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Background: We investigated the mechanism of artesunate’s glucose-modulating effect especially with
gender implication.
Methods: Twenty-five (25) male and 25 female rats were separately and blindly allocated into five
identical groups (n ¼ 5/group). Group I (control) received 0.2 ml/kg distilled water. Groups II and III both
received 2.90 mg/kg artesunate on day one, but 1.45 mg/kg from day two till day five and day fifteen
respectively. Groups IV and V both received 8.70 mg/kg artesunate on day one, but 4.35 mg/kg artesunate
from day two till day five and day fifteen respectively.
Results: In male rats, glucose was reduced by both doses of artesunate at 5 days but increased by high
dose at 15 days. Artesunate increased glycogen concentration at short duration which normalised at long
duration in both genders. Artesunate increased G6P concentration only in male rats at 15 days but
reduced G6Pase activity in male and female rats (except in those that received low and high doses of
artesunate for 15 days). Artesunate increased insulin only in male rats treated with low dose artesunate
for 5 days. Artesunate increased cortisol concentration in male but reduced it in female rats. Artesunate
decreased glucagon concentration except in female rats treated with high dose for 5 days. Artesunate
increased oestrogen concentration in male rats that received low dose artesunate for 5 days but reduced
it in female rats that received high dose for 15 days.
Conclusions: Artesunate reduces plasma glucose by reducing plasma glucagon concentrations and
inhibiting liver glycogenolysis via inhibition of G6Pase activity in both sexes. Increase in insulin con-
centration contributed to the reduction in blood glucose caused by artesunate in male but not female
rats; and artesunate-induced increase in G6P, a substrate for G6PD, could enhance NADPH generation
and antioxidant enzyme activation in male rats.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Background

Artesunate, dihydroartemisinin, and artemether are artemisinin-
derived antimalaria drugs that are very potent among various groups
of drugs used in the treatment of malaria [1]. Though artemisinins
can be used as a monotherapy, artemisinin combination therapies
(A.–M.P.Q.-easylat@
onsi).
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(ACTs) are preferred for the treatment of falciparum and severe
malaria cases because of drug resistance and non-availability of new
treatment [2e5].

Due to the fact that artesunate is the only artemisinin-based
drug with high water solubility, its intravenous administration is
preferred by WHO for severe malaria treatment in both children
and adults [1]. Despite the efficacy of artesunate and ACTs, the
emergence of artemisinin-resistant Plasmodium falciparum [6] has
threatened the effectiveness of ACTs. Under-dosing is a contributor
to resistance to antimalarial drugs [7], especially in children [8].
Therefore, there was a proposition that increasing the dose amount
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and duration of artemisininsmight prevent or reduce the resistance
[9]. Thus, if this proposal is implemented, it might increase both
positive and negative effects of artesunate. Artesunate mainly
works by generating free radicals, causing alkylation of the malaria
parasite’s proteins [10]. Artemisinins are generally well tolerated
[11,12], and in addition to their use in the treatment of malaria, they
have been shown to be useful as a therapy in many conditions such
as cancer [13], immunoregulation [14,15] and glucose homeostasis.

Some adverse effects of artesunate include reduced re-
ticulocytes [16] and post-artesunate delayed haemolysis (PADH)
[17]. On glucose homeostasis, a recent report showed the hypo-
glycaemic and antidiabetic effects of Artemisia annua [18], the
plant from which artemisinins were made [19]. In addition, the
antidiabetic property of other artemisia plants has also been
reviewed [20]. As an artemisinin derivative, information on the
effect of artesunate on glucose homeostasis is still scanty. Artesu-
nate and other artemisinins have been shown to cause hypo-
glycaemia [21], increased glucose-6-phosphate dehydrogenase
activity [22], as well as the conversion of pancreatic a-cells to
insulin-secreting b-like cells [23]. In addition, our recent research
showed gender- and duration-based differences in blood glucose
levels [24].

