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Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc
deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to
the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a
beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present
study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice,
nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to
induce type 2 diabetes. This was followed by zinc treatment at 5mg/kg body weight given every other day for 3 months. Global
metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on
conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis,
hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while
zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT
deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that
endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc
supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the
upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation
prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway.

1. Introduction

Globally, diabetes is becoming one of the severest chronic
metabolic diseases. Besides the heart and kidneys, the liver
is also greatly affected by diabetes, with the pathological char-
acteristics of hepatic dysfunction, hepatic steatosis, inflam-
matory cell infiltration, liver hypertrophy, and fibrotic
change [1–5]. Since the liver is the main organ for glucose
and lipid metabolism, diabetes-induced liver injury further
enhanced the metabolic disorders of glucose and lipids [6].
Surprisingly, growing evidence has demonstrated that the

mortality rate of the diabetic patients with the end-stage liver
disease is higher than the mortality rate of diabetic patients
with cardiovascular diseases [6, 7].

In the setting of type 2 diabetes, impaired glucose and
lipid metabolism leads to glycogen deposition in hepatocytes.
This damages the mitochondrial electron transport chain
and induces oxidative stress in the liver [8–10]. In addition,
the impaired glucose metabolism forces the liver to predom-
inantly use lipids for energy supply. This consumes more
oxygen than glucose and enhances the pressure on the elec-
tron transport chain and the subsequent oxidative stress
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[11, 12]. Based on this evidence, oxidative stress is considered
to be key in the pathogenesis of diabetic liver injury.

Zinc is an essential trace element that plays an impor-
tant role in cell growth, immunity maintenance, and gene
transcription [13]. Since diabetes causes intestinal perme-
ability to decrease and urine output to increase, a great
mount of zinc is excreted from the body. This can lead
to zinc deficiency in patients with both type 1 and type 2
diabetes [14–16].

Previous evidence has found that most of the beneficial
effects of zinc are attributed to its antioxidative function
[17–19]. Zinc deficiency enhances the imbalance of redox,
which leads to deterioration and oxidative damage [20]. Pre-
vious studies have indicated that the antioxidative effect of
zinc can be divided into both acute and chronic effects [21].
In regard to acute effects, zinc can directly and competitively
bind to the attacking target chemical groups of peroxide and
superoxide. This binding prevents these groups from being
damaged [21]. Chronic zinc intake induces the expression
of multiple antioxidants, especially metallothioneins (MTs).
MTs are a series of proteins that are cysteine-rich and have
a low molecular weight and a strong metal chelating capacity
[22, 23]. The induced MTs have the capacity to scavenge oxy-
gen free radicals and induce antioxidative effects [24]. Strong
evidence demonstrates that MT is the required downstream
molecule for Nrf2-mediated preventive effects of sulforaph-
ane on diabetic cardiomyopathy [25]. Moreover, Li et al.
indicated that zinc is essential for the transcription function
of Nrf2 in human renal tubule cells in vitro and mouse kid-
ney in vivo in the setting of diabetes [26].

In contrast, administration of zinc partially prevented
diabetic renal damage [27]. Previous research has indicated
that zinc deficiency strongly enhanced diabetes-induced liver
injury likely by downregulation of Akt-GSK3β-Nrf2-medi-
ated antioxidative function in type 1 diabetic mice [3]. More
importantly, we also found that supplementation of zinc
notably prevented the functional, structural, and biochemical
abnormalities in the liver of the spontaneous type 1 diabetic
mice (OVE26) associated with the upregulated hepatic MT
level [4].

Evidence has demonstrated that MT alleviates cardiac
dysfunction in streptozotocin-induced diabetes [28]. The
role of MT in zinc-induced hepatic protection against diabe-
tes is still unknown. At this point, there are obvious differ-
ences of the pathogenesis and symptoms between type 1
and type 2 diabetes. Type 2 diabetes is more commonly pres-
ent in the clinic.

In this study, the aim is to identify whether supplementa-
tion of zinc induces beneficial effect on type 2 diabetes-
induced hepatic damage. In addition, it remains to be deter-
mined whether the hepatic protective effects of zinc against
type 2 diabetes are also mediated by the Nrf2-MT antioxida-
tive pathway. In order to do that, MT-knockout (KO), Nrf2-
KO, and age-matched wild-type (WT) control mice were
treated with a high-fat diet (HFD) plus a single-time dose
of streptozotocin (STZ) to induce type 2 diabetes. This was
followed by zinc sulfate treatment for 3 months. Then, liver
hypertrophy, hepatic cell death, inflammation, fibrosis, and
oxidative damage were examined.

