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Most diffusion magnetic resonance imaging (dMRI) techniques use the mono-
exponential model to describe the diffusion process of water in the brain. However,
the observed dMRI signal decay curve deviates from the mono-exponential form. To
solve this problem, the fractional motion (FM) model has been developed, which is
regarded as a more appropriate model for describing the complex diffusion process in
brain tissue. It is still unclear in the identification and classification of Alzheimer’s disease
(AD) patients using the FM model. The purpose of this study was to investigate the
potential feasibility of FM model for differentiating AD patients from healthy controls and
grading patients with AD. Twenty-four patients with AD and 11 healthy controls were
included. The left and right hippocampus were selected as regions of interest (ROIs).
The apparent diffusion coefficient (ADC) values and FM-related parameters, including the
Noah exponent (α), the Hurst exponent (H), and the memory parameter (µ = H− 1/α),
were calculated and compared between AD patients and healthy controls and between
mild AD and moderate AD patients using a two-sample t-test. The correlations between
FM-related parameters α, H, µ, and ADC values and the cognitive functions assessed
by mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA)
scales were investigated using Pearson partial correlation analysis in patients with
AD. The receiver-operating characteristic analysis was used to assess the differential
performance. We found that the FM-related parameter α could be used to distinguish
AD patients from healthy controls (P < 0.05) with greater sensitivity and specificity (left
ROI, 0.917 and 0.636; right ROI, 0.917 and 0.727) and grade AD patients (P < 0.05)
showed higher sensitivity and specificity (right ROI, 0.917, 0.75). The α was found to be
positively correlated with MMSE (P < 0.05) and MoCA (P < 0.05) scores in patients with
AD, indicating that the α values in the bilateral hippocampus were a potential MRI-based
biomarker of disease severity in AD patients. This novel diffusion model may be useful
for further understanding neuropathologic changes in patients with AD.

Keywords: diffusion magnetic resonance imaging, fractional motion model, anomalous diffusion, Alzheimer’s
disease, hippocampus
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disease and is characterized by memory loss and cognitive
decline (Reddy and Oliver, 2019). According to the World Health
Organization (WHO), dementia affects nearly 47.5 million
individuals worldwide and still increases by approximately 7.7
million new cases each year (Khan et al., 2017; Salvatore
et al., 2018). As the most common type of dementia, AD may
account for 60–70% of these cases (Wortmann, 2012; Alzheimer’s
Association, 2016; Khan et al., 2017) and has a significant
impact on the life quality of patients and societal costs. The
pathogenesis of AD is extremely complicated, mainly including
the deposition of amyloid-β (Aβ) and hyperphosphorylation
of tau protein, which results in the formation of Aβ-plaques
and intracellular neurofibrillary tangles (NFTs) separately (Kidd,
1963; Hyman et al., 1984; Braak and Braak, 1991; Wegmann
et al., 2010; Aisen et al., 2017), then causes neuronal death.
Now the diagnosis of AD is complicated and the accuracy
is difficult. Therefore, it is of great significance to develop
an effective diagnostic method for AD in clinical research
(Cummings, 2017).

Diffusion magnetic resonance imaging (dMRI) is a powerful
and non-invasive tool that can describe the random motion
of water molecules in biological tissues, provide unique
information about the microscopic properties, and is highly
sensitive to detecting changes in gray and white matter in the
brain (Yoshiura et al., 2003). The diffusion process of water
molecules in the nervous system is directionally dependent
(Chenevert et al., 1990; Moseley et al., 1990). And this
directional dependence, namely anisotropy, occurs primarily
due to the inherent axonal membranes that hamper water
molecule diffusion and the dense packing of axons (Beaulieu,
2002). Measurements of the anisotropy of water molecules
diffusion at the micron level reflect the changes of the
underlying microstructure.