Despite the therapeutic uses of artesunate and the reported
effects on glucose homeostasis, the mechanisms involved in its
blood glucose regulation, especially in relation to gender differ-
ences, if any, have not been elucidated. Thus, this study was
designed to elucidate the gender- and duration-based mechanism
of the artesunate effect on glucose homeostasis by assessing some
hormones and enzymes involved in blood glucose regulation.
2. Methods

2.1. Animals

Twenty-five (25) male and 25 female albino rats (170e200 g)
were obtained from Bankylatt ventures Ilorin, Nigeria and accli-
matised in the Central Animal House of the Faculty of Basic Medical
Sciences, College of Health Sciences, University of Ilorin, Nigeria for
two weeks. The animals were provided with standard diet and
water ad libitum and maintained under standard conditions (12-hr
light-dark cycle, 27e30 �C, 50e80% relative humidity). The “Prin-
ciples of Laboratory Animal Care” (NIH Publication No. 85-23,
revised 1985) were followed and the research was approved by our
University’s Ethics Committee.
2.2. Experimental design

Twenty-five (25) male and 25 female rats were separately
allocated by an invited neutral personwho knew nothing about the
study into five identical groups (n ¼ 5/group) as follows [24]:

1. Control: Rats received 0.2 ml/kg distilled water via oral cannula.
2. Low dose artesunate for short duration: Rats were treated with

artesunate at 2.90 ml/kg on day one and 1.45 mg/kg on day two
till day five.

3. Low dose artesunate for long duration: Rats were treated with
artesunate at 2.90 mg/kg on day one and 1.45 mg/kg on day two
till day fifteen.

4. High dose artesunate for short duration: Rats were treated with
8.70 mg/kg of artesunate on day one and 4.35 mg/kg on day two
till day five.

5. High dose artesunate for long duration: Rats were treated with
8.70 mg/kg of artesunate on day one and 4.35 mg/kg on day two
till day fifteen.
2

The artesunate was freshly prepared on daily basis and admin-
istered by oral gavage with the use of cannula. The dose and
duration of the drug were chosen to mimic its use in humans for
low dose and short duration, while the dose and duration were
tripled for high dose and long duration respectively.

2.3. Animal sacrifice and sample collection

At the end of the duration in each experimental group, the an-
imals were fasted for about 18 h for the determination of fasting
blood sugar and then sacrificed by decapitation under pentobar-
bitone anaesthesia (37 mg/kg i. p.) [25]. After sacrifice, the blood
samples were collected and plasma was extracted from each sam-
ple for biochemical analysis of glucose and hormones. In addition,
liver sample was collected for the analysis of glycogen, glucose-6-
phosphate and glucose-6-phosphatase.

2.4. Biochemical analysis

2.4.1. Determination of glucose and hormones
Blood glucose was estimated by glucose oxidase method using

glucometer [26].
Plasma insulin, cortisol, testosterone, oestrogen (Calbiotech Inc.,

1935 Cordell Ct., El Cajon, CA 92020) and glucagon (Bioassay
Technology Laboratory, Yangpu Dist, Shanghai, China) were assayed
spectrophotometrically (Beckman Coulter DTX 880 Multimode
Detector) following the kit manufacturers’ procedure.

2.4.2. Determination of liver glycogen and enzymes
The liver glycogen was determined as previously reported

[27,28].
Glucose-6-phosphate (G6P) concentration was determined as

previously described [29].
The glucose-6-phosphatase (G6Pase) activity was estimated

using a kit from Elabscience Biotechnology Co. Ltd, Wuhan, Hubei
Province, China. The ELISA kit uses Sandwich-ELISA as the method.
Briefly, the micro ELISA plate provided in the kit was pre-coated
with an antibody specific to Glucose-6-phosphatase. Standards or
samples were added to the appropriatemicro-ELISA platewells and
combined to the specific antibody. Then a biotinylated detection
antibody specific for G6Pase and Avidin-Horseradish Peroxidase
(Avidin-HRP) conjugate were added to each microplate well and
incubated. Free components were washed away. The substrate was
added to each well. Only those wells that contain G6Pase, bio-
tinylated detection antibody and Avidin-HRP conjugate appeared
blue in colour and were read spectrophotometrically at 450 nm.

