely used

definition of FGR is an estimated fetal weight (EFW) that is

less than the 10th percentile for gestational age.1 It is respon-

sible for 30% of all stillbirths and is associated with increased

perinatal mortality and morbidity.2 FGR is usually diagnosed

by ultrasound in the third trimester. Early diagnosis might

increase the likelihood of successful treatment, minimise

risks of intrauterine hypoxia and preterm birth. There are

maternal serum markers and Dopplers that could be used in

screening or prediction for FGR during the first and the sec-

ond trimester3; however, they are not considered accurate in

isolation and need to be combined and examined risk factors

to increase their clinical utility. More reliable biomarkers for

early prediction of FGR are indeed needed and would allow

for early identification of fetuses that are likely to develop

FGR and might help to test hypothetical interventions for

primary prevention.

Since the discovery of fetal DNA present in maternal

plasma cell-free DNA (cfDNA) in 1997, the utility of

cfDNA has been well-demonstrated by the development of

non-invasive prenatal screening tests for fetal aneuploidy,

non-invasive sequencing of fetal genomes and non-invasive

diagnostics for common monogenic diseases.4,5 Recently,

new methods have been developed to determine the tissue

origin of cfDNA through nucleosome positioning and

methylation footprint analysis.6–8 Snyder et al.7 produced a

map of nucleosome occupation in the whole genome via

in-depth sequencing of cfDNA isolated from circulating

plasma. Based on the nucleosome signal near the transcrip-

tion start sites (TSS), a large difference between genes with

high and low expression levels was observed; moreover, the

intensity of their footprints upstream of the TSS was

strongly related to the expression of transcriptionally active

genes.6–8

In pregnancies, the majority of cfDNA is derived from

maternal haematopoietic cells and placental trophoblasts.9

More importantly, pregnant complications have a root

cause in the placenta, and involve the maternal immune

system.10,11 Therefore, we hypothesised that cfDNA frag-

ment distribution patterns might carry information regard-

ing source tissues of origin, particularly placental

trophoblasts and maternal haematopoietic cells, and that

global profiling of cfDNA fragments in promoter regions

can be used to identify biomarkers that can predict FGR.

The aim of the study is to identify genes with differential

coverages in promoter regions (defined as –1000 to

+1000 bp around TSS), through the low-coverage whole-

genome sequencing NIPT data analysis among FGR cases

and controls, and to develop high-performance FGR classi-

fiers using machine-learning methods.

Methods

Study rationale
Cell-free DNA fragments are related to the DNA released by

apoptotic cells after enzyme processing.12 Currently, cfDNA

has been proven to be able to reflect the expression status of

its tissue of origin.7 In actively transcribed genes, the pro-

moter region (�1000 to +1000 bp of TSS) showed a reduc-

tion in nucleosome occupancy. By contrast, the promoter

coverage of cfDNA increased, reflecting the denser nucleo-

some packaging of repressed genes.13–15 In this study, we

detected promoter profiles using low-coverage whole-gen-

ome sequencing data of non-invasive prenatal test (NIPT).

By comparing the difference of promoter coverage between

FGR cases and controls, we determined whether genes with

differential promoter coverage are able to be used as

biomarkers for screening FGR. Based on these variables, we

then developed high-performance classifiers for FGR predic-

tion using multiple machine-learning methods.

Study design and participants
This nested case–control study investigated whether cfDNA

in maternal blood can be used to identify FGR. The study

was approved by the Internal Ethics Committee of Nanfang

Hospital, Southern Medical University. Samples of NIPT

data were collected from patients at the Nanfang Hospital

of Southern Medical University (SMU), the Third Affiliated

Hospital of Sun Yat-sen University (SYSU), and Cangzhou

People’s Hospital. There was no patient or public involve-

ment in the study and no core outcome set has been used.