2. Materials and Methods

2.1. Ethics Statement. The experimental protocol was
approved by the Committee on the Ethics of Animal Exper-
iments of Wenzhou Medical University (SYXK2015-0009,
Zhejiang, China). All surgery was performed under anesthe-
sia induced by intraperitoneal injection of 1.2% 2,2,2-Tribro-
moethanol (Avertin) at a dose of 0.2ml/10 g body weight to
minimize suffering of the subjects.

2.2. Establishment of Type 2 Diabetic Mouse Model and Zinc
Treatment. MT-KO mice (8-week-old, male, with back-
ground of 129S1/SvImJ), Nrf2-KO mice (8-week-old, male,
with background of FVB), and their age-matched WT mice
were obtained from Jackson Laboratory (Bar Harbor, Maine,
USA). The mice were housed at 22°C with a 12h light and
dark cycle and free access to rodent chow and tap water.
After a two-week acclimation, the HFD/STZ strategy was
applied to the animals to induce type 2 diabetes as described
previously [29].

For the first step, the mice were fed a HFD (Shanghai
SLAC Laboratory Animal Co., Ltd., 40% of calories from
fat) for 3 months in order to induce obesity and insulin resis-
tance. Then, the obese mice were given a single injection
intraperitoneally of STZ at 50mg/kg body weight to induce
hyperglycemia and finally establish a type 2 diabetic mouse
model [30]. The age-matched nondiabetic mice were given
an injection of equal volume of citrate buffer and fed a stan-
dard diet (SD, Shanghai SLAC Laboratory Animal Co., Ltd.,
10% of calories from fat). Then, both diabetic and nondia-
betic mice were fed by gavage with ZnSO4 solution (0.1
ml/kg body weight) for another 3 months [4]. Thereafter,
all the experimental mice were sacrificed immediately.
Plasma and hepatic tissues were then harvested for further
analysis.

2.3. Measurement of Zinc Level in the Liver Tissue. The
hepatic zinc level was detected by an atomic absorption spec-
trophotometer (Varian SpectraAA 30, Georgetown, Ontario,
Canada) using air-acetylene flame after the liver tissue was
digested with nitric acid [31]. By this assay, the hepatic zinc
in both free and protein-bound types was measured as ng/mg
wet tissue.

2.4. Measurement of Hepatic Function Biomarkers. Multiple
biomarkers represented for hepatic function including serum
plasma alanine aminotransferase (ALT), aspartate amino-
transferase (AST), and alkaline phosphatase (ALP) of these
mice were measured using enzymatic assay kit (Thermo
Fisher Scientific, Waltham, MA, USA).

2.5. Histological Examination. After being fixed in 10% for-
malin, samples were gradient dehydrated and embedded in
paraffin for 24 h. The liver tissues were cut into slices at 5
μm of thickness. Then, the slices were deparaffinized using
xylene and ethanol dilutions and rehydration for the further
staining.

2.6. Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick End Labeling (TUNEL) Assay. TUNEL staining was
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used to determine in situ apoptotic cells; 5μm thick samples
of tissue sections were used for the TUNEL apoptosis detec-
tion. This was done using the One Step TUNEL Apoptosis
Assay Kit (Beyotime Biotech, Beijing, China) following the
manufacturer’s instructions. The cell level of apoptosis was
detected by the Leica-TCS SP8 laser confocal microscope
(200∗ amplification; Leica, Germany). Apoptotic cell death,
noted in red, was quantitatively analyzed by counting
TUNEL-positive cells selected randomly from 10 fields.
Results were presented as TUNEL-positive cells per 103 cells.

2.7. Detection of Hepatic Lipid Accumulation. Fresh hepatic
tissue was embedded in OCT at -20°C until it became solid.
The samples were then cut into cryosections with a thickness
of 10μm. After this, the slices were fixed in 10% buffered for-
malin for 5min at 25°C, stained with Oil Red O for 1.5 h,
washed with 10% isopropanol, and then counterstained with
hematoxylin (DAKO, Carpinteria, CA) for 40 s. Hepatic lipid
accumulation was then detected using a Nikon microscope
(Nikon, Melville, NY) at 40x magnification.