2.5. Statistical analysis

Data were expressed as means ± standard error of mean (SEM)
of the measured variables and then analysed with one-way analysis
of variance, followed by a post hoc Least Significance Difference
(LSD) test for multiple comparisons using Graphpad Prism 5 soft-
ware (San Diego, California, USA). p-Values < 0.05 were taken as
statistically significant.

3. Results

3.1. Artesunate reduced plasma glucose concentration

In male rats, the plasma glucose was reduced by low
(50.70 ± 5.00 mg/dl) and high (35.36 ± 2.35 mg/dl) doses of arte-
sunate at 5 days but increased by high (109.19 ± 7.80 mg/dl) and
unchanged by low (75.40 ± 11.12 mg/dl) doses of artesunate at 15
days when compared to control (79.90 ± 3.77mg/dl). In female rats,
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plasma glucose was reduced only by low dose artesunate at 15 days
(27.23 ± 1.42 mg/dl), while other groups had no significant differ-
ence from the control (55.45 ± 4.57 mg/dl). Comparatively, female
rats had lower plasma glucose than the male rats, which are
especially significant in the control and groups that received both
doses of artesunate for 15 days (Fig. 1).
3.2. Artesunate increased liver glycogen concentration at short
duration which normalised at long duration

In male rats, the glycogen was increased by low
(28.90 ± 4.94 mg/g) and high (22.22 ± 2.23 mg/g) doses of arte-
sunate at 5 days but unchanged by low (5.78 ± 0.21 mg/g) and high
(5.65 ± 0.66 mg/g) doses of artesunate at 15 days when compared
to control (6.45 ± 0.11 mg/g). Similarly, in female rats, the glycogen
was increased by low (15.99 ± 1.25 mg/g) and high
(25.67 ± 4.71 mg/g) doses of artesunate at 5 days but unchanged by
low (5.68 ± 0.97 mg/g) and high (4.75 ± 0.32 mg/g) doses of arte-
sunate at 15 days when compared to control (5.55 ± 0.34 mg/g).
Comparatively, male and female rats that underwent the same
treatment had similar glycogen concentrations, except in the fe-
male rats that received low dose artesunate for 5 days where
glycogen concentration was lower than the corresponding male
rats that got the same treatment (Fig. 2).
3.3. Artesunate increased liver G6P concentration only in male rats
at 15 days

In male rats, there was no significant difference in the G6P con-
centration between treatment groups and control (0.74 ± 0.35 mM),
except in those that received a low dose of artesunate for 15 days
(7.37 ± 2.96 mM) where it increased. In female rats, there was no
significant difference in the G6P concentration among all the treat-
ment groups when compared to control (0.55 ± 0.16 mM).
Comparatively, male and female rats that underwent the same
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Fig. 1. Plasma glucose concentrations in rats treated with artesunate. *p < 0.05 vs. contro
duration.
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treatment had similar G6P concentration, except in the female rats
that received a low dose of artesunate for 15 days (1.12 ± 0.33 mM)
where glycogen concentration was lower than the corresponding
male rats that got the same treatment (7.37 ± 2.96 mM) (Fig. 3).
3.4. Artesunate decreased liver G6Pase concentration

The G6Pase concentration was reduced in male rats that
received low (1789.46 ± 633.73 U/L) and high (467.80 ± 143.15 U/L)
doses of artesunate for 5 days, and in those that received high dose
of artesunate for 15 days (5431.08 ± 2312.93 U/L) when compared
to control (15599.45 ± 4717.47 U/L). The G6Pase concentration was
reduced in female rats that received low (491.58 ± 63.43 U/L) and
high (6428.73 ± 2081.54 U/L) doses of artesunate for 5 days, but
increased and unchanged in those that received low dose
(22655.85 ± 2081.25 U/L) and high dose (6759.13 ± 3476.25 U/L)
artesunate respectively for 15 days when compared to control
(13319.98 ± 1300.00 U/L). There was no difference in the G6Pase in
the female and male rats that received similar treatment for the
same duration (Fig. 4).
3.5. Artesunate did not affect plasma insulin concentration except
in male rats treated with low dose for 5 days