Compared with other magnetic resonance imaging (MRI)
modalities, dMRI investigates the diffusion process at the cellular
scale in tissues (e.g., micrometers), which is far superior to the
typical millimetric image resolution (Le Bihan and Johansen-
Berg, 2012). At present, one of the most widely used dMRI
techniques in clinical application is the apparent diffusion
coefficient (ADC), and b-values obtained by dMRI frequently
range from 0 to 1000 s/mm2. Apparent diffusion coefficient is
widely used in clinical practice, and it can be used to differentiate
brain tumors (Yamasaki et al., 2005) and grade tumors (Bulakbasi
et al., 2004), and distinguish mild cognitive impairment (MCI)
and AD (Pietroboni et al., 2018; Xue et al., 2019). Diffusion tensor
imaging (DTI) is another widely used dMRI technique in the
research. The fractional anisotropy (FA) and mean diffusivity
(MD) obtained from DTI are potential biomarkers of brain
abnormalities in patients with MCI and AD (Bosch et al.,
2012; Nir et al., 2013; Mayo et al., 2018). However, both ADC
and DTI have some limitations. Firstly, it is well known that
conventional dMRI uses a mono-exponential model and assumes
a standard diffusion process in biological tissues. However, many
studies have found that the observed dMRI signal decay curve

deviates from the mono-exponential form (De Santis et al.,
2011). Both ADC and DTI are based on the standard mono-
exponential diffusion model, and the observed diffusion-time
reflects the non-Gaussian nature of diffusion (Fieremans et al.,
2016; Xu et al., 2017a). Secondly, the tensor model of DTI is too
simple, which means that its indices can be affected by several
features of the microstructure. To solve this problem, many
models based on different theories and anomalous diffusion
processes have been developed to find the optimal agreement
between the experimentally observed signal decay curve and
the proposed fitting curves (Mulkern et al., 1999; Maier et al.,
2001; Jensen et al., 2005; Magin et al., 2008). These models
guarantee a more detailed detection of the differences between
disease types and disease grades but their signal decay curves are
still different.

Recently, a novel fractional motion (FM) model was developed
by the Center for MRI Research at Peking University. The
FM model is regarded as a more appropriate model in the
biophysics community for describing the complex diffusion
process in biological systems (Magdziarz et al., 2009; Burnecki
and Weron, 2010; Weiss, 2013), and it is a promising model for
describing the diffusion process of brain tissue. Several studies
have demonstrated that the FM model is a better model to explain
the diffusion process of biological living cells (Magdziarz et al.,
2009). The FM model assumes that the diffusion process of
tissues is H-self-similar, α-stable, and has stationary increments
(Xu et al., 2017b). The symbol α is the Noah exponent that
can quantify the fluctuations of the random process. When
α = 2, the increments are Gaussian distributed, while when
0 < α < 2, the increments are Lévy distributed (Xu et al.,
2017b; Xu et al., 2017a). H is the Hurst exponent, which
depicts the self-similarity property of molecular trajectories. µ
is the memory parameter and µ = H − 1/α. When µ > 0,
the increments are positively correlated and show long-range
dependence (long memory, persistence), while when µ < 0,
the increments of the process are negatively correlated and
show short-range dependence (short memory, anti-persistence)
(Xu et al., 2017a,b).

Previous studies have found that the FM-related parameter
maps of healthy people showed obvious contrasts among
normal brain tissues (Fan and Gao, 2015), and the FM-related
parameter maps are superior to ADC in differentiating between
low-grade and high-grade gliomas (Xu et al., 2017b, 2018).
However, the parameters (α, H, and µ) of the FM model
in identifying AD patients from healthy controls and grading
AD patients is still not clear. Therefore, the purpose of this
study was to investigate the potential feasibility of the FM
model for distinguishing AD patients from healthy controls and
grading AD patients.