From three independent Chinese institutions, we collected

3600 samples of routine low-coverage whole-genome

sequencing NIPT data of singleton pregnant women at 12+0–
27+6 weeks, in addition to general clinical information. We

retrospectively analysed the data, including results of ultra-

sound during pregnancy and final birthweight, to derive an

FGR group and a control group. The following exclusion cri-

teria were used in the patient selection: (1) gestational age at

the time of blood extraction of <12 weeks or more than

28 weeks; (2) aneuploidy and fetus structural abnormality;

(3) over- or underweight, with tobacco or alcohol exposure;

(4) FGR manifestations noted when drawing blood during

the previous ultrasound screening. Referring to the expert

consensus16 and based on the Chinese birthweight refer-

ence,17 FGR group classification was based on:

� birthweight ≤10th percentile, plus

� prenatal evidence of uterine placental insufficiency,

defined as umbilical or uterine artery pulsatility index (PI)

>95th centile or absent end-diastolic flow in the umbilical

artery (<32 weeks’ gestation) or cerebroplacental ratio

(CPR; calculated as the fetal middle cerebral artery PI

divided by the umbilical artery PI) <5th centile (≥32 weeks’

gestation) and/or
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� abdominal circumference (AC) <10th centile or

� birthweight <3rd centile irrespective of the prenatal ultra-

sonic Doppler status.

Control samples were collected from women with an

appropriately grown fetus (birthweight 10–90th percentile)

who subsequently delivered appropriately grown fetuses at

term without obstetric complications, with a gestational age

at blood collection and fetal gender and parity matched to

the FGR cases, without gestational hypertension (blood pres-

sure >140/90 mm Hg), pre-eclampsia (proteinuria or bio-

chemical abnormalities), autoimmune disorders and

gestational diabetes mellitus. After exclusion, 2965 samples

were included for further selection, of which 162 were FGR.

In the rest of samples, we chose controls to match FGR cases.

According to the gestational week in which the maternal

plasma sample was extracted, and the fetal gender, four con-

trol cases were randomly selected to match each FGR case.

Ultimately, 810 samples (162 FGR and 648 controls) were

included and the samples from the same hospital were

defined as one cohort. They were divided into a Nanfang

Hospital training cohort (285 samples from Nanfang Hospi-

tal), an internal validation cohort (125 samples from Nan-

fang Hospital), an external validation cohort 1 (190 samples

from the Third Affiliated Hospital of Sun Yat-sen University)

and an external validation cohort 2 (210 samples from

Cangzhou People’s Hospital). In the discovery stage, we

identified the differential plasma cell-free nucleosome foot-

prints of the FGR and control groups. We then used support

vector machine (SVM) and logistic regression (LR) models

to develop a classifier based on genes with differentially cov-

erages (training stage). Receiver operating characteristic

(ROC) analysis (AUC, accuracy, sensitivity and specificity)

was used to evaluate the performance of each classifier during

the training stage. Finally, we devised optimal classifiers and

validated their performance in one internal validation cohort

and two external validation cohorts (validation stage).

Cell-free DNA isolation and whole-genome
sequencing
First, 5 ml of maternal peripheral blood was collected into

EDTA-containing blood tubes and centrifuged at 1600 9 g

for 10 min at 4°C. The plasma was transferred to Eppen-

dorf tubes and centrifuged again at 16 000 9 g for 10 min

at 4°C to remove residual cells. The plasma aliquots were

then carefully transferred to fresh Eppendorf tubes. For

each sample, cfDNA was extracted from 700 microlitres of

plasma using the Circulating DNA from Plasma Kit follow-

ing the manufacturer’s instructions (GenMag Biotech, Bei-

jing, China), or from 1.2 ml of plasma using the QIAamp

DSP Circulating Nucleic Acid Kit (Qiagen, Hilden, Ger-

many), and was stored at �80°C before testing.

Sequencing libraries were prepared according to the man-

ufacturer’s specifications. The DNA libraries were quantified

with the Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA,

USA). The size of the libraries was verified using the Agilent

High Sensitivity DNA Kit and a 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA, USA). The libraries from differ-

ent samples were pooled and sequenced on the NextSeq500

instrument (Illumina, San Diego, CA, USA) or the Ion Pro-

ton sequencing platform (Thermo Fisher Scientific, Wal-

tham, MA, USA). The DNA sequencing performed in this

study had an average depth of coverage of at least 0.39.

Low-coverage whole-genome sequencing data
processing
Raw reads were aligned to the hg19 human reference gen-

ome using bwa-mem,18 and PCR duplicates were removed

using the rmdup function of SAM tools (ver. 1.2).19 Gene

information was obtained from the UCSC database using

RefSeq.20 For each transcript, the region from �1000 to

+1000 bp around the transcriptional start site, defined as

the primary transcription start site (pTSS), was identified.