2.8. Western Blot. Hepatic tissues were homogenized in a
lysis buffer in order to release total proteins, which were col-
lected by centrifuging at 12,000 rpm at 4°C and for 10min.
After measurement of the protein concentration by Bradford
assay, the sample of total protein was diluted in loading
buffer and heated at 95°C for 5min, then subjected to electro-
phoresis on an 8–10% SDS-PAGE gel. Samples were then
transformed to a nitrocellulose membrane. Membranes were
then rinsed in tris-buffered saline and placed in blocking
buffer at room temperature for 1 h. Samples were then
washed 3 times with tris-buffered saline containing 0.05%
Tween 20 (TBST). The membranes were then incubated with
corresponding primary antibodies overnight at 4°C. The
samples were washed 3 times with TBST again, and the
membranes were incubated with secondary horseradish
peroxidase-conjugated antibody for 1 h at room temperature.
Antigen-antibody complexes were then visualized using an
ECL kit (Amersham, Piscataway, NJ, USA). The primary
antibodies included those against 4-hydroxynonenal (4-
HNE, 1 : 2000, Calbiochem, San Diego, CA, USA), 3-nitrotyr-
osine, (3-NT, 1 : 1000, Chemicon), intercellular adhesion
molecule-1 (ICAM-1, 1 : 500, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), C/EBP homology protein (CHOP, 1 :
500, Santa Cruz Biotechnology, Santa Cruz, CA, USA), plas-
minogen activator inhibitor type 1 (PAI-1, 1 : 2000, BD Biosci-
ences, Sparks, MD, USA), nuclear factor-erythroid 2-related
factor 2 (Nrf2, 1 : 1000), connective tissue growth factor
(CTGF, 1 : 1000), and transfer growth factor (TGF-β, 1 : 500).
These antibodies were purchased from Abcam (Cambridge,
MA, USA). Other primary antibodies, including cleaved-
caspase 3 (C-cas3, 1 : 500), tumor necrosis factor-α (TNF-α,
1 : 500), cleaved-caspase 12 (1 : 1000), and Bax and Bcl-2 (1 :
1000), were purchased from Cell Signaling Technology (Dan-
vers, MA, USA).

2.9. Hepatic Triglyceride (TG) Detection.Hepatic tissues were
homogenized in PBS, and lipids were extracted using metha-
nol and chloroform in a ratio of 1 : 2. The samples were dried

in an evaporating centrifuge and resuspended in 1% Triton
X-100. Colorimetric assessment of hepatic TG levels was per-
formed using Thermo Fisher Scientific TG assay reagents
(Thermo Fisher Scientific, MA, USA). Values were normal-
ized to the protein concentration in homogenate before
extraction, determined by the Bradford assay (Bio-Rad Labo-
ratories, Hercules, CA, USA).

2.10. Statistical Analysis. Data were collected from repeated
experiments and are presented as the mean ± SD (n = 8).
One-way ANOVA was used to determine the statistical dif-
ference. If a significant difference was detected, a post hoc
Turkey test was used to analyze the difference between
groups. The software used was the OriginLab data analysis
and graphing software (version 7.5). Statistical significance
was considered as P < 0:05.

3. Results

3.1. The Expression Changes of Both Zinc and MT under Type
2 Diabetic Condition in Response to Zinc Supplementation. In
the present study, we found that zinc supplementation
increased the hepatic zinc level, while type 2 diabetes
decreased it (Figure 1(a)) and MT level (Figure 1(b)). In
MT-KO mice, the hepatic MT expression was rarely detect-
able in each group (Figure 1(b)). More importantly, zinc sup-
plementation upregulated hepatic zinc and MT level under
the type 2 diabetic condition (Figure 1). Additionally, the
change in pattern of zinc levels among different groups was
similar between WT and MT-KO mice (Figure 1(a)). This
implies that the endogenous MT deficiency had no impact
on hepatic zinc level.

3.2. The Effect of Zinc Supplement on Body Weight and
Metabolic Disorders of Glucose and Lipid. Type 2 diabetes is
characterized by insulin resistance and hyperglycemia. These
conditions were induced using the HFD/STZ strategy. After
type 2 diabetes was established, the mice were given zinc sup-
plementation for 3 months. Compared to the mice fed a stan-
dard fat diet, the HFD-induced type 2 diabetic mice exhibited
an obvious increase in body weight (Figure 2(a)), as well as
hyperglycemia (Figure 2(b)), insulin resistance characterized
by decreased glucose intolerance (Figures 2(c) and 2(d)),
insulin sensitivity (Figures 2(e) and 2(f)), and increased
serum insulin (Figure 2(g)).

