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Abstract: With the aim of searching for phytochemicals with aromatase inhibitory activity, five new
prenylcoumarins, mammeasins K (1), L (2), M (3), N (4), and O (5), were isolated from the methanolic
extract of Mammea siamensis (Miq.) T. Anders. flowers (fam. Calophyllaceae), originating in Thailand.
The stereostructures of 1–5 were elucidated based on their spectroscopic properties. Among the
new compounds, 1 (IC50 = 7.6 µM) and 5 (9.1 µM) possessed relatively strong inhibitory activity
against aromatase, which is a target of drugs already used in clinical practice for the treatment
and prevention of estrogen-dependent breast cancer. The analysis through Lineweaver–Burk plots
showed that they competitively inhibit aromatase (1, Ki = 3.4 µM and 5, 2.3 µM). Additionally, the
most potent coumarin constituent, mammea B/AB cyclo D (31, Ki = 0.84 µM), had a competitive
inhibitory activity equivalent to that of aminoglutethimide (0.84 µM), an aromatase inhibitor used
in therapeutics.

Keywords: Mammea siamensis; mammeasin; aromatase inhibitor; prenylcoumarin; Calophyllaceae;
Lineweaver–Burk analysis

1. Introduction

Coumarins are naturally occurring heterocyclic compounds characterized by
2H-chromen-2-one, benzo-α-pyrone, or 2H-1-benzopyrane-2-one structures with a common
C6-C3 skeleton. In other words, the coumarin skeleton is formed by a benzene ring
fused with α-pyrone (lactone ring). This framework is rich in electrons and has good
charge-transport properties. Coumarin biosynthesis occurs through the shikimate path-
way, which leads to phenylalanine formation and amino acid, which is further con-
verted to cinnamic acid. Numerous enzymes are involved in the biosynthesis of different
types of coumarins, such as prenylcoumarins, linear and angular furanocoumarins, pyra-
nocoumarins, methylendioxy-coumarins, hydroxylated and methoxylated coumarins, and
coumarin glycosides [1–7]. Most coumarin compounds occur as secondary metabolites
in green plants, while some are produced by fungi and bacteria and were obtained from
natural resources using column chromatography and preparative HPLC. The structure
determination of these coumarins were elucidated based on their spectroscopic properties
as well as of their chemical evidence. A variety of pharmacological activities have been
reported for coumarins and their analogs, including anticoagulant, anticancer, antioxidant,
antiviral, antidiabetic, anti-inflammatory, antibacterial, antifungal, antileishmanial, and
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antineurodegenerative activities [3,5–13]. Our studies on the bioactive constituents from
medicinal plants, such as Angelica furcijuga Kitagawa [14–17] and Mammea siamensis (Miq.)
T. Anders. [18–22], have been indicated in several bio-functional properties of coumarins,
including anti-inflammatory [16–18], hepatoprotective [17], aromatase [19,20] and 5α-
reductase inhibitory [21], and anti-proliferative activities [22]. We attempted a further
separation of the constituents from the flower part of M. siamensis (Calophyllaceae fam-
ily), which is traditionally used in Thailand as a heart tonic, antipyretic, and appetite
enhancer. We focused on isolating five new prenylcoumarins named mammeasins K (1),
L (2), M (3), N (4), and O (5), elucidating their stereostructures and investigating their
aromatase inhibitory activity.

2. Results and Discussion
2.1. Isolation

The methanolic extract obtained from the dried flowers of M. siamensis (25.66% from
the dried material) was partitioned using a solution of ethyl acetate (EtOAc)-H2O (1:1,
v/v), yielding an EtOAc-soluble fraction (6.84%) and an aqueous phase. The latter was
subjected to Diaion HP-20 column chromatography (H2O→MeOH) according to previ-
ously reported protocols, which yielded H2O- and MeOH-eluted fractions (13.50% and
4.22%, respectively). From the EtOAc-soluble fraction, we previously isolated 37 coumarin
constituents (6–42) using normal-phase silica gel and reversed-phase ODS column chro-
matographic purification, and finally HPLC [18–22]. In this study, mammeasins K (1,
0.0008%), L (2, 0.0006%), M (3, 0.0021%), N (4, 0.0007%), and O (5, 0.0015%) were isolated
(Figure 1).
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2.2. Structure Determination for Mammeasins K (1), L (2), M (3), N (4), and O (5)

Mammeasin K (1) was isolated as pale yellow amorphous solid. The IR spectrum
of 1 showed absorption bands at 1748 and 1653 cm−1, assignable to an α,β-unsaturated
δ-lactone moiety and a chelated carbonyl group of an aryl keto group, respectively [22–25].
The molecular formula was determined to be C21H24O5 by positive- and negative-ion high-
resolution ESI–MS at m/z 379.1512 (Calcd for C21H25O5Na, 379.1516) and m/z 355.1552
(Calcd for C21H23O5, 355.1540), respectively. The 1H- and 13C-NMR spectra of 1 (Table 1,
CDCl3) were assigned with the aid of distortionless enhancement by polarization transfer
(DEPT), 1H–1H correlation spectroscopy (COSY), heteronuclear single quantum coherence
(HSQC), and heteronuclear multiple bond connectivity (HMBC) experiments (Figure 2).
The 1H-NMR spectrum showed signals for four methyls (δ 1.03 (3H, t, J = 7.6 Hz, H3-4′ ′ ′),
1.04 (3H, t, J = 7.6 Hz, H3-3′), and 1.53 (6H, s, H3-5′ ′, and H3-6′ ′)), four methylenes (δ 1.66
(2H, qt, J = 7.6, 7.6 Hz, H2-2′), 1.78 (2H, qt, J = 7.6, 7.3 Hz, H2-3′ ′ ′), 2.90 (2H, t, J = 7.6 Hz,
H2-1′), and 3.26 (2H, t, J = 7.1 Hz, H2-2′ ′ ′)), three olefinic protons (δ 5.57 (1H, d, J = 10.1 Hz,
H-3′ ′), 6.00 (1H, s, H-3), and 6.73 (1H, d, J = 10.1 Hz, H-4′ ′)), and a hydrogen-bonded
hydroxy proton (δ 14.50 (1H, s, 7-OH)). The 1H- and 13C-NMR spectroscopic properties of
1 were superimposable to those of deacetylmammea E/BC cyclo D (35) [18], except for the
signal detected owing to the presence of the hydroxy group at the 1′-position of 35. The
1H−1H COSY experiment on 1 indicated the presence of partial structures shown in bold