Read counts for each base at the pTSS were calculated from

the aligned BAM files using SAM tools. The read coverage

at the pTSS was extracted from the aligned BAM files using

BEDtools (ver. 2.17.0). As the number of DNA sequencing

reads between different samples was different, therefore, we

used a similar normalised method with the reads per kilo-

base per million mapped reads (RPKM) method to nor-

malise the raw coverages of cfDNA before comparison,

using the following formula:

Normalized promoter profiles ¼
ð109 � cfDNA coverage aroundTSSÞ=
ðlength� Totally mapped readsÞ

Length ¼ 2000; the promoter regions defined as� 1000 to
þ 1000 bp at TSS:

Classifier construction procedure
To develop classifiers for predicting pregnancies with FGR,

a workflow was developed that included a discovery stage,

a training stage and a validation stage (Figure 1). In the

discovery stage, 57 FGR cases and 57 gestational age-

matched controls were selected and the coverage at the

pTSSs was compared between the two groups. P-values

were calculated using the rank sum test and adjusted

according to the false discovery rate (FDR) using the Ben-

jamini–Hochberg procedure; an FDR ≤0.1 and |log2 fold

change| 1.5 were cut-offs for transcripts with significantly

differential coverage at the pTSSs. Hierarchical clustering

was applied to the coverage data using the average-linkage

clustering algorithms in the Cluster (ver. 3.0) programme.

A cluster graph was plotted using heatmap in R software

(R Development Core Team, Vienna, Austria).
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In the training stage, an SVM and LR model were used

to develop promoter profiling-based classifiers to differenti-

ate FGR cases from healthy controls. We used the linear

kernel of SVM with the default setting. To develop classi-

fiers, a stepwise method was used to identify promoter

combinations from among genes showing differential cov-

erage at the pTSSs. To assess the extent of over-fitting in

predictions, the robustness of the classifiers was assessed

using leave-one-out cross-validation (LOOCV) in the train-

ing cohorts. Briefly, each subject in the training cohort was

excluded from the training model in turn, with the remain-

ing subjects all being entered into it. The trained model

was then used to predict the class (pregnancies with com-

plications or healthy controls) of the withheld subject. This

procedure continued until all subjects in the training

cohort were classified. ROC analysis (AUC, accuracy, sensi-

tivity and specificity) was used to evaluate the performance

of each classifier. The classifier that achieved the highest

performance, i.e. the one with the largest AUC in the train-

ing cohort, was defined as the optimal classifier.

In the validation stage, the performance of the classifier

was further validated in three independent validation cohorts,

including one internal cohort and two external cohorts. The

function in the pROC package of R software was used to

compare the performance of the optimal classifier developed

based on SVM and that developed based on LR.

Results

Cohort demographic and pregnancy characteristics
To develop classifiers to predict FGR, we included 810

samples (162 FGR cases and 648 healthy pregnancies) from

three independent Chinese institutions: Nanfang Hospital,

the Third Affiliated Hospital of Sun Yat-sen University and

Cangzhou People’s Hospital (Figure 1). This case–control
study included four cohorts: a training cohort, an internal

Figure 1. Flowchart of FGR classifier development based on low-coverage whole-genome sequencing. From three independent Chinese institutions,

we collected 3600 samples of routine low-coverage whole-genome sequencing NIPT data from singleton pregnant women at 12+0–27+6 weeks, in

addition to general clinical information. We used data from retrospective patient follow-up reports, including pregnancy outcomes and final

birthweight, to identify FGR cases and controls. According to gestational age at the time of maternal plasma sample extraction and fetal gender, four

control cases were randomly selected to match each FGR case. Ultimately, we included 810 samples (162 FGR and 648 controls), which were divided

into a Nanfang Hospital training cohort (285 samples from Nanfang Hospital), an internal validation cohort (125 samples from Nanfang Hospital), an

external validation cohort 1 (190 samples from the Third Affiliated Hospital of Sun Yat-sen University) and external validation cohort 2 (210 samples

from Cangzhou People’s Hospital). In the discovery stage, gene promoters with a nucleosome footprint that differed between 57 FGR cases and 57

controls from Nanfang Hospital training cohort were identified. In the training stage, classifiers were developed via support vector machine (SVM)

and logistic regression (LR) models, based on the genes with differentially coverages between the 57 FGR cases and 228 controls. In the validation

stage, the optimal classifiers were further validated using the three validation cohorts.
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validation cohort and two external cohorts. The demo-

graphic and pregnancy details of the cohort are shown in

Tables S1 and S2.