In addition, an increased plasmatic triglyceride level was
also observed in type 2 diabetic mice (Figure 2(h)). After
zinc supplementation for 3 months, the above biochemical
abnormalities were comparable with the type 2 diabetic
mice without zinc treatment (Figure 2). This indicates that
the zinc supplement had no impact on the obesity or glu-
cose and lipid metabolism in the type 2 diabetic mice. More-
over, the endogenous MT deficiency had no impact on the
type 2 diabetes-induced body weight gain and hyperglyce-
mia and hyperlipidemia with or without zinc supplementa-
tion (Figure 2).

3.3. Zinc Supplementation Prevented Type 2 Diabetes-Induced
Hepatic DysfunctionMediated byMT. In this study, we found
that 3 months after type 2 diabetes was diagnosed, obvious
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hepatic dysfunction was observed, characterized by the
increase of plasma ALT (Figure 3(a)), AST (Figure 3(b)),
and ALP (Figure 3(c)). Hepatic dysfunction in type 2 diabetic
mice was strongly inhibited by zinc treatment (Figure 3),
indicating that chronic zinc supplementation induced a pre-
ventive effect on type 2 diabetes-related hepatic dysfunction.
In addition, we found that MT deficiency further enhanced
type 2 diabetes-induced hepatic dysfunction (Figure 3). This
suggested that endogenous MT played an important role in
maintaining hepatic function under the type 2 diabetic con-
dition. Additionally, zinc supplementation-induced protec-
tion of hepatic function against type 2 diabetes was blocked
(Figure 3) in MT-KOmice. This suggests that MT is required
for hepatic function and protection of zinc supplementation.

3.4. Zinc Supplementation Prevented Liver Hypertrophy in
Type 2 Diabetic Mice Mediated by MT. Type 2 diabetes-
induced liver damage is always associated with liver hyper-
trophy and is characterized by the liver weight increase that
was observed in the present study (Figure 4(a)). Since the
body weight of mice fed with SFD and HFD was different,
the ratio of body weight to tibia length was measured. We
found that the ratio increased in type 2 diabetic mice and
was significantly inhibited in response to zinc treatment
(Figure 4(b)). This indicated that zinc supplementation
induced preventive effects against liver hypertrophy in type
2 diabetic mice. Compared to the WT mice, type 2
diabetes-induced liver hypertrophy in MT-KO mice was
further enhanced. This supports the idea that endogenous
MT is required to keep the liver from hypertrophy
(Figure 4). In addition, MT deficiency also blocked the zinc
supplementation-induced preventive effect against liver

hypertrophy in type 2 diabetic mice (Figure 4). This sug-
gested that endogenous MT mediated the antihypertrophic
effect of zinc treatment in the type 2 diabetic liver.

3.5. Zinc Supplementation Suppressed Type 2 Diabetes-Induced
Inflammation and Fibrosis Depending on Endogenous MT.
Type 2 diabetes-induced liver damage is almost always accom-
panied by severe hepatic inflammation characterized by the
expression increases of ICAM-1 (Figure 5(a)), TNF-α
(Figure 5(b)), and PAI-1 (Figure 5(c)).

Fibrosis is another feature of diabetes-induced liver dam-
age that was identified byMasson staining. In this study, fibro-
sis was observed (blue represents fibrotic change) in both WT
and MT-KO mice (Figures 5(d) and 5(e)). The diabetic-
induced fibrosis was further confirmed by the upregulated
expression of hepatic CTGF, TGF-β, fibronectin- (FN-) 1, α-
SMA, and collagen- (Col-) 1a (Figures 5(f) and 5(j)).

Additionally, the induced inflammatory response and
fibrotic effect in the WT diabetic liver were further enhanced
in the MT-KO diabetic liver (Figure 5), suggesting that
endogenous MT was involved in the anti-inflammatory and
antifibrotic system of the diabetic liver. In WT mice, zinc
supplementation showed the preventive effect on the inflam-
mation and fibrosis under the type 2 diabetic condition
(Figure 5). In this case, the beneficial effect was blocked in
MT-KO mice (Figure 5). This indicated that MT is required
for zinc supplement-induced anti-inflammatory and antifi-
brotic effect in the diabetic liver.