Int. J. Mol. Sci. 2022, 23, 11233 3 of 15

lines in Figure 2. In the HMBC experiment, long-range correlations were observed between
the following proton and carbon pairs: H-3 and C-2, 4a, 1′; H2-1′ and C-3, 4, 4a; H-3′ ′ and
C-6, 2′ ′; H-4′ ′ and C-5, 7, 2′ ′; H3-5′ ′ and H3-6′ ′ and C-2′ ′, 3′ ′; H2-2′ ′ ′ and C-1′ ′ ′; and 7-OH
and C-6–8. Thus, the linkage positions of the 2,2-dimethyl-2H-pyran and butyryl groups at
the coumarin skeleton in 1 were clarified and further confirmed by a comparison of the
proton and carbon signals in the 1H- and 13C-NMR spectra of 1 with those of mammea
B/AC cyclo D (32) [24], which have the opposite linkage of the 2,2-dimethyl-2H-pyran and
butyryl groups as 1. Consequently, the structure of 1 was determined.

Table 1. 1H and 13C NMR spectroscopic data (CDCl3) of mammeasins K (1) and mammea B/AC
cyclo D (32).

Position
1 a

Position
Mammea B/AC Cyclo D (32) [24] b

δH δC δH δC

2 159.2 2 160.06
3 6.00 (1H, s) 110.5 3 5.93 (1H, s) 110.32
4 158.4 4 159.49
4a 102.7 4a 103.22
5 156.5 5 165.11
6 105.9 6 106.99
7 163.0 7 157.67
8 104.3 8 101.50
8a 157.4 8a 155.09

7-OH 14.50 (1H, s) 5-OH 15.34 (1H, s)
1′ 2.90 (2H, t, 7.6) 39.0 1′ 2.92 (2H, dd, 7.5, 7.6) 38.45
2′ 1.66 (2H, qt, 7.6, 7.6) 23.3 2′ 1.63 (2H, br sext) 22.74
3′ 1.04 (3H, t, 7.6) 13.9 3′ 0.99 (3H, t, 7.3) 13.98
2′ ′ 79.6 1′ ′ 207.47
3′ ′ 5.57 (1H, d, 10.1) 126.3 2′ ′ 3.06 (2H, t, 7.4) 46.88
4′ ′ 6.73 (1H, d, 10.1) 115.9 3′ ′ 1.72 (2H, sext, 7.4) 18.28
5′ ′ 1.53 (3H, s) 28.2 4′ ′ 1.00 (3H, t, 7.4) 13.90
6′ ′ 1.53 (3H, s) 28.2 2′ ′ ′ 79.65
1′ ′ ′ 206.4 3′ ′ ′ 5.57 (1H, d, 10.0) 126.20
2′ ′ ′ 3.26 (2H, t, 7.1) 46.7 4′ ′ ′ 6.81 (1H, d, 10.0) 115.67
3′ ′ ′ 1.78 (2H, qt, 7.6, 7.1) 18.0 5′ ′ ′ 1.52 (3H, s) 28.69
4′ ′ ′ 1.03 (3H, t, 7.6) 13.8 6′ ′ ′ 1.52 (3H, s) 29.69

Measured by a 800 MHz and b 400 MHz.
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The molecular formula of mammeasin L (2) was determined to be C24H22O5, which
showed quasi-molecular ion peaks at m/z 413.1353 ([M+Na]+: Calculated for C24H22O5Na,
413.1359) and m/z 389.1384 ([M–H]−: Calculated for C24H21O5, 389.1384) using positive-
and negative-ion ESI–MS measurements, respectively. The 1H- and 13C-NMR spectra
(Table 2, CDCl3) of 2 were similar to those of 1, except for the signals owing to a mono-
substituted benzene ring at the 4-position [δ 7.23 (2H, dd, J = 1.6, 7.8 Hz, H-2′ and 6′) and
7.39 (3H, m, H-3′–5′)] instead of a propyl moiety, as seen in 1. As shown in Figure 2, the
connectivity of the quaternary carbons in 2 was elucidated by 1H−1H COSY and HMBC
experiments. 1H−1H COSY correlations indicated the presence of the following partial
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structures of 2: linkage of C-2′–C-6′; C-2′ ′–C-4′ ′; and C-2′ ′ ′–C-4′ ′ ′ shown in bold line. The
HMBC correlations revealed long-range correlations between the following proton and
carbon pairs: H-3 (δ 6.01 (1H, s)) and C-2, 4a, 1′; H2-2′, 6′ and C-4; H-3′ ′ (δ 5.39 (1H, d,
J = 10.1 Hz)) and C-6, 2′ ′; H-4′ ′ (δ 6.63 (1H, d, J = 10.1 Hz)) and C-5, 7, 2′ ′; H3-5′ ′ and
H3-6′ ′ (δ 0.95 (6H, s)) and C-2′ ′, 3′ ′; H2-2′ ′ ′ (δ 3.31 (2H, t, 7.3)) and C-1′ ′ ′; and 7-OH (δ
14.50 (1H, s, 7-OH)) and C-6–8. Additionally, different proton and carbon signals owing to
the 2,2-dimethyl-2H-pyran and butyryl groups of 2 were observed similar with those of
mammea A/AC cyclo D (30) [24]. Thus, the structure of 2 was established.

Table 2. 1H and 13C NMR spectroscopic data (CDCl3) of mammeasins L (2) and mammea A/AC
cyclo D (30).