Profiling of cfDNA from FGR and healthy
pregnancies
The transcriptional activity of genes varies according to

nucleosome occupancy at promoter regions, with decreased

occupancy at the pTSS of the active genes. In addition, a

study has found a relative cfDNA loss at transcription termi-

nation sites (TTS) with age.21 Hence, we performed whole-

genome sequencing to profile the cfDNA from 57 FGR cases

and 57 healthy pregnancies of the Nanfang Hospital training

cohort. To identify nucleosome profile changes in various

gene regions, we computed the average cfDNA signals across

all genes relative to the TSS and TTS of the genes. We

observed typical nucleosome-depleted regions (NDRs) at the

TSS, which are also commonly observed in MNase assays. In

the promoter and TSS regions, we found decreased cfDNA

signals in FGR cases (Figure 2).

Promoter profiling of cfDNA revealed FGR-
associated patterns
In the discovery stage, 57 FGR cases and 57 gestational

age-matched controls were compared to identify genes with

significantly differential coverage in order to develop classi-

fiers for predicting FGR. In total, we found 103 gene tran-

scripts with significantly differential coverage, including 46

transcripts with up-regulated coverage and 57 with down-

regulated coverage (Figure 3A). Unsupervised clustering

analyses based on gene coverage revealed distinct coverage

patterns between FGR and their controls (Figure 3B).

Classifier development and validation for FGR
prediction
In the training stage, we applied the SVM and the LR

model to develop classifiers for predicting pregnancies at

risk of FGR. Each gene combination created with the SVM

or LR model was defined as a single classifier. We used

ROC analysis to determine the sensitivity, specificity, accu-

racy and AUC of the FGR classifiers. Among all combina-

tions, a 14-gene combination (TCHH, ST5, CKB, KNOP1,

NOS2, KRTAP9-9, ARHGAP15, SLC4A10, HMGB2,

SEPT11, ZKSCAN5, GPAT4, PHPT1, FANCC) achieved the

highest classification performance after LOOCV (AUC,

0.800; 95% CI 0.740–0.861; accuracy, 81.8%) in the SVM

model (FGR classifier 1, CFGR1), and a 12-gene combina-

tion (TCHH, ST5, CKB, NOS2, KRTAP9-9, ARHGAP15,

SLC4A10, HMGB2, SEPT11, ZKSCAN5, GPAT4, FANCC)

achieved the highest performance after LOOCV (AUC,

0.776; 95% CI 0.713–0.840; accuracy, 81.1%) in the LR

model (FGR classifier 2, CFGR2) (Table 1). The probability

of FGR detection by CFGR2 was calculated for each patient

using a formula involving these 12 genes weighted by their

regression coefficient:

CFGR2¼�7:26984þ1:763948�TCHHþ0:625479�ST5

þ1:193401�CKBþ0:828977�NOS2þ0:569433

�KRTAP9�9þ1:154746�ARHGAP15þ0:942763

�SLC4A10þ1:677302�HMGB2þ1:344744

�SEPT11�0:64363�ZKSCAN5þ1:481395

�GPAT4�0:44377�FANCC

CFGR1 and CFGR2 were therefore subsequently validated

using the internal validation cohort and two external vali-

dation cohorts. CFGR1 had an AUC of 0.830 (0.743–0.917),
0.780 (0.700–0.859) and 0.809 (0.739–0.880) in the internal

cohort and two external validation cohorts, respectively.