3.6. Endogenous MT Is Required for the Preventive Effect of
Zinc on Type 2 Diabetes-Induced Hepatic Steatosis. Hepatic
steatosis is a classic feature of obesity or type 2 diabetes. In
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Figure 1: The effects of zinc supplementation on hepatic zinc and MT in both WT and WT-KO mice under type 2 diabetic condition.
HFD/STZ strategy was applied in both WT and MT-KO mice to induce type 2 diabetes. Then, the diabetic and nondiabetic mice were
treated with ZnSO4 for 3 months. After sacrifice, the liver tissue was isolated for hepatic zinc level measurement by an atomic absorption
spectrophotometer (a). Western blot was also applied to detect hepatic MT level among groups (b). Data are presented as the mean ±
standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice; #P < 0:05 vs. the type 2 diabetes (DM) group in WT
mice; @P < 0:05 vs. the control (Con) group in MT-KO mice; ФP<0.05 vs. the control (DM) group in MT-KO mice.
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the present study, oil O red staining showed that the lipid
accumulation significantly increased in liver of type 2 dia-
betic WT mice (Figures 6(a) and 6(b)). Similar findings
were also observed for the hepatic TG level (Figure 6(c)).
The phenomenon above was suppressed after treatment
with zinc (Figure 6). In addition, MT deficiency further
enhanced type 2 diabetes-induced steatosis and blocked
zinc supplementation-induced lipid-lowering effect (Figure 6).
This indicates that zinc supplementation suppressed hepatic

lipid accumulation mediated by endogenous MT in type 2
diabetic mice.

3.7. Zinc Supplementation Induced Antiapoptotic Effect in the
Type 2 Diabetic Liver Depending on MT.Hepatic apoptosis is
regarded as the cytological basis for type 2 diabetes-induced
liver damage [32]. In the present study, the hepatic apoptosis
was first evaluated by TNUEL staining, which showed that
the positive apoptotic liver cells, displayed in red, were hardly
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Figure 2: The effect of zinc supplementation on the metabolic parameters in bothWT andMT-KOmice under diabetic condition. In order to
identify the role of zinc supplementation on the glucose and lipid metabolic disorders, the body weight (a), blood glucose level (b), glucose
tolerance (c, d), insulin sensitivity (e, f), serum insulin level (g), and plasma triglyceride level (h) were measured. Data are presented as the
mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice; @P < 0:05 vs. the control (Con) group in MT-
KO mice.
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observed in the nondiabetic mice (Figures 7(a) and 7(b)). The
positive apoptotic cells were significantly increased in the
livers of type 2 diabetic mice (Figures 7(a) and 7(b)), but this
was prevented by treatment with zinc (Figures 7(a) and 7(b)).
These results indicate that zinc supplementation inhibited
type 2 diabetes-induced hepatic apoptosis and subsequent
liver injury. When compared to WT mice, the numbers of
apoptotic cells were notably increased in the liver of MT-
KO mice under type 2 diabetic condition (Figures 7(a) and
7(b)). This indicates MT is required for the induction of the
endogenous antiapoptotic effect. Additionally, the zinc-
induced antiapoptotic effect in the type 2 diabetic liver was
not observed in the MT-KO mice (Figures 7(a) and 7(b)).
These results suggested endogenous MT mediated the pre-
vention of zinc treatment on type 2 diabetes-induced hepatic
apoptosis. Cleaved-caspase 3, the classic apoptotic marker,
was increased in the liver of WT diabetic mice and further
enhanced in MT-KO diabetic mice (Figure 7(c)). Similar to
the findings of TUNEL staining, MT deficiency also blocked
zinc supplement-induced inhibition and increased caspase 3
cleavage (Figure 7(c)). These results confirmed that zinc pre-
vented type 2 diabetes-induced hepatic apoptosis mediated
by MT.

Previous research has shown that apoptosis is mediated
by the mitochondrial pathway and the endoplasmic reticu-
lum (ER) stress pathway. These were also investigated in
the present study. The ratio of Bax to Bcl-2 represented the
status of the mitochondrial apoptotic pathway which was
increased in the type 2 diabetic liver (Figure 7(d)). The acti-
vated ER stress pathway was also observed characterized by
the expression increases of C-cas12 (Figures 8(a) and 8(b)),
CHOP (Figures 8(a) and 8(c)), and GRP 78 (Figures 8(a)
and 8(d)). This occurred through induction of the IREα-
ATF4 pathway in the liver under type 2 diabetic conditions
(Figures 8(e) and 8(f)). The diabetes-activated mitochondrial
and ER stress apoptotic pathways were enhanced in the
diabetic liver of MT-KO mice (Figures 7(d) and 8). This
indicated that MT is required for the endogenous inhibition
of these two apoptotic pathways. More importantly, zinc
supplementation strongly prevented the activated mito-
chondrial and ER stress-mediated apoptotic pathways
(Figures 7(d) and 8), which was blocked in the MT-KO
mice (Figures 7(d) and 8). This suggested that MT is required
for zinc supplementation-induced inhibition against the acti-

vated mitochondrial and ER stress apoptotic pathway and in
response to type 2 diabetes.