Position
2 a

Position
Mammea A/AC Cyclo D (30) [24] b

δH δC δH δC

2 158.9 2 159.63
3 6.01 (1H, s) 111.9 3 5.96 (1H, s) 112.66
4 156.0 4 156.38
4a 102.2 4a 102.15
5 156.2 5 164.37
6 105.8 6 106.97
7 163.6 7 158.20
8 104.0 8 101.48
8a 157.0 8a 154.79

7-OH 14.59 (1H, s) 5-OH 14.73 (1H, s)
1′ 140.0 1′ 139.21

2′,5′ 7.23 (2H, dd, 1.6, 7.8) 127.1 2′,5′ 7.29 (2H, m) 127.15
3′,6′ 7.39 (2H, m) 127.6 3′,6′ 7.38 (2H, m) 127.60

4′ 7.39 (1H, m) 127.8 4′ 7.38 (1H, m) 128.21
2′ ′ 79.0 1′ ′ 207.20
3′ ′ 5.39 (1H, d, 10.1) 126.8 2′ ′ 3.02 (2H, t, 7.3) 46.79
4′ ′ 6.63 (1H, d, 10.1) 115.3 3′ ′ 1.67 (2H, sext, 7.3) 18.19
5′ ′ 0.95 (3H, s) 27.4 4′ ′ 0.97 (3H, t, 7.3) 13.07
6′ ′ 0.95 (3H, s) 27.4 2′ ′ ′ 79.84
1′ ′ ′ 206.2 3′ ′ ′ 5.60 (1H, d, 10.0) 126.31
2′ ′ ′ 3.31 (2H, t, 7.3) 46.6 4′ ′ ′ 6.86 (1H, d, 10.0) 115.51
3′ ′ ′ 1.82 (2H, qt, 7.6, 7.3) 18.1 5′ ′ ′ 1.55 (3H, s) 28.26
4′ ′ ′ 1.07 (3H, t, 7.6) 13.8 6′ ′ ′ 1.55 (3H, s) 28.26

Measured by a 800 MHz and b 400 MHz.

Mammeasin M (3) was obtained as a pale yellow amorphous solid and its IR spectrum
showed absorption bands at 1748 and 1615 cm−1, assignable to an α,β-unsaturated δ-
lactone moiety and a chelated carbonyl group of an aryl keto moiety [22–25]. The EI–MS
spectrum of 3 showed a molecular ion peak at m/z 438.1679 (M+) and the molecular formula
was determined to be C25H26O7 (∆ + 0.3 mmu) using high-resolution EI–MS measurements.
The 1H-NMR spectra of 3 (Table 3, CDCl3) showed signals indicating the presence of
three methyls (δ 0.98 (3H, t, J = 7.5 Hz, H3-4′ ′), 1.35 and 1.39 (3H each, both s, H3-4′ ′ ′

and 5′ ′ ′)); two methylenes (δ 1.70 (2H, qt, J = 7.5, 7.2 Hz, H2-3′ ′), 3.00 (2H, t, J = 7.2 Hz,
H2-2′ ′)); a methoxymethyl (δ 3.64 (3H, s)); two methine bearing an oxygen function (δ
4.65 and 5.23 (1H each, both d, J = 2.9 Hz, H-2′ ′ ′ and 1′ ′ ′)); an olefinic proton (δ 5.98 (1H,
s, H-3)); a mono-substituted benzene ring (δ 7.30 (2H, dd, J = 1.7, 8.1 Hz, H-2′ and 6′),
7.34 (1H, m, H-4′), 7.40 (2H, dd, J = 7.2, 8.1 Hz, H-3′ and 5′)), and a hydrogen-bonded
hydroxy proton (δ 14.65 (1H, s, 5-OH)). The planar structure of 3 was constructed using
1H-1H COSY and HMBC experiments. Thus, 1H-1H COSY of 3 indicated the presence of
partial structures, as shown in bold lines in Figure 2. In the HMBC experiment, long-range
correlations were observed between the following proton and carbon pairs: H-3 and C-2, 4a,
1′; H2-2′, 6′ and C-4; H-2′ ′ and C-1′ ′; H-1′ ′ ′ and C-7, 8, 3′ ′ ′; H-2′ ′ ′ and C-7, 3′ ′ ′–5′ ′ ′; H3-4′ ′ ′

and C-2′ ′ ′, 3′ ′ ′,5′ ′ ′; H3-5′ ′ ′ and C-2′ ′ ′–4′ ′ ′; 5-OH and C-4a, 5, 6; and 1′ ′ ′-OCH3 and C-1′ ′ ′.
Next, the stereochemistry of the 2-(3-methoxy-2,3-dihydrofuran-2-yl)propan-2-ol moiety
in 3 was clarified by comparing the 1H-1H coupling constant between H-1′ ′ ′ and H-2′ ′ ′

and by nuclear Overhauser effect (NOE) difference spectrometry. As shown in Figure 3,
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the coupling constant in the 1H-NMR spectrum of 3 showed 3J1′ ′ ′ ,2′ ′ ′ = 2.9 Hz, similar to
that of the related compound mammea A/AA methoxycyclo F (3a, J = 3.0 Hz) [26,27].
Furthermore, a NOE correlation was observed between H-2′ ′ ′ and 1′ ′ ′-OCH3 (Figure 3), so
that the relative stereochemistry of H-1′ ′ ′ and H-2′ ′ ′ was determined to be trans. Based on
these findings, the structure of 3 was determined.

Table 3. 1H and 13C NMR spectroscopic data (500 mHz, CDCl3) of mammeasin M (3) and mammea
A/AA methoxycyclo F (3a).