Artesunate did not have any significant effect on the insulin
concentration in male and female rats when compared to control,
except in male rats that received low dose artesunate for 5 days
(4.88 ± 1.30 mIU/ml) where insulin was increased. There were also
no significant differences in the insulin levels between male and
female rats that received similar treatment for the same duration,
except in the male rats treated with low dose artesunate for 5 days
(4.88 ± 1.30 mIU/ml) that had higher insulin than the corresponding
female group with similar treatment (0.77 ± 0.02 mIU/ml) (Fig. 5).
Control 5 days 15 days 5 days 15 days
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Fig. 2. Liver glycogen concentrations in rats treated with artesunate.*p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose and duration.
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Fig. 3. Liver glucose-6-phosphate concentrations in rats treated with artesunate. *p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose
and duration.
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3.6. Artesunate decreased plasma glucagon concentration except in
female rats treated with high dose for 5 days

Artesunate caused significant reductions in the glucagon con-
centrations of all male rats’ groups when compared to control. The
glucagon concentration was also reduced in female rats that
received low (346.53 ± 14.17 pg/ml) and high (288.46 ± 1.61 pg/ml)
doses of artesunate for 15 days but was increased and unchanged in
female rats that received high (442.05 ± 16.16 pg/ml) and low
(402.03 ± 11.73 pg/ml) doses of artesunate for 5 days when
compared to control (392.13 ± 7.79 pg/ml). Comparatively, the
4

glucagon concentrationwas higher in female rats that received low
and high doses of artesunate for 5 days but lower in female rats that
received high dose artesunate for 15 days when compared to their
corresponding male rats with similar treatment (Fig. 6).

3.7. Artesunate increased plasma cortisol concentration in male but
reduced it in female rats

Treatments of male rats with low dose of artesunate for 5 days
(57.18 ± 5.46 ng/ml) and 15 days (29.28 ± 2.00 ng/ml), and with
high dose of artesunate for 5 days (29.82 ± 4.11 ng/ml) and 15 days
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Fig. 4. Liver glucose-6-phosphatase concentrations in rats treated with artesunate. *p < 0.05 vs. control of the same gender.
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Fig. 5. Plasma insulin concentrations in rats treated with artesunate.*p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose and duration.
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(40.64 ± 5.79 ng/ml) increased the cortisol concentrations when
compared to control (17.42 ± 2.27 ng/ml). On the contrary, treat-
ments of female rats with high dose of artesunate for 5 days
5

(13.17 ± 0.79 ng/ml) and 15 days (10.96 ± 1.60 ng/ml), and with low
dose of artesunate for 15 days (11.78 ± 2.37 ng/ml) decreased the
cortisol concentrations when compared to control (21.40 ± 3.61 ng/
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Fig. 6. Plasma glucagon concentrations in rats treated with artesunate.*p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose and
duration.
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ml), except in rats treated with low dose of artesunate for 5 days
(34.87 ± 2.61 ng/ml) where cortisol increased. Comparatively, the
female rats had lower cortisol concentrations than their corre-
sponding male rats that received similar treatments (Fig. 7).
3.8. Effects of artesunate on plasma oestrogen concentration in
male and female rats

Oestrogen concentration was not affected in male rats that
received low and high doses of artesunate, except in those that
received low dose for 5 days (6.23 ± 1.77 pg/ml) where it was
higher than the control (2.43 ± 0.38 pg/ml). Similarly, oestrogen
concentration was not affected in female rats that received low and
high doses of artesunate, except in those that received high dose for
15 days (3.41 ± 0.64 pg/ml) where it was lower than the control
(6.69 ± 1.20 pg/ml). Except in control rats where male had higher
cortisol than the female, there was no significant difference be-
tween male and female rats treated with artesunate under similar
condition (Fig. 8).
3.9. Effects of artesunate on plasma testosterone concentration in
male and female rats