3.8. Zinc Supplementation Suppressed Type 2 Diabetes-
Induced Hepatic Oxidative Stress Mediated by Endogenous
MT. Oxidative stress is regarded as the key pathogenesis of
diabetic liver injury. Hence, the hepatic oxidative stress was
examined by protein nitration and lipid peroxidation with
western blot of 3-NT and 4-HNE, respectively, the expres-
sion of which was significantly upregulated in the liver of dia-
betic WT mice (Figures 9(a) and 9(b)). The hepatic content
of MDA, the end-product of lipid peroxidation, was also
increased in the type 2 diabetic mice (Figure 9(c)). This
confirmed the severe hepatic oxidative stress of type 2 dia-
betes. Oxidative stress was notably suppressed after treat-
ment of zinc (Figures 9(a)–9(c)). When compared to the
WT mice, type 2 diabetes-induced hepatic oxidative stress
was enhanced in MT-KO mice (Figures 9(a)–9(c)). These
findings indicate that endogenous MT played an anti-
oxidative role in the liver under diabetic condition. Addi-
tionally, the zinc supplementation-induced antioxidative
effect against type 2 diabetes was inhibited in MT-KO mice
(Figures 9(a)–9(c)). These findings suggest that endogenous
MT is necessary for the antioxidative effect induced by zinc
supplementation, specifically under the type 2 diabetic con-
dition. Previous research has suggested that oxidative stress
might be attributed to the impaired antioxidant transcrip-
tion. We found that hepatic mRNA levels of multiple anti-
oxidant enzymes, including nqo-1, ho-1, and cat, were
significantly decreased under the type 2 diabetic condition
(Figures 9(d)–9(f)), which were further enhanced in MT-
KO mice (Figures 9(d)–9(f)). In WT diabetic mice, zinc
supplementation partially prevented the reduction of anti-
oxidant enzymes at mRNA level in the liver. This was
blocked in MT-KO mice (Figures 9(d)–9(f)). These findings
suggest that MT is involved in zinc supplementation-
induced upregulation of multiple antioxidant enzymes at
mRNA level.

3.9. MT-Mediated Zinc Supplementation-Induced Hepatic
Protection against Type 2 Diabetes Might Be Regulated by
Nrf2. Since nqo-1, ho-1, and cat are the downstream targets
of Nrf2, the relationship between Nrf2 and MT in the zinc-
induced hepatic protection in Nrf2-KO mice under type 2
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the present study. Data are presented as the mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice;
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diabetic condition was also examined in this study. We
found that type 2 diabetes decreased the hepatic MT level
(Figure 10(a)). This effect was further enhanced in Nrf2-
KO mice (Figure 10(a)). Supplementation of zinc signifi-
cantly prevented the reduction of hepatic MT under the
type 2 diabetic condition (Figure 10(a)). This result was
blocked in Nrf2-KO mice (Figure 10(a)). In addition,
Nrf2-KO also blocked zinc supplement-induced prevention
of hepatic apoptosis and oxidative stress (Figures 10(b)

and 10(c)). These results indicate that Nrf2 is required for
MT-mediated hepatic protection of zinc against type 2
diabetes.

4. Discussion

Zinc is a trace metal and also an active component of various
enzymes. Typically, the level of zinc is decreased under the
type 1 diabetic condition. This is attributed to increased
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Figure 5: The effect of zinc supplementation on type 2 diabetes-induced inflammatory response and fibrosis. Hepatic expression of
inflammatory factors, including ICAM-1 (a), TNF-α (b), and PAI-1 (c), was examined by western blot. Hepatic collagen accumulation was
examined by Masson staining (d, e). Hepatic fibrosis was examined by western blot for the expression of CTGF (f), TGF-β (g), FN-1 (h),
α-SMA (i), and Col-1a (j). Data are presented as the mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in
WT mice; #P < 0:05 vs. the type 2 diabetes (DM) group in WT mice; @P < 0:05 vs. the control (Con) group in MT-KO mice.
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urination [33–35]. In addition, growing evidence has demon-
strated that zinc deficiency further enhanced the type 1
diabetes-induced tissue damage of multiple organs including
the heart [33, 36], kidneys [26], aorta [37], and testis [16, 38,
39]. All of the phenomenon were prevented by zinc supple-
mentation [40–43], indicating that zinc has beneficial effects
on multiple diabetic complications. Previous research has
shown that the liver is another target organ of diabetes. More
importantly, our previous studies indicated that type 1
diabetes-induced hepatic pathogenic damage, inflammation,
oxidative stress, and insulin resistance were all exacerbated in
the zinc-deficient mouse model [3]. This was notably pre-
vented after chronic treatment with zinc [4], suggesting that