Position
3 Mammea A/AA Methoxycyclo F (3a) [26]

δH δC δH δC

2 159.2 159.8
3 5.98 (1H, s) 112.6 5.99 (1H, s) 112.5
4 156.5 156.5
4a 102.8 102.8
5 166.3 166.5
6 103.0 103.3
7 165.2 164.4
8 106.0 105.9
8a 156.5 156.8

5-OH 14.65 (1H, s) 14.75 (1H, s)
1′ 139.0 139.0

2′,5′ 7.30 (2H, dd, 1.7, 8.1) 127.2 7.31 (2H, m) 127.2
3′,6′ 7.40 (2H, dd, 7.2, 8.1) 127.7 7.40 (2H, m) 127.7

4′ 7.34 (1H, m) 128.3 7.40 (1H, m) 128.3
1” 205.3 205.1

2” 3.00 (2H, t, 7.2) 45.2 2.81 (1H, dd, 7.0, 15.0)
3.00 (1H, dd, 7.0, 15.0) 52.0

3” 1.70 (2H, qt, 7.5, 7.2) 17.8 2.21 (1H, m) 25.0
4” 0.98 (3H, t, 7.2) 13.8 0.96 (3H, d, 7.0) 22.6
5” 0.96 (3H, d, 7.0) 22.6
1′ ′ ′ 5.23 (1H, d, 2.9) 78.7 5.23 (1H, d, 3.0) 78.6
2′ ′ ′ 4.65 (1H, d, 2.9) 97.8 4.65 (1H, d, 3.0) 97.7
3′ ′ ′ 71.2 71.2
4′ ′ ′ 1.35 (3H, s) 25.6 1.35 (3H, s) 25.5
5′ ′ ′ 1.39 (3H, s) 25.9 1.39 (3H, s) 25.9

1′ ′ ′-OCH3 3.64 (3H, s) 57.7 3.64 (3H, s) 57.7
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Using high-resolution negative-ion ESI–MS analyses, the molecular formulae of mam-
measins N (4) and O (5) were determined to be C24H20O5 and C25H22O5, respectively. The
1H- and 13C-NMR spectra (Table 4) of 4 showed signals assignable to a butane-1-one moiety
(δ 1.06 (3H, t, J = 7.4 Hz, H3-4′ ′), 3.16 (2H, t, J = 7.4 Hz, H2-2′ ′), 1.81 (2H, qt, J = 7.4, 7.4 Hz,
H2-3′ ′); δC 13.8 (C-4′ ′), 17.7 (C-3′ ′), 45.1 (C-2′ ′), 204.5 (C-1′ ′)) together with a methyl (δ
2.16 (3H, s, H3-4′ ′ ′)), an exo-methylene (δ 5.52, 5.71 (1H each, both s, H2-5′ ′ ′)), two olefins
(δ 6.14 (1H, s, H-3), 6.98 (1H, s, H-1′ ′ ′)), a mono-substituted benzene ring (δ 7.35 (2H,
dd, J = 1.7, 7.7 Hz, H-2′ and 6′), 7.34 (3H, m, H-3′–5′)), and a hydrogen-bonded hydroxy
proton (δ 14.58 (1H, s, 5-OH)). The connectivities of the quaternary carbons in 4 and 5
were characterized using 1H-1H COSY and HMBC experiments, which showed long-range
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correlations, as shown in Figure 2. Furthermore, the proton and carbon signals for 2-
(prop-1-en-2-yl)furan moiety in 4 were superimposable with those of the corresponding
furanocoumarin oroselone (4a), as shown in Figure 4 [28]. The proton and carbon signals in
the 1H- and 13C-NMR spectra (Table 4) of 5 were quite similar to those of 4, except for the
signals arising from a 3-methylbutane-1-one moiety (δ 1.03 (6H, d, J = 6.8 Hz, H3-4′ ′ and
5′ ′), 2.32 (1H, m, H-3′ ′), 3.16 (2H, d, J = 6.9 Hz, H2-2′ ′); δC 22.7 (C-4′ ′ and 5′ ′), 25.0 (C-3′ ′),
51.8 (C-2′ ′), 204.3 (C-1′ ′)). Consequently, the structures of 4 and 5 were determined.

Table 4. 1H and 13C NMR spectroscopic data (CDCl3) of mammeasins M (3) and N (4) and
oroselone (4a).

Position
4 a 5 b Oroselone (4a) [28]

δH δC δH δC δH δC

2 159.3 159.3 160.62
3 6.14 (1H, s) 114.2 6.14 (1H, s) 114.2 6.36 (1H, d, 9.6) 113.88
4 156.7 156.5 7.77 (1H, d, 9.6) 144.32
4a 103.3 103.6 113.40
5 162.8 163.0 7.30 (1H, d, 8.5) 123.79
6 104.6 104.7 7.34 (1H, d, 8.5) 108.21
7 155.7 156.4 156.90
8 111.2 111.3 118.29
8a 153.1 153.1 148.08

5-OH 14.58 (s) 14.58 (s)
1′ 138.9 138.9

2′,5′ 7.35 (2H, dd, 1.7, 7.7) 127.2 7.36 (2H, dd, 1.7, 7.8) 127.2
3′,6′ 7.43 (2H, m) 127.7 7.43 (2H, m) 127.7

4′ 7.43 (1H, m) 128.4 7.43 (1H, m) 128.4
1′ ′ 204.5 204.3
2′ ′ 3.26 (2H, t, 7.4) 45.1 3.16 (2H, d, 6.9) 51.8
3′ ′ 1.81 (2H, qt, 7.4, 7.4) 17.7 2.32 (1H, m) 25.0
4′ ′ 1.06 (3H, t, 7.4) 13.8 1.03 (3H, d, 6.8) 22.7
5′ ′ 1.03 (3H, d, 6.8) 22.7
1′ ′ ′ 6.98 (1H, s) 100.2 6.98 (1H, s) 100.3 6.96 (1H, s) 99.59
2′ ′ ′ 156.5 156.7 157.94
3′ ′ ′ 132.0 132.0 132.18

4′ ′ ′ 5.25 (1H, br s)5.71
(1H, br s) 113.4 5.25 (1H, br s)5.71

(1H, br s) 113.3 5.24 (1H, s)
5.82 (1H, s) 118.29

5′ ′ ′ 2.16 (3H, s) 19.1 2.16 (3H, s) 19.1 2.13 (3H, s) 19.06

Measured by a 800 MHz or b 500 MHz.
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2.3. Inhibitory Activity against Aromatase