CFGR2 had an AUC of 0.790 (0.694–0.886), 0.737 (0.655–
0.819) and 0.729 (0.652–0.807) in the internal cohort and

Figure 2. Differences in local nucleosome profiles between fetal

growth restriction (FGR) and controls. Cell-free DNA (cfDNA) signals in

transcription start sites (TSS) and transcription termination sites (TTS)

regions decreased in FGR cases. The red line represents mean average

cfDNA signals of controls and the red shadow represents its standard

error of mean. The green line represents mean average cfDNA signals

of FGR cases and the green shadow represents its standard error of

mean. (A) Average cfDNA signals at TSS regions. (B) Average cfDNA

signals at TTS regions.
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two external validation cohorts, respectively (Figure 4,

Table 1). By using the functions in the pROC package of R

software to compare the performance of the two classifiers,

the results show that the performance of CFGR1 is better

than that of CFGR2 (P < 0.001; Table 1).

Performance of CFGR1 at different gestational weeks
The CFGR1 was selected to predict FGR in 110 samples (22

FGR) collected in the first trimester and 700 samples (140

FGR) of second trimester, respectively, to reach an AUC of

0.839 (0.744–0.933) and 0.797 (0.757–0.836). The sensitivity
was 77.3 and 75.0%, and the specificity was 90.4 and 84.3%,

respectively (Table S3). The CFGR1 performed similarly in

the first and second trimesters, suggesting that the predictive

performance of the classifier is stable and that FGR predic-

tion can be started as early as 12 weeks of gestational age.

Discussion

Main findings
In recent years, cfDNA-based NIPT for fetal chromosomal

aneuploidies has become the first successful application of

cfDNA and has quickly been transformed into clinical prac-

tice. The success of the NIPT has aroused global interest in

using cfDNA in liquid biopsies for cancer. Snyder et al.7

found cfDNA could reflect the expression status of its tissue

of origin. Chan et al.22 found that pregnant maternal plasma

cfDNA fragment end sites are specific to their placental ori-

gin. We posited that the NIPT data might provide useful

information for placental-related complications, and for the

first time assessed the early prediction of FGR in this study.

Specific nucleosome profiles were seen in the TSS and TTS of

genes in FGR pregnancies (Figure 2), and 103 genes with sig-

nificantly differential coverage at promoter regions were

identified by comparing the cfDNA signals between FGR

pregnancies and their matched controls. Finally, we success-

fully developed two high-performance classifiers, based on

SVM and LR, for predicting the risk of FGR based on mater-

nal plasma cfDNA nucleosome profiling. For CFGR1, a 14-

gene combination (TCHH, ST5, CKB, KNOP1, NOS2,

KRTAP9-9, ARHGAP15, SLC4A10, HMGB2, SEPT11,

ZKSCAN5, GPAT4, PHPT1, FANCC) achieved the highest

performance and predicted FGR successfully in 83.2% of

cases (AUC, 0.803, 95% CI 0.767–0.839).

Figure 3. Gene transcripts with differential read coverage at transcription start sites (TSS). (A) Volcano plots of gene transcripts with differential read

coverage at the TSS, as detected by whole-genome sequencing (|Log2 fold change| ≥1.5 and FDR <0.1). Blue blots represent genes with up-regulated

promoter read depth coverage, red blots represent genes with down-regulated promoter read depth coverage, and green blots represent genes with

no significant difference. (B) Heat map of the z-scores of promoters with differential read coverage.

Table 1. Performance of ideal FGR classifiers

Classifiers SVM LR P-value

Cohort AUC (95% CI) Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC (95% CI) Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Training 0.800 (0.740–0.861) 81.8 77.1 82.9 0.776 (0.713–0.840) 81.1 71.9 83.3 0.160

Internal 0.830 (0.743–0.917) 84.8 80.0 86.0 0.790 (0.694–0.886) 83.2 72.0 86.0 0.199

External-1 0.780 (0.700–0.859) 83.7 68.4 87.5 0.737 (0.655–0.819) 76.8 68.4 78.9 <0.001

External-2 0.809 (0.739–0.880) 83.8 76.2 85.7 0.729 (0.652–0.807) 75.2 69.0 76.8 <0.001

All 0.803 (0.767–0.839) 83.2 75.3 85.2 0.757 (0.719–0.795) 78.9 70.4 81.0 <0.001
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Strengths and limitations
Our study sample size was large, comprising 162 cases of

FGR and 648 controls. Furthermore, our prediction model is

simple, can be applied during the early stages of pregnancy

and only requires the NIPT data obtained during screening

for chromosomal abnormalities, which is also performed in

the first and second trimester; this would enable the testing

of future hypothesised preventive interventions.