zinc induces beneficial effects on the liver in type 1 diabetic
mice. The current study revealed that zinc-induced hepatic
protection against type 1 diabetes occurred via activation of
AKT-GSK3β-Nrf2-mediated, antioxidative signaling [3].
Additional research by others has confirmed that administra-
tion of zinc reversed the reduction of multiple antioxidants
including catalase, superoxide dismutase, glutathione-S-
transferase, glutathione peroxidase, and glutathione reduc-
tase in the type 1 diabetic liver [44].

It is well known that the pathogenesis between type 1 dia-
betes and type 2 diabetes is different. Type 1 diabetes is
regarded as absolute deficiency of insulin and is attributed
to the complete damage of islet β cells. Type 2 diabetes occurs
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Figure 7: The role of endogenous MT in zinc supplementation-induced antiapoptotic effect in the liver of type 2 diabetic mice. Hepatic
apoptosis was examined by TUNEL staining (a), followed by the quantitative analysis of the positive cells (b). Hepatic expression of
apoptotic cell death factors, including cleaved-caspase3 (C-cas3) (c) and Bax/Bcl-2 (d), was examined by western blot analysis. Data are
presented as the mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice; #P < 0:05 vs. the type 2
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from relative deficiency of insulin attributed to insulin
resistance. Type 2 diabetes is almost always accompanied
by a lipid metabolic disorder that is characterized by the
excessive lipid accumulation in the liver and severe oxida-
tive damage [1–5].

In the setting of type 2 diabetes, the antioxidative effects
of zinc supplementation were characterized by decreased
hepatic MDA [45]. Another study showed that zinc supple-
mentation in addition to strength exercise reduced the lipid
accumulation under type 2 diabetic condition [46]. There
has been no systematic study done to identify the role of zinc
supplementation in the type 2 diabetes-induced hepatic dam-
age that was investigated in the present study. We found that
zinc supplementation notably prevented type 2 diabetes-
induced liver injury including hepatic dysfunction, hyper-
trophy, inflammatory response, fibrosis, lipid accumulation,
cell apoptosis, and oxidative stress. Next, we focused on
dissecting the underling mechanism of zinc supplementation-
induced hepatic protection under the type 2 diabetic condi-
tion. First, we investigated whether the above beneficial effect
of zinc was attributed to the regulation of the glycemia and
lipid metabolism. Previous studies demonstrated that zinc
treatment did not improve, and even slightly enhanced the
metabolic disorders [45, 46]. Similar results were confirmed
in this study, indicating that zinc supplementation-induced
liver protection against type 2 diabetes was not attributed to
the maintenance of glucose and lipid metabolism. Although
zinc supplementation had no effect on the hyperlipidemia,

the hepatic steatosis was strongly reduced in the presence of
zinc treatment in type 2 diabetic mice. Strong evidence has
demonstrated that zinc can act directly on the liver and keep
the liver from steatosis and apoptosis by inhibition of the
eIF2α/ATF4/CHOP-mediated ER stress pathway [47]. These
findings were also confirmed in the present study. Addition-
ally, besides the inhibition of ER-stress pathway-related apo-
ptosis, antimitochondrial pathway-related apoptosis was also
involved in zinc supplementation-induced hepatic protection
under the type 2 diabetic condition. This was characterized
by the ratio decrease of hepatic Bax to Bcl-2.

The mechanism of zinc supplementation regulating the
ER stress pathway or mitochondrial pathway-induced
hepatic apoptosis in 2 diabetic mice remains unclear. Previ-
ous studies have demonstrated that oxidative stress can be
regarded as a key pathogenesis. Kang et al. indicated that zinc
treatment induced a reduction of alcoholic steatosis and
apoptosis in the liver with the potential mechanism of anti-
oxidation [48]. In the present study, antioxidative and antia-
poptotic effects of zinc supplementation were also observed
in the liver under type 2 diabetic condition and characterized
by the reduction of 3-NT and 4-HNE levels as well as the
induction of antioxidants at the mRNA level like NQO-1,
HO-1, and CAT. It has been previously indicated that the
induction of multiple antioxidants might contribute to the
zinc supplementation-induced antioxidative effect and
hepatic protection in type 2 diabetic mice. Since we did not
measure ROS production, it remains to be determined if
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Figure 8: The role of endogenous MT in zinc supplementation-induced anti-ER stress in the liver of type 2 diabetic mice. Hepatic indexes of
ER stress including cleaved-caspase12 (C-cas12) (a, b), CHOP (a, c), GRP78 (d), phosphorylated IRE-α (e), and ATF4 (f) were examined by
western blot analysis. Data are presented as themean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice;
#P < 0:05 vs. the type 2 diabetes (DM) group in WT mice; @P < 0:05 vs. the control (Con) group in MT-KO mice.
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the hepatic protection of zinc also was related to the inhibi-
tion of hepatic ROS. The next issue was the mechanism of
zinc supplementation-induced antioxidative effect, which
finally led to the hepatic protection.