In a recent exploratory study on the bioactive constituents of M. siamansis, several
coumarins exhibited antiproliferative and apoptotic effects in several human cancer cell
lines. Furthermore, their mechanisms of action have also been characterized [29–33]. We
have also reported that these coumarin constituents exhibit antiproliferative and apop-
totic effects against human digestive tract carcinoma cell lines and human breast cancer
MCF-7 [22]. Breast cancer is one of the malignant carcinomas associated with the highest
morbidity and mortality in women [34,35]. The presence of high estrogen concentrations in
breast tissue increases the risk of developing breast cancer. Estrogen and estrogen recep-
tors play an important role in the development and progression of hormone-dependent
breast cancer [36]. Aromatase is a key enzyme in estrogen biosynthesis, as it catalyzes
the conversion of androgens (testosterone and androstenediol) to estrogens (estradiol and
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estrone). Since intra-tumoral aromatase is the source of estrogen production in breast cancer
tissues, aromatase inhibitors have been widely used in clinical practice as chemotherapeutic
agents against hormone-dependent breast cancer [37]. Based on their chemical structures,
aromatase inhibitors are classified into two categories: steroidal and non-steroidal [38].
The structures of steroidal aromatase inhibitors closely resemble those of the substrates
of aromatase enzymes, such as testosterone and androstenediol. Exemestane, a clinically
used steroidal aromatase inhibitor, is metabolized to an intermediate, which attaches irre-
versibly to the active site of the enzyme, thereby blocking its activity. These inhibitors are
known as “suicide inhibitors” [37]. On the other hand, non-steroidal aromatase inhibitors
(e.g., aminoglutethimide, anastrozole, and letrozole, etc.) are generally reversible, and the
inhibition of estrogen synthesis is dependent on the continuous presence of the drug [39].
Owing to the development of resistance to aromatase inhibitors and their side effects, the
need for improved aromatase inhibitors remains [40,41]. Therefore, new non-steroidal nat-
ural products with aromatase inhibitory activity are being investigated [36,42–45]. During
our studies of characterization of the Thai medicinal plant M. siamensis, we found that the
methanolic extract and several isolated coumarin constituents exhibited inhibitory activity
against aromatase [19]. Continuing the chemical study on M. siamemsis, we have so far
isolated 42 coumarin constituents, as summarized in Figure 5.

Fifteen such coumarin constituents, including mammeasins K (1, IC50 = 7.6 µM) and O
(5, 9.1 µM); kayaessamin I (23, 9.3 µM); mammea A/AA cyclo F (39, 9.2µM); mammeasins
A (6, 8.7 µM), B (7, 4.1 µM), C (8, 2.7 µM), and D (9, 3.6 µM); surangins B (16, 9.8 µM), C
(17, 8.8 µM), and D (18, 9.8 µM); mammea A/AA (24, 6.9 µM), A/AB (25, 8.6 µM), A/AA
cyclo D (28, 7.2 µM); and B/AB cyclo D (3.1 µM) [19], show relatively strong aromatase
enzymatic inhibitory activities (IC50 ranging from 2.7–9.9 µM), comparable to the activity of
the clinically used nonsteroidal aromatase inhibitor aminoglutethimide (2.0 µM), as shown
in Table 5.

We analyzed inhibition kinetics using Lineweaver–Burk plots to determine the mode
of inhibition of coumarins that showed strong inhibitory activities against human aro-
matase. In the assay system, we fixed the enzyme concentration, changed the substrate
concentration, and obtained the kinetic parameters of the enzyme-catalyzed reaction us-
ing Lineweaver–Burk double reciprocal plot 1/[V] vs. 1/[S]. The inhibition constant Ki
indicates the potency of an inhibitor and equals the concentration required to produce half-
maximal inhibition [46]. The Ki value was obtained from the intersection of the secondary
plot with the x-axis (apparent Km/Vmax vs. inhibitor). Thus, the first-generation aromatase
inhibitor aminoglutethimide showed a competitive inhibition of aromatase characterized
by a Ki value of 0.84 µM, as shown in Table 6 and Figure 6, which is consistent with the
results of a previous report [47]. Among the active coumarin constituents from M. siamensis,
mammeasins K (1, Ki value = 3.4 µM), N (4, 2.6 µM), and O (5, 2.3 µM); as well as B (7,
1.3 µM) and C (8, 2.8 µM); surangins B (16, 1.3 µM) and C (17, 2.6 µM); and mammeas
A/AA cyclo D (28, 1.2 µM), B/AB cyclo D (31, 0.84 µM), and E/BC cyclo D (33, 2.3 µM),
show relatively potent competitive inhibition. The most potent compound, 31, exhibited
almost the same binding affinity as aminoglutethimide.
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Table 5. IC50 values of coumarin constituents (1–11, 16, 17, 23–25, 28, 31, 34, 38, and 39) from the
flowers of M. siamensis against human recombinant aromatase.

Treatment IC50 (µM) Treatment IC50 (µM)

Mammeasin K (1) 7.6 Kayaessamin G (22) 27.8 [19]
Mammeasin L (2) 20.7 Kayaessamin I (23) 9.3
Mammeasin M (3) >100 (43.4) a Mammea A/AA (24) 6.9 [19]
Mammeasin N (4) 12.0 Mammea A/AB (25) 8.6 [19]
Mammeasin O (5) 9.1 Mammea A/AC (26) 13.7 [19]
Mammeasin A (6) 8.7 [19] Mammea A/AD (27) 11.3 [19]
Mammeasin B (7) 4.1 [19] Mammea A/AA cyclo D (28) 7.2 [19]
Mammeasin C (8) 2.7 [19] Mammea A/AB cyclo D (29) 24.1 [19]
Mammeasin D (9) 3.6 [19] Mammea A/AC cyclo D (30) 35.0 [19]
Mammeasin E (10) 11.1 Mammea B/AB cyclo D (31) 3.1 [19]
Mammeasin F (11) 12.4 Mammea B/AC cyclo D (32) 24.6 [19]
Mammeasin G (12) 21.3 Mammea E/BC cyclo D (33) 11.5 [19]
Mammeasin H (13) 17.9 Mammea E/BD cyclo D (34) 21.1
Mammeasin I (14) 21.3 Deacetylammea E/BC cyclo D (35) 16.6 [19]
Mammeasin J (15) 23.4 Mammea E/BA (36) 16.6 [19]