MATERIALS AND METHODS

Subjects
This study was approved by the ethics committee of China-
Japan Friendship Hospital and informed consent was obtained
from all subjects. The cognitive function of all participants was
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assessed using the mini-mental state examination (MMSE) scale
and Montreal cognitive assessment (MoCA) scale. A total of 24
AD patients and 11 healthy controls underwent MRI examination
and MMSE and MoCA scale assessment. These AD patients
visited China-Japan Friendship Hospital between November
2015 and March 2019. The clinical diagnosis of AD met
criteria as determined by the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
(1984) (Du et al., 2018). Patients met the following criteria:
(a) The MR image quality was good, no artifacts; (b) patients had
no concurrent brain diseases; and (c) patients had no limb activity
disorders, aphasia, visual, and hearing impairment. Healthy
controls were recruited from the local community. Healthy
controls with a history of cardiovascular, neurologic, metabolic,
and psychiatric disorders or brain abnormalities detected by
conventional MRI were excluded from this study, and the MMSE
scores of healthy control were between 26 and 30. Table 1
shows their clinical characteristics. All participants underwent
conventional MRI, 3D T1weighted imaging, and dMRI.

Image Acquisition
Brain MR imaging was acquired on a 3.0 Tesla (T) MRI scanner
(GE Healthcare, Discovery MR750, United States) with an eight-
channel head coil. Using a special Stejskal-Tanner single-shot
spin-echo echo-planar-imaging sequence to obtain dMRI images
of all subjects.

We did not fix the diffusion gradient separation time (1)
in the process of scanning the conventional dMRI sequence in
order to fit the FM model. Specifically, 1 was arrayed at 27.060,
39.560, and 52.060 ms. The diffusion gradient amplitude (G0) was
arranged as 15.67, 19.68, 24.73, 31.06, 39.01, and 49.00 mT/m
for each 1 value, which were selected to be approximately
evenly spaced on the log axis. The gradient duration constant
(δ) was fixed at 20.676 ms. So, we obtained 18 non-zero b-values
(151, 239, 377, 595, 939, 1481 s/mm2 for 1 at 27.060 ms, 245,
387, 611, 964, 1521, 2399 s/mm2 for 1 at 39.560 ms, and 339,
535, 845, 1333, 2103, and 3317 s/mm2 for 1 at 52.060 ms) in
each gradient direction, respectively. To minimize the effect of
diffusion anisotropy, we applied the diffusion gradients in three

TABLE 1 | Demographic information and clinical assessment scores for all
subjects.

AD patients

Healthy P-value
Mild AD Moderate AD controls

Number 12 12 11 –

Male/female 6/6 3/9 2/9 >0.05

Age 65.83 ± 10.06 72.08 ± 3.75 65.27 ± 6.60 >0.05

Education 13.42 ± 3.06 10.50 ± 3.87 10.64 ± 3.30 >0.05

MMSE score 23.17 ± 11.27 19.08 ± 1.44 28.82 ± 1.08 <0.05

MoCA score 19.50 ± 2.39 16.50 ± 2.15 – –

AD, Alzheimer’s disease; MMSE, mini-mental state examination; MoCA, Montreal
cognitive assessment.

orthogonal directions (the x-axis, y-axis, and z-axis). Moreover, a
total of 12 images with b = 0 were obtained.

The dMRI sequence parameters were repetition time
(TR) = 3800 ms; echo time (TE) = 110 ms; flip angle (FA) = 90◦;
number of excitations = 2; accelerating factor = 2; field-of-
view (FOV) = 240 mm × 240 mm; matrix size = 128 × 128;
slice thickness = 5.0 mm; number of slices = 27; and voxel
size = 1.875 mm × 1.875 mm × 5 mm. Since high in-plane
resolution was preferable, a large slice thickness had to be
chosen in order to achieve an adequate SNR. The total scan
time was 8 min 33 s. A T1w MRI was acquired in sagittal
plane and the parameters were TR = 6.7 ms; TE = Min Full;
FA = 12◦; slice thickness = 1.0 mm; number of slices = 192;
FOV = 256 mm × 256 mm; matrix size = 256 × 256; and scan
time = 4 min 10 s.