Except in male rats that received high dose of artesunate for 15
days (3.09 ± 0.45 ng/ml), artesunate did not affect testosterone
concentration in all other groups when compared to control
(0.43 ± 0.23 ng/ml). In female rats, artesunate did not cause any
significant change in the testosterone concentration of any group
when compared to control. The female rats that received high dose
of artesunate for 5 days (0.10 ± 0.02 ng/ml) and 15 days
(1.17 ± 0.11 ng/ml) had significantly lower testosterone than their
male counterparts that received similar treatments (1.44 ± 1.28 ng/
ml and 3.09 ± 0.45 ng/ml respectively) (Fig. 9).
6

4. Discussion

The reduction in blood glucose by different doses of Artesunate
and other artemisinin derivatives like artemether has been re-
ported by other researchers for a long time [21,30e32]. In our
recent study, we also reported that artesunate produced a blood
glucose-lowering effect in female rats at both 2.9 mg/kg and
8.7 mg/kg, but differential effects in the male rats - reduction with
2.9 mg/kg treatment for 5 days but increase at both 5 days and 15
days’ treatment of 8.7 mg/kg [24]. Using the same doses as in our
previous study [24], we have consistently shown in this study that
artesunate’s effect on the blood glucose is gender-, dose- and
duration-dependent. In male rats for instance, we again observed a
reduction in blood glucose by low (2.9 mg/kg) and high (8.7 mg/kg)
doses of artesunate at 5 days but increase by high dose and no
change by low dose of artesunate at 15 days. Our present data on
female rats similarly show that blood glucose was reduced by low
dose artesunate at 15 days while other groups were not affected.
However, it is noteworthy that the low dose of artesunate caused
hypoglycaemia on the 5th day of administration while hypo-
glycaemia occurred on the 15th day of administration in female rats
treated with the same dose. This suggests that the onset of
artesunate-induced hypoglycaemia is much earlier in male than
female rats as opposed to the early occurrence of artesunate-
induced haemolysis in female rats earlier reported [24]. Is the
artesunate-induced reduction in blood glucose related to increase
in insulin level?

Themechanism of hypoglycaemia induced bymany antimalarial
drugs have been suggested to be related to increase in insulin
secretion. For instance, cinchona alkaloids (quinine and quinidine)
increases insulin secretion by blocking ATP-sensitive potassium (Kþ

ATP) channels in the pancreatic beta cells [30,32]. Similarly, chlo-
roquine and halofantrine increase plasma insulin and glucose
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Fig. 7. Plasma cortisol concentrations in rats treated with artesunate. *p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose and
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Fig. 8. Plasma oestrogen concentrations in rats treated with artesunate.*p < 0.05 vs. control of the same gender, #p < 0.05 vs. corresponding male group of the same dose and
duration.
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uptake, leading to hypoglycaemia [21,33]. Loss of functional b-cells,
as evident from the absence of serum insulin C-peptide, is a major
problem of Type-1 diabetic patients. Regeneration of patient-
7

specific insulin-producing cells have been attempted using
different cell sources including hepatic cells, embryonic stem cells,
exocrine cells, induced pluripotent stem cells and endocrine cells
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[34e36]. a-cells, which are developmentally closely related to b-
cells, have the ability to replenish insulin-producing cells after
extreme b-cell loss [37]. During development [38] and when
genetically triggered in adulthood [39], overexpression of the
transcription factor Pax4 converts a-cells to b-cells. Moreover, the
b-cell factor Pax4 represses the a-cell master regulatory tran-
scription factor Arx [40], the loss of which converts a-cells into b-
cells [41].