Surangin B (16) 9.8 [19] Mammea E/BB (37) 18.6 [19]
Surangin C (17) 8.8 [19] Mammea E/BC (38) 23.2
Surangin D (18) 9.8 [19] Mammea A/AA cyclo F (39) 9.2

Kayeassamin A (19) 10.0 Mammea A/AC cyclo F (40) 19.9
Kayaessamin E (20) 14.9 [19] Deacetylammea E/AA cyclo D (41) 19.3
Kayaessamin F (21) 19.7 [19] Deacetylammea E/BB cyclo D (42) 12.1

Aminoglutethimide 2.0 [19]
Each value represents the mean ± S.E.M. (N = 3). a Values in parentheses represent inhibition % at 100 µM.

Table 6. Ki values of coumarin constituents (1–11, 16, 17, 23–25, 28, 31, 34, 38, and 39) from the
flowers of M. siamensis against human recombinant aromatase.

Treatment Ki (µM) Treatment Ki (µM)

Mammeasin K (1) 3.4 Surangin C (17) 2.6
Mammeasin N (4) 2.6 Kayaessamin I (23) 14.7
Mammeasin O (5) 2.3 Mammea A/AA (24) 13.7
Mammeasin A (6) 5.1 Mammea A/AB (25) 8.1
Mammeasin B (7) 1.3 Mammea A/AA cyclo D (28) 1.2
Mammeasin C (8) 2.8 Mammea B/AB cyclo D (31) 0.84
Mammeasin D (9) 4.3 Mammea E/BC cyclo D (33) 2.3
Mammeasin E (10) 7.1 Mammea E/BC (38) 11.3
Mammeasin F (11) 12.3 Mammea A/AA cyclo F (39) 4.3

Surangin B (16) 1.3
Aminoglutethimide 0.84

Each value represents the mean ± S.E.M. (N = 3).
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3. Materials and Methods
3.1. General

The following instruments were used to obtain spectroscopic data: specific rotation,
JASCO P-2200 polarimeter (JASCO Corporation, Tokyo, Japan, l = 5 cm); UV spectra, Shi-
madzu UV-1600 spectrometer; IR spectra, IRAffinity-1 spectrophotometer (Shimadzu Co.,
Kyoto, Japan); 1H NMR spectra, JNM-ECA800 (800 MHz), JNM-LA500 (500 MHz), JNM-
ECS400 (400 MHz), and JNM-AL400 (400 MHz) spectrometers; and 13C NMR spectra, JNM-
ECA800 (200 MHz), JNM-LA500 (125 MHz), JNM-ECA400 (100 MHz), and JNM-AL400
(100 MHz) spectrometers (JEOL Ltd., Tokyo, Japan). Determinations were made using
samples dissolved in deuterated chloroform (CDCl3) at room temperature with tetram-
ethylsilane as an internal standard; EI–MS and high-resolution EI–MS, JMS–GCMATE mass
spectrometer (JEOL Ltd., Tokyo, Japan); ESI–MS and HRESI–MS, ExactiveTM Plus Orbitrap
mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA); HPLC detector,
SPD-10Avp UV–VIS detector; HPLC columns, Cosmosil 5C18-MS-II (Nacalai Tesque, Inc.,
Kyoto, Japan). Columns of 4.6 mm i.d. × 250 mm and 20 mm i.d. × 250 mm were used for
analytical and preparative purposes, respectively.

The following experimental chromatographic materials were used for column chro-
matography (CC): highly porous synthetic resin, Diaion HP-20 (Mitsubishi Chemical Co.,
Tokyo, Japan); normal-phase silica gel CC, silica gel 60 N (Kanto Chemical Co., Ltd.,
Tokyo, Japan; 63–210 mesh, spherical, neutral); reversed-phase ODS CC, Chromatorex ODS
DM1020T (Fuji Silysia Chemical, Ltd., Aichi, Japan; 100–200 mesh); TLC, pre-coated TLC
plates with silica gel 60F254 (Merck, Darmstadt, Germany, 0.25 mm) (normal-phase) and
silica gel RP-18 WF254S (Merck, 0.25 mm) (reversed-phase); reversed-phase HPTLC, pre-
coated TLC plates with silica gel RP-18 WF254S (Merck, 0.25 mm). Detection was performed
by spraying with 1% Ce(SO4)2–10% aqueous H2SO4, followed by heating.

3.2. Plant Material

M. siamensis flowers were collected from Nakhonsithammarat Province, Thailand, in
September 2006, as described previously [18,19,21,22]. Plant material was identified by one
of the authors (Y.P.). A voucher specimen (2006.09. Raj-04) was deposited in our laboratory.