Image Segmentation
The left and right hippocampus were selected as the regions
of interest (ROIs) in the present study (Figure 1). Firstly,
the ROIs were drawn manually by an experienced radiologist
(Lei Du, 5 years working experience) on the 3D T1 weighted
images using MRICRON, then the ROI on T1w MRI was
co-registered to diffusion MR imaging to improve the
accuracy of the hippocampal outline. In all subjects, the
ROIs’ location was segmented and excluded ambiguous voxels.

FIGURE 1 | Left and right hippocampus were selected as regions of interest
(ROIs) in this study. ROIs were encircled in red line in T1 weighted imaging.
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FIGURE 2 | Representative axial T1 weighted imaging and FM-related parameters maps from one AD patient (top row, a 58-year-old male) and one healthy control
(bottom row, a 60-year-old male). The bilateral hippocampus are shown with red outlines in all maps. FM, fractional motion; AD, Alzheimer’s disease.

Then the mean values of α, H, µ, and ADC in the bilateral
hippocampus were acquired.

Image Analysis
FSL tools were used to correct head motion and eddy current
distortions of the obtained images (Cha, 2006). Apparent
diffusion coefficient maps were calculated using the images
acquired at b-values of 0 and 954 s/mm2. The images were
analyzed using the FM model in order to estimate the anomalous
diffusion parameters. According to the dMRI theory based on the
FM model (Sui et al., 2015), the diffusion-induced signal decay
can be calculated as

S/S0 = exp(−ηDα,Hγ αGα01
α+αH) (1)

where Dα,H refers to the diffusion coefficient of anomalous
diffusion, and γ refers to the gyromagnetic ratio. G0 refers
to the diffusion gradient amplitude, and 1 refers to the
gradient separation time. η refers to a dimensionless number,
which is determined by α, H, δ, and 1 (Xu et al., 2017b,
2018). All fitting procedures were carried out by the trust-
region-reflective nonlinear fitting algorithm in MATLAB
(MathWorks, Natick, MA).

Statistical Analysis
The age, education, and MMSE score were compared using One-
Way ANOVA among mild AD patients, moderate AD patients,
and healthy controls. And their data were shown as mean ± SD.
Gender was compared using the Chi-square (χ2) test. P values
<0.05 were considered statistically significant.

To investigate the potential feasibility of the FM model for
distinguishing AD patients from healthy controls, the mean
values of α, H, µ, and ADC were compared between AD
patients and healthy controls using a two-sample t-test. Then
these values were also used to identify mild AD and moderate
AD patients using a two-sample t-test. Besides, in order to
quantify the sensitivity and specificity of α, H, µ, and ADC
values in differentiating patients with AD from healthy controls
and distinguishing mild AD patients and moderate AD patients,
we generated receiver-operating characteristic (ROC) curves and
assessed their area under the curve (AUC). The correlations
between α, H, µ, and ADC values and the cognitive functions
evaluated by the MMSE and MoCA scales were investigated using
Pearson partial correlation analysis in patients with AD.

RESULTS

Characteristics of All the Subjects
The demographic and clinical test results of all participants are
summarized in Table 1. A total of 24 AD patients (9 males and 15
females, mean age 68.96 ± 8.08 years) and 11 healthy controls
(2 males and 9 females, mean age 65.27 ± 6.60 years, range
54–78 years, education 10.64 ± 3.30 years) were included in
this study. According to the MMSE score and education level,
AD patients were divided into a mild AD group (6 males and
6 females, mean age 65.83 ± 10.06 years, range 50–77 years,
education 13.42± 3.06 years) and a moderate AD group (3 males
and 9 females, mean age 72.08 ± 3.75 years, range 67–79 years,
education 10.50± 3.87 years). There was no significant difference
in the age and education among the three groups (P > 0.05).
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While there was a significant difference in the MMSE score
among the three groups (P < 0.05). And there was a significant
difference in the MoCA score between the mild AD group and
the moderate AD group (P < 0.05) since a MoCA scale was not
collected in the healthy group.