However, our study also had some limitations. First, it

used a retrospective design, which is more prone to statistical

over-fitting and overstating of performance compared with a

prospective design. In neonates considered appropriate for

gestational age (AGA), there was a subgroup of normal

weight neonates with features of intrauterine growth restric-

tion due to placental dysfunction.23 Another limitation is

that the study was performed without including the above-

mentioned FGR, limiting the interpretation and universality

of our results to the growth restriction of small for gesta-

tional age (SGA). Prospective studies including pregnant

women with a singleton pregnancy in the first trimester are

now needed to validate the prediction model further. In

addition, only the TSSs of coding genes were included to

construct the classifiers. Recently, by searching a panel of

microarray assays, pregnancy-associated, placenta-specific

microRNAs (miRNAs) in the plasma of pregnant women

have been identified with a potential regulatory role in

FGR.24–26 In future studies, analysis of the TSSs of coding

genes and noncoding miRNAs in combination may yield a

model with an even higher positive predictive value. Further-

more, a large number of prospective studies will have to be

performed before the classifiers developed herein can be used

as diagnostic or screening tests in clinical trials.

Interpretation
Currently, it is difficult to block or delay the progress of

FGR via management or treatment in the second and third

trimesters; the course of the disease can only be observed

and monitored, while also prolonging the gestation as

much as possible to avoid the occurrence of severe fetal

hypoxia, acidosis or even death in the uterus. FGR fetuses

exhibit catch-up growth after birth and usually reach nor-

mal size in childhood. However, there may still be a risk of

long-term neurodevelopmental abnormalities and cognitive

impairment. Therefore, many researchers focus on early

screening and prediction of FGR; if fetuses that will

develop FGR can be identified during the first trimester

(during placental formation), even though there are cur-

rently no effective treatments to control FGR, early identifi-

cation will allow testing of hypothetical interventions

aiming at its primary prevention.

Ultrasound and serum markers have long been the focus

of research to predict FGR. Placental abnormalities that

result in poor placental insufficiency are the most common

pathology associated with FGR and the main cause, and an

abnormal uterine arterial blood flow velocity waveform

indicates insufficient recasting of the uterine spiral artery.

Unfortunately, the sensitivity of uterine arterial blood flow

as a predictor of FGR in the first and second trimesters of

pregnancy is low.27,28 Maternal characteristics, mean arte-

rial pressure (MAP), placental growth factor (PIGF) and

soluble fms-like tyrosine kinase 1 (sFlt-1) have also been

used as predictors of FGR.29–31 Compared with the detec-

tion rate of maternal characteristics (a priori risk), MAP,

Doppler of the uterine arteries, PIGF, sFlt-1 and the com-

bination of the above markers (38, 21, 22, 62, 50, and

67%, respectively, with a false-positive rate of 10%), the

detection rate for the cfDNA-based FGR classifiers was

much higher (83.2% for CFGR1).
27 Furthermore, CFGR1 in

the study had good prediction performance in the first tri-

mester (AUC, 0.839; 95% CI 0.744–0.933; accuracy,

87.9%), although the sample size needs to be increased to

improve accuracy. In strict accordance with the inclusion

Figure 4. Receiver operating characteristic (ROC) curves to evaluate the performance of each classifier. (A) ROC curves for ‘FGR classifier 1’ (CFGR1)

in four cohorts, (B) ROC curves for ‘FGR classifier 2’ (CFGR2) in four cohorts.
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criteria, we included NIPT data from 12 to 28 weeks’ gesta-

tion and proved that it was feasible to predict FGR in the

early stage (when NIPT can be started), which could be

earlier than ultrasound screening for abnormalities. Fur-

thermore, this classifier development strategy may be appli-

cable to other pregnancy complications that could benefit

from an early, non-invasive screening test based on mater-

nal plasma sampling.

Conclusions

In summary, the highest performance classifier was success-

fully developed for predicting the risk of FGR with low

birthweight based on nucleosome profiling of maternal

plasma cfDNA. This technique only requires low-coverage

DNA sequencing, similar to present NIPT procedures,

without any additional tests; it may also aid in the develop-

ment of predictive models for other placental-related preg-

nancy complications.
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