3.3. Extraction and Isolation

The methanolic extract (25.66% dried material) obtained from the dried flowers of
M. siamensis (1.8 kg) was partitioned using a solution of EtOAc-H2O (1:1, v/v) to yield an
EtOAc-soluble fraction (6.84%) and an aqueous phase. The EtOAc-soluble fraction (89.45 g)
was subjected to normal-phase silica gel column cromatography (3.0 kg, n-hexane-EtOAc
(10:1→ 7:1→ 5:1, v/v)→ EtOAc→MeOH) to produce 11 fractions (Fr. 1 (3.05 g), Fr. 2
(2.86 g), Fr. 3 (11.71 g), Fr. 4 (1.62 g), Fr. 5 (4.15 g), Fr. 6 (6.29 g), Fr. 7 (2.21 g), Fr. 8 (2.94 g),
Fr. 9 (10.23 g), Fr. 10 (11.17 g), and Fr. 11 (21.35 g)), as previously reported [18]. Fraction 2
(2.86 g) was subjected to reversed-phase silica gel CC (74 g, MeOH–H2O (70:30→ 90:10,
v/v)→MeOH→ acetone) to yield nine fractions (Fr. 2-1 (21.0 mg), Fr. 2-2 (26.2 mg), Fr.
2-3 (114.1 mg), Fr. 2-4 (425.0 mg), Fr. 2-5 (199.3 mg), Fr. 2-6 (79.6 mg), Fr. 2-7 (94.8 mg),
Fr. 2-8 (1211.4 mg), and Fr. 2-9 (328.8 mg)), as described previously [22]. Fraction 2-4
(425.0 mg) was purified by HPLC (Cosmosil 5C18-MS-II, MeOH–1% aqueous AcOH (90:10,
v/v) and CH3CN–1% aqueous AcOH (75:25, v/v)) to give mammeasins K (1, 10.6 mg,
0.0008%) and L (2, 8.2 mg, 0.0006%) together with mammeasins G (12, 32.7 mg, 0.0025%),
H (13, 12.1 mg, 0.0009%), and I (14, 10.5 mg, 0.0008%) [22]. Fraction 5 (4.15 g) was subjected
to reversed-phase silica gel CC (120 g, MeOH–H2O (80:20 → 85:15, v/v) → MeOH →
acetone) to obtain six fractions (Fr. 5-1 (115.7 mg), Fr. 5-2 (2789.8 mg), Fr. 5-3 (515.4 mg),
Fr. 5-4 (430.0 mg), Fr. 5-5 (119.2 mg), and Fr. 5-6 (1110.0 mg)), as previously reported [21].
Fraction 5-2 (517.0 mg) was purified by HPLC (Cosmosil 5C18-MS-II, MeOH–1% aqueous
AcOH (85:15, v/v)) to give mammeasins M (3, 5.0 mg, 0.0021%) and O (5, 3.7 mg, 0.0015%)
together with mammeas A/AA (24, 101.2 mg, 0.0418%), A/AC (26, 112.9 mg, 0.0466%),
A/AA cyclo D (28, 3.7 mg, 0.0015%), E/BC cyclo D (33, 14.0 mg, 0.0058%), E/BD cyclo D (34,
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1.8 mg, 0.0007%), and A/AC cyclo F (40, 4.6 mg, 0.0019%) [18,19,21]. Fraction 6 (6.29 g) was
subjected to reversed-phase silica gel CC (200 g, MeOH–H2O (80:20→ 90:10→ 95:5, v/v)→
MeOH→ acetone) and 10 fractions were obtained (Fr. 6-1 (44.7 mg), Fr. 6-2 (157.2 mg), Fr.
6-3 (928.8 mg), Fr. 6-4 (3117.0 mg), Fr. 6-5 (128.8 mg), Fr. 6-6 (487.1 mg), Fr. 6-7 (230.8 mg),
Fr. 6-8 (280.5 mg), Fr. 6-9 (102.9 mg), and Fr. 6-10 (96.5 mg)), as previously reported [18].
Fraction 6-3 (514.6 mg) was purified by HPLC (Cosmosil 5C18-MS-II, MeOH−1% aqueous
AcOH (80:20, v/v)) to give mammeasin N (4, 5.1 mg, 0.0007%) together with mammeas
A/AC (26, 35.6 mg, 0.0049%), A/AD (27, 15.8 mg, 0.0022%), E/BA (36, 32.7 mg, 0.0045%),
and E/BB (37, 140.1 mg, 0.0190%).

3.3.1. Mammeasin K (1)

Pale yellow amorphous solid; high-resolution positive-ion ESI–MS m/z 379.1512
(Calculated for C21H25O5Na, 379.1516), negative-ion ESI–MS m/z 355.1552 (Calculated for
C21H23O5, 355.1540); UV [MeOH, nm (log ε)]: 305 (4.39), 270 (4.46), 219 (4.14); IR (film):
1748, 1734, 1653, 1609, 1558, 1506, 1456, 1387, 1194, 1150, 1125 cm−1; 1H-NMR (800 MHz,
CDCl3) δ: see Table 1 and Figure S1; 13C-NMR data (200 MHz, CDCl3) δC: see Table 1 and
Figure S2; 2D-NMR spectra: see Figures S3–S5; positive-ion ESI–MS m/z 379 [M+Na]+;
negative-ion ESI–MS m/z 355 [M-H]−.

3.3.2. Mammeasin L (2)

Pale yellow amorphous solid; high-resolution positive-ion ESI–MS m/z 413.1353
(Calculated for C24H22O5Na, 413.1359), negative-ion ESI–MS m/z 389.1384 (Calculated for
C24H21O5, 389.1384); UV (MeOH, nm (log ε)): 263 (4.41), 309 (4.35); IR (film): 1748, 1734,
1683, 1653, 1610, 1558, 1506, 1456, 1387, 1190, 1153, 1138 cm−1; 1H-NMR (800 MHz, CDCl3)
δ: see Table 2 and Figure S6; 13C-NMR data (200 MHz, CDCl3) δC: see Table 2 and Figure S7;
2D-NMR spectra: see Figures S8–S10; positive-ion ESI–MS m/z 413 [M+Na]+; negative-ion
ESI–MS m/z 389 [M-H]−.

3.3.3. Mammeasin M (3)

Pale yellow amorphous solid; [α]D
23 0 (c 0.15, CHCl3); high-resolution EI–MS: Calcu-

lated for C25H26O7 (M+): 438.1679. Found: 438.1676; UV (MeOH, nm (log ε)): 281 (4.35); IR
(film): 3450, 1748, 1717, 1615, 1558, 1456, 1381, 1235, 1190, 1154 cm−1; 1H-NMR (500 MHz,
CDCl3) δ: see Table 3 and Figure S11; 13C-NMR data (125 MHz, CDCl3) δC: see Table 3 and
Figure S12; 2D-NMR spectra: see Figures S13–S16; EI–MS m/z (%): 438 (M+, 16), 309 (100).