Figure 1 showed the bilateral hippocampus in Axial MRI.
Representative maps of the AD group and control group are
shown in Figure 2, showing the α, H, and ADC maps and T1-
weighted images. We can see that there were no obvious image
contrasts visible by the naked eye in the α, H, and ADC maps in
the bilateral hippocampus.

Comparisons of FM-Related Parameters
and ADC Values Between AD Patients
and Healthy Controls, and Between Mild
and Moderate AD Patients
The mean ± SD values of the FM-related parameters and
ADC values of the bilateral hippocampus in all subjects
are summarized in Table 2. Figures 3, 4 show scatter plots
to distinguish AD patients from healthy controls and to
differentiate mild AD and moderate AD patients, separately. As
shown in Figure 3, the AD patients and healthy controls can
be readily separated using α (left ROI, P-value = 0.011; right
ROI, P-value = 0.001) and ADC (left ROI, P-value = 0.001;
right ROI, P-value = 0.001). Moreover, Figure 4 also
shows the identification between mild and moderate AD
patients based on FM-related parameters α (right ROI,
P-value = 0.015) and ADC (left ROI, P-value = 0.011; right ROI,
P-value = 0.022), whereas H and µ (both P-value > 0.05) failed
to differentiate the two groups.

Receiver-operating characteristic analysis also showed the
performance in differentiating patients with AD from healthy
controls. Figure 5 shows the ROC curves calculated from the
mean values. Although the number of subjects are limited,
the combination of α and ADC (AUC = 0.848 left ROI,
AUC = 0.856 right ROI) showed an improved performance in
differentiating AD patients and healthy controls as compared
with α (AUC = 0.78 left ROI, AUC = 0.811 right ROI) or ADC
(AUC = 0.847 left ROI, AUC = 0.833 right ROI) alone; when
the threshold for α was 1.5939 (left ROI) and 1.58415 (right
ROI), the highest Youden index (sum of sensitivity and specificity
minus one) showed better sensibility and specificity (left ROI,

0.917 and 0.636; right ROI, 0.917 and 0.727). Similarly, towards
differentiating mild and moderate AD patients (Figure 6), larger
AUCs were obtained with α + ADC (AUC = 0.861 left ROI,
AUC = 0.868 right ROI) compared with α (AUC = 0.813 right
ROI) or ADC (AUC = 0.792 left ROI, AUC = 0.806 right
ROI) alone; when α = 1.55115 (right ROI), the highest Youden
index occurred (sensibility and specificity, right ROI, 0.917 and
0.75). The classification performance of α + ADC + H + µ is
similar to α + ADC in differentiating AD patients and healthy
controls (AUC = 0.848 left ROI, AUC = 0.860 right ROI), and
grading mild and moderate AD patients (AUC = 0.847 left ROI,
AUC = 0.868 right ROI).

Correlations Between FM-Related
Parameters and MMSE Scores and
MoCA Scores
The FM-related parameter α was found to be positively correlated
with the MMSE score (P < 0.05; Figure 7) and MoCA score
(P < 0.05; Figure 8) in patients with AD. No significant
correlations were detected in other FM-related parameters and
ADC. However, there was no significant correlation between α
values and the MMSE score or MoCA score after false discovery
rate (FDR) corrections.