As we know, MT is a low molecular weight protein that is
rich in cysteine and can be induced by zinc treatment.
Kumari et al. reported that MT is a strong free radical scaven-
ger, which was predominantly produced in the liver [49].

Later studies demonstrated the MT plays a crucial role in
protecting the liver from the oxidative damage induced by a
diversity of pathogenic and exposure conditions [50–52].
As the ROS scavenger, hepatic MT was induced under type
1 diabetic condition. This was regarded as a compensatory
effect in response to the increased ROS. In the present study,
reduced hepatic MT was observed in the type 2 diabetic mice.
We assumed that steatosis and insulin resistance were also
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Figure 9: The role of endogenous MT in zinc supplementation induced an antioxidative effect in the liver of type 2 diabetic mice. Oxidative
stress is regarded as the initial pathogenesis of type 2 diabetes-induced liver injury. In the present study, classic oxidative markers including 3-
NT (a) and 4-HNE (b) were measured by western blot. The end-product of lipid peroxidation, MDA (c), was determined by the ELISA kit.
The mRNA levels of antioxidants including NQO-1 (d), HO-1 (e), and CAT (f) were determined by real-time PCR. Data are presented as the
mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in WT mice; #P < 0:05 vs. the type 2 diabetes (DM) group in
WT mice; @P < 0:05 vs. the control (Con) group in MT-KO mice.
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Figure 10: The role of endogenous Nrf2 in zinc supplementation-induced hepatic MT increase under type 2 diabetic condition. HFD/STZ
strategy was applied in both WT and Nrf2-KO mice to induce type 2 diabetes, followed by 3 months of zinc supplementation. After the
mice were sacrificed, the liver tissues from each group were isolated. Hepatic MT (a), cleaved-caspase3 (b), and 4-HNE (c) were
determined by western blot. Data are presented as the mean ± standard deviation (n = 8/group). ∗P < 0:05 vs. the control (Con) group in
WT mice; #P < 0:05 vs. the type 2 diabetes (DM) group in WT mice; @P < 0:05 vs. the control (Con) group in Nrf2-KO mice.
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involved in type 2 diabetes and may further damage the liver.
This damage might impair the MT expression.

In order to identify the role ofMT in zinc supplementation-
induced hepatic protection against type 2 diabetes, MT-KO
mice were used. As expected, the results showed that endog-
enous MT deficiency further enhanced type 2 diabetes-
induced hepatic damage and blocked zinc supplementation-
induced hepatic protection. These results indicated that
endogenous MTmediated the hepatic protection of zinc sup-
plementation in type 2 diabetic mice.

In the present study, upregulated nqo-1, ho-1, and cat
were observed. These are the downstream target genes of
Nrf2. Strong evidence indicated that zinc is essential for the
transcriptional ability of Nrf2 in tubular cells [26]. Addition-
ally, previous research demonstrated that zinc supplementa-
tion prevented type 1 diabetes-induced hepatic damage via
the activation of AKT-GSK3β-Nrf2 pathway [4]. Of note,
Gu et al. indicated that MT is downstream of Nrf2 and par-
tially mediates sulforaphane in the prevention of diabetic car-
diomyopathy [25]. Based on the evidence above, the role of
Nrf2 in zinc supplementation-induced hepatic MT increase
was identified in Nrf2-KO mice. Results showed that the
induced hepatic MT of zinc supplementation was blocked
once Nrf2 was deficient, indicating that Nrf2 is upstream of
MT and able to medicate zinc supplementation-induced
hepatic protection.

In summary, we systematically identified that zinc supple-
mentation prevented type 2 diabetes-induced hepatic damage.
The mechanistic study indicated that zinc supplementation-
induced hepatic protection against type 2 diabetes was due
to the activation of the Nrf2-MT-mediated antioxidative
pathway.
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