3.3.4. Mammeasin N (4)

Pale yellow amorphous solid; high-resolution negative-ion ESI–MS m/z 387.1238
(Calculated for C24H19O5, 387.1227); UV (MeOH, nm (log ε)): 287 (4.25); IR (film): 1748,
1609, 1559, 1458, 1373, 1230, 1150, 1126 cm−1; 1H-NMR (800 MHz, CDCl3) δ: see Table 4
Figure S17; 13C-NMR data (200 MHz, CDCl3) δC: see Table 4 and Figure S18; 2D-NMR
spectra: see Figures S19–S21; negative-ion ESI–MS m/z 387 [M-H]−.

3.3.5. Mammeasin O (5)

Pale yellow amorphous solid; high-resolution negative-ion ESI–MS m/z 401.1393
(Calcd for C25H21O5, 401.1394); UV (MeOH, nm (log ε)): 287 (4.26); IR (film): 1748, 1614,
1460, 1392, 1262, 1217, 1156, 1127 cm−1; 1H-NMR (500 MHz, CDCl3) δ: see Table 4 and
Figure S22; 13C-NMR data (125 MHz, CDCl3) δC: see Table 4 and Figure S23; 2D-NMR
spectra: see Figures S24–S26; negative-ion ESI–MS m/z 401 [M-H]−.

3.4. Assay for Aromatase Inhibitory Activity
3.4.1. Reagents

Dibenzylfluorescein (DBF) and human CYP19 + P450 reductase SUPERSOMES (human
recombinant aromatase) were purchased from BD Biosciences (Heidelberg, Germany)
and testosterone from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). The other
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chemicals used in this study were purchased from Wako Pure Chemical Industries, Co., Ltd.
(Osaka, Japan).

3.4.2. Inhibitory Effects against Human Recombinant Aromatase

The experiments were performed according to a previously described method [18].
Briefly, a test sample was dissolved in dimethyl sulfoxide (DMSO), and the solution was
diluted with potassium phosphate buffer (50 mM, pH 7.4) containing MgCl2 (0.5 mM)
to obtain the test sample solution (concentration of DMSO: 2%). An enzyme/substrate
solution in the buffer (20 µL, 1.6 µM DBF, 8 nM human recombinant aromatase) and the test
sample solution (20 µL) were mixed in a 96-well half-area black microplate (Greiner Bio-
One, Frickenhausen, Germany) at 37 ◦C for 10 min. The enzymatic reaction was initiated by
adding NADPH solution (40 µL, 500 µM) at 37 ◦C for 30 min. After 30 min of incubation,
NaOH (30 µL, 2 mM) was added, and the reaction mixture was incubated at 37 ◦C for 2 h to
induce fluorescent signals (final DMSO concentration, 0.5%; aromatase, 2 nM; and NADPH,
250 µM). Fluorescence was measured using a fluorescence microplate reader (SH-9000,
CORONA ELECTRIC Co., Ltd., Ibaraki, Japan) at an excitation wavelength of 435 nm and
emission wavelength of 535 nm. Experiments were performed in triplicate, and the IC50
values were determined graphically. The aromatase inhibitor, aminoglutethimide, was
used as the reference compound.

3.4.3. Kinetic Analysis of Inhibitory Activity against Human Recombinant Aromatase
Using Lineweaver-Burk Plots

Experiments were performed using a previously described protocol [18], modified by
using various concentrations of testosterone (0.4–4 µM) as substrates instead of DBF and
the plate was heated at 37 ◦C for 15 min. After the reaction, the enzyme was inactivated by
heating in a boiling water bath for 2 min. An estradiol EIA kit (Oxford Biomedical Research,
Inc., Oxford, MI, USA) was used to develop an estradiol standard curve to determine the
concentration of estradiol produced and to correlate the concentration of estradiol with the
reaction velocity. The mode of inhibition was analyzed using the Lineweaver–Burk plot of
the inverse of the reaction velocity of estradiol plotted on the vertical axis and the inverse
of the final concentration of the substrate on the horizontal axis, with and without the test
substance (Figure S27).

3.4.4. Statistics

Values are expressed as mean ± standard mean error (S.E.M.). One-way analysis of
variance (ANOVA), followed by Dunnett’s test, was used for statistical analysis. Probability
(p) values of less than 0.05 were considered significant.

4. Conclusions

Five new prenylcoumarins, mammeasins K–O (1–5), were isolated from the methanolic
extract of the flowers of M. siamensis, a plant originating from Thailand. The stereostruc-
tures of 1–5 were elucidated based on their spectroscopic properties. Fifteen coumarin
constituents, including 1 (IC50 = 7.6 µM) and 5 (9.1 µM), kayaessamin I (23, 9.3 µM), and
mammea A/AA cyclo F (39, 9.2 µM), showed relatively strong aromatase enzymatic in-
hibitory activities, comparable to the activity of a clinically used nonsteroidal aromatase
inhibitor aminoglutethimide (2.0 µM). On the basis of Ki values, 1 (Ki value = 3.4 µM), 4
(2.6 µM), 5 (2.3 µM); mammeasins B (7, 1.3 µM) and C (8, 2.8 µM); surangins B (16, 1.3 µM)
and C (17, 2.6 µM); and mammeas A/AA cyclo D (28, 1.2 µM), B/AB cyclo D (31, 0.84 µM),
and E/BC cyclo D (33, 2.3 µM) were relatively potent competitive inhibitors of human
aromatase. The most potent compound, 31, exhibited almost the same binding affinity as
aminoglutethimide. Thus, coumarin constituents of M. siamensis may be useful agents for
the treatment and prevention of estrogen-dependent breast cancer. The detailed structural
requirements of coumarins leading to aromatase inhibition should be further studied.
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