DISCUSSION

The FM model proposed recently is a kind of anomalous
diffusion model. In this study, we used the FM model to
analyze anomalous diffusion in patients with AD and healthy
controls in vivo. The FM-related parameter maps showed
there were no obvious image contrasts visible with the naked
eye in the hippocampus (Figure 2). However, the values
of their anomalous diffusion parameters could be used to
distinguish AD patients from healthy controls and to identify
mild AD and moderate AD patients, in particular the α. The
α provides better sensitivity and specificity for differentiating
AD patients from healthy controls and grading mild AD and
moderate AD patients. The possible explanations for this are
as follows. Autopsies demonstrate the pathological changes of
AD with significantly decreased numbers of neurons, atrophy of
residual nerve cells, and varying degrees of degeneration. The
characteristic pathological changes of AD, such as Aβ protein and

TABLE 2 | Mean and SD of the FM-related parameters and ADC values of bilateral hippocampus in mild and moderate AD patients and healthy controls.

Subject No. ROIs FM-related parameters ADC

α H µ

Controls 11 Left-hippocampus 1.588 ± 0.047 0.464 ± 0.033 −0.166 ± 0.024 0.00108 ± 0.00013

Right-hippocampus 1.604 ± 0.049 0.479 ± 0.028 −0.145 ± 0.027 0.00104 ± 0.00012

Mild AD 12 Left-hippocampus 1.563 ± 0.030 0.470 ± 0.027 −0.170 ± 0.031 0.00119 ± 0.00013

Right-hippocampus 1.562 ± 0.040 0.485 ± 0.040 −0.156 ± 0.045 0.00115 ± 0.00017

Moderate AD 12 Left-hippocampus 1.531 ± 0.045 0.468 ± 0.030 −0.186 ± 0.044 0.00139 ± 0.00021

Right-hippocampus 1.519 ± 0.041 0.481 ± 0.049 −0.177 ± 0.050 0.00137 ± 0.00025

SD, standard deviation; FM, fractional motion; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease; ROIs, region of interest.
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FIGURE 3 | Comparison between AD patients and healthy controls. Scatter plots show that α (A) and ADC (B) values can readily separate the patients with AD and
healthy controls. n = 24 for AD patients and n = 11 for healthy controls. Two-sample t-test was conducted, and P < 0.05 was considered as significant. AD,
Alzheimer’s disease; ADC, apparent diffusion coefficient.

FIGURE 4 | Comparison between mild and moderate AD patients. Scatter plots show that α (A) and ADC (B) values can readily separate the mild AD and moderate
AD patients. n = 12 for mild AD patients and n = 12 for moderate AD patients. n = 24 for AD patients and n = 11 for healthy controls. Two-sample t-test was
conducted, and P < 0.05 was considered as significant. AD, Alzheimer’s disease; ADC, apparent diffusion coefficient.

neurofibrillary tangles, can eventually lead to apoptosis (Wang
et al., 2015). The progression from normal brain tissue to AD
is related to the development of increasing lesions, and the
apoptosis and atrophy of neurons, which lead to the reduction
of the hippocampal volume. The values of α depend on the
structural complexity of the hippocampus, the more complex the
hippocampus is, the more significant the non-Gaussian water
molecule diffusion, and the greater the α values will be. In
theory, the diffusion of water molecules in the brain is affected
by many factors, including axons, cell membrane, and myelin
(Yoshida et al., 2013). In the disease process of AD, degeneration,
atrophy, and apoptosis of neurons lead to a decrease in the
complexity of brain tissue, so the α values decrease in this

process (Jensen and Helpern, 2010; Grinberg et al., 2011; Yoshida
et al., 2013). Therefore, the α values were different between
AD patients and healthy control and between mild AD and
moderate AD patients.

The FM model has many advantages compared with other
MRI theories. Firstly, it is more precise in describing the true
diffusion signal decay curve. Secondly, the previous studies have
shown that compared with ADC, FM-related parameters are
more sensitive and specific in the identification of low-grade
and high-grade gliomas (Xu et al., 2017b). Thirdly, the data is
relatively easy to acquire and the analysis is not complex. The FM
model is a potentially better dMRI technology, so we chose the
FM model as the research method of AD.
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FIGURE 5 | Receiver-operating characteristic (ROC) curves obtained using α,
ADC, α + ADC, and α + ADC + H + µ for differentiating AD patients (n = 24)
and healthy controls (n = 11). The ROC curves were generated using the
mean values for subjects. From the figure we can see α + ADC (AUC = 0.848
left, AUC = 0.856 right) is superior to the single α and single ADC.
α + ADC + H + µ and α + ADC have similar classification performance. ROC,
reciever operating characteristic; ADC, apparent diffusion coefficient; AD,
Alzheimer’s disease; AUC, area under the curve.

FIGURE 6 | Receiver-operating characteristic (ROC) curves obtained using α,
ADC, α + ADC, and α + ADC + H + µ differentiating mild AD patients (n = 12)
and moderate AD patients (n = 12). The ROC curves were generated using
the mean values for subjects. From the figure we can see α + ADC
(AUC = 0.861 left, AUC = 0.868 right) is superior to the single α and single
ADC. α + ADC + H + µ and α + ADC have similar classification performance.
ROC, receiver operating characteristic; ADC, apparent diffusion coefficient;
AD, Alzheimer’s disease; AUC, area under the curve.

The reasons why we chose the bilateral hippocampus as ROIs
are as follows: (1) AD is characterized by memory loss and
cognitive decline, and the hippocampus is the main brain region
that is related to learning and human memory, especially long-
term memory. (2) The hippocampus is one of the main brain
regions that Aβ and the hyperphosphorylation of tau proteins

FIGURE 7 | Correlation between the α values of the right hippocampus and
MMSE scores in patients with AD. Pearson partial correlation was conducted,
n = 24. MMSE, mini-mental state examination.

(Glenner et al., 1984; Brion et al., 1985; Veitch et al., 2019) are
overexpressed, which are the main pathological mechanisms of
AD. Besides, many studies found that the internal structure of
the hippocampus is asymmetric. And asymmetric expression of
proteins and other molecules, and asymmetrical hippocampal
morphology have been recently proposed. The functions of
the left and right hippocampus are also asymmetrical, the left
hippocampus is dominant in the encoding and information
transfer stage, and the right hippocampus is dominant in the
memory compensation stage (Song et al., 2019). So we compared
them separately in this study (Acosta-Cabronero et al., 2013;
Du et al., 2018).

Diffusion magnetic resonance imaging investigates the
diffusion process at the cellular scale in brain tissues. Different
from the mono-exponential model, FM models displayed a better
agreement between the experimentally measured signal decay
curve and the fitted curves (Magin et al., 2008). From Eq. 1 we can
see, the α is an exponent of the diffusion gradient proportional
to the parameters offered by other dMRI models, such as the
stretching parameter in the stretched exponential model (Bennett
et al., 2003; Hall and Barrick, 2008; Zhou et al., 2010). It is
reasonable to generalize our finding of α to these parameters.
Previous research has shown that the parameters calculated by
this method are reliable. And the α refers to the variances of
increments of diffusion processes based on the FM theory when
the parameter has been interpreted as an index of heterogeneity
of water diffusion (Fan and Gao, 2015). It should be admitted
that the acquisition and calculation will be largely simplified if
only this kind of parameters is of interest. This simplification will
reduce the scan time and improve the availability. It is worth
mentioning that although H and µ of the FM model showed
no significance in this research, they do provide distinctive
information and may be useful if fully explored (Xu et al., 2018).
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FIGURE 8 | Corelation between the α values of the left and right hippocampus and MoCA scores in patients with AD. Pearson partial correlation was conducted.
n = 24. MoCA, Montreal cognitive assessment.

In terms of identifying AD patients from healthy controls, the
ADC values in the bilateral hippocampus of our AD patients
were higher than those in healthy controls. These findings were
similar to the results of other teams (Kantarci et al., 2001;
Petersen, 2004; Zimny et al., 2013). We also found that the
α value of our AD group was lower than that of the healthy
control group. The P-values are close in α and traditional
ADC. In a previous research, the ADC, ultra-high b-values
ADC (ADC_uh), and diffusion kurtosis imaging (DKI) were
used for AD identification. The AUC of a single parameter
was 0.766–0.847, and the AUC of a combination of all three
parameters was 0.868 (Xue et al., 2019). In our study, the
ADC and FM model independently showed a similar ability
of identification. When they were combined, the AUC value
increased, indicating that the α was useful and can significantly
improve the diagnostic capability of ADC when combining the
α and the ADC.

Similarly, in terms of differentiating mild AD and moderate
AD patients, the ADC value in the bilateral hippocampus of
moderate AD patients was higher than that of mild AD patients,
and the α value of moderate AD patients was lower than that of
mild AD patients. Besides, the α can also significantly increase
the diagnostic capability of ADC when distinguishing mild AD
and moderate AD patients. Therefore, the α is very valuable in
the research of differentiating and grading AD patients. In further
research, the FM model combined with ADC can greatly improve
the diagnostic capability of AD.

Age was an important risk factor that may affect the diffusion
process of water in brain tissues and the cognitive function
of AD patients. In order to eliminate the influence of age,
Pearson partial correlation analysis was used to compare the
relationship between the values of FM-related parameters and
MMSE or MoCA scores. And we found that the α values
of the hippocampus were positively correlated with MMSE
and MoCA scores in the AD patients, while there were no

significant correlations in ADC values. The explanation may be
as follows. The values of α depend on the structural complexity
of the hippocampus, the more complex the hippocampus is,
the greater the α values will be. In the disease process of
AD, degeneration, atrophy, and apoptosis of neurons lead
to a decrease in complexity of the brain tissue (Jensen and
Helpern, 2010; Grinberg et al., 2011), so the α values decrease
in this process. It is well known that the cognitive function
of AD patients is gradually declining. Therefore, the α values
of the hippocampus were positively correlated with cognitive
measures. These findings indicate that the α values of the
hippocampus, better than traditional ADC values, might become
a potential MRI-based biomarker for disease severity in the mild
and moderate AD patients. However, there was no significant
correlation between α values and the MMSE score and MoCA
score after FDR correction, indicating that their correlation
is not so strong. A possible reason for this was that the
sample size was small.

This study has some limitations. Firstly, the number of
AD patients and healthy controls in the present study is
limited, so further research with a larger sample size is required
to validate our results. Secondly, we only targeted patients
with AD and healthy controls, the inclusion of patients with
MCI in further studies is more beneficial for clinical use,
since MCI is considered an early stage of AD (Petersen,
2004). Thirdly, the single-shot echo-planar imaging used in
this study may lead to signal loss and image distortion.
These artifacts still occur although they have been reduced
due to the development of high-performance gradients and
parallel imaging, so the evaluation of the hippocampus may
be confined. Fourthly, the voxel was large, so a single voxel
showed an aggregated measure of a large sample size, which
may obstruct sensitivity to the tissue occupying a small part
of a voxel. Further work is needed to explore the voxel-wise
radiologic-pathologic correlation.
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CONCLUSION

In the present study, we selected the FM model to quantitatively
calculate the FM-related parameters α, H, µ, and ADC values
of the bilateral hippocampus. Our results showed that AD
patients and healthy controls can be readily separated using
the α and ADC, and mild AD and moderate AD patients
can be also distinguished using the α and ADC. It was worth
mentioning that the FM-related parameter α of the hippocampus
was positively correlated with the cognitive function assessed
by MMSE and MoCA scales in the AD patients group, while
there was no correlation in ADC values, indicating that the
α in the bilateral hippocampus might be a potential MRI-
based biomarker of disease severity in patients with AD. This
new diffusion model might be useful for further understanding
neuropathologic changes in patients with AD.
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