Artemisinins have been identified as drugs that can confer b-cell
characteristics to a-cells [23]. Artemether and its active metabolite,
dihydroartemisinin, fully inhibit the Arx overexpression phenotype
in Min6 cells while also inducing insulin expression in aTC1 cells.
The antagonism of Arx (by inducing translocation from the nucleus
to the cytoplasm and thus depleting it from the chromatin) also
causes the reduction of glucagon protein levels by more than 50%
[23]. The authors also convincingly showed that artemisinins
induce insulin expression in the a-cells by targeting gephryin,
which increases GABA signaling that will eventually suppress
glucagon secretion in the a-cell. In the present study, we observed
that artesunate increased insulin concentration in male rats that
received low dose artesunate for 5 days, but not in other groups.
Moreover, artesunate reduced glucagon concentrations of all male
rats’ groups and also in female rats that received lowand high doses
of artesunate for 15 days. Our present study agrees with previously
cited ones, and suggests that the artesunate-induced reduction in
blood glucose is mediated by increase in insulin and decrease in
glucagon concentrations possibly by modulating regulating pro-
teins like Pax4 and Arx even though our present study is limited for
not quantifying them.

Artesunate accumulates in the red blood cells [42] where the
endoperoxidase bridge of the former is split by iron haeme present
in the latter, leading to the release of ROS [43]. Studies have shown
8

that artesunate generates free radicals, increases malondialdehyde
and decreases antioxidant activities like the superoxide dismutase
and catalase [24,44]. Though artesunate’s moderate pro-oxidant
action beneficially serves as a mechanism for its antimalarial ef-
fect by alkylating the malaria parasite’s membrane [10], its exces-
sive pro-oxidant action can endanger erythrocytes that host the
parasite [45] and cause haemolysis [44,46]. Notwithstanding its
pro-oxidant effects, artesunate has been widely reported to
enhance the production and release of glucose-6-phosphate de-
hydrogenase (G-6-PD), a widely known second line anti-oxidant
enzyme [24]. The G-6-PD is an important house-keeping enzyme
that catalyses the first step of the pentose phosphate pathway,
which is the sole source for the production of reducing capacity in
the form of NADPH in the erythrocytes as erythrocytes lack the
nucleus, the ribosomes, and the mitochondria (at maturity) that
generate NADPH as in other cells [47,48]. The NADPH in turn acti-
vates glutathione reductase and catalase, which are part of the first
line anti-oxidant system abundantly present in the red blood cells.
The G-6-PD is the main cytoplasmic source of NADPH that prevents
oxidative stress and haemolytic anaemia of the red blood cells and
its deficiency leads to drug-dependent (e.g. antimalarial drug) and
eindependent haemolytic anaemia [45]. In fact, the overexpression
of G-6-PD decreases endothelial cell oxidative stress [49] and the
risk of diabetes [50,51], b-cell apoptosis and insulin resistance [52]
are increased with deficiency or decrease of G6PD. The level of G-6-
PD has been shown to increase in artesunate-treated erythrocytes
of rats [22] and humans [53].

In our previous study, we observed that artesunate-induced
increase in G-6-PD prevents haemolysis in male rats but not in
female rats. We hypothesised that it is due to lower artesunate-
induced lipid peroxidation in male rats compared to the female
rats, whichmade G-6-PD’s scavenging of free radicals to sufficiently
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prevent haemolysis in male rats compared to the female rats with
higher oxidative stress [24]. In the present study, we observed that
G6P was increased only in the male rats that received low dose
artesunate for 15 days, while there was no change in any of the
female rats. The G6PD, a rate-limiting enzyme in the pentose
phosphate pathway, acts on glucose-6-phosphate to produce 6-
phosphoglucono-d-lactone via a dehydrogenation process, during
which NADPH is formed from NADPþ. That artesunate increased
glucose-6-phosphate in male rats, but not in female rats, in this
study suggests that artesunate increases the substrate for G6PD
that leads to accumulation of NADPH which is needed to activate
other anti-oxidant enzymes (e.g. catalase and glutathione reduc-
tase) to promote free radical scavenging in the red blood cell. This
further explains our previous report that artesunate prevents
haemolysis in male rats but not in female rats [24].

After carbohydrate-containing meal, high postprandial insulin
level stimulates glycogen synthesis by enhancing glucose entry to
the liver from the blood, conversion of glucose to glucose-
phosphate (G6P) with the enzyme glucokinase, and the addition
of G6P molecules to the ends of the chains of glycogen. After the
meal digestion and during fasting, the fall in the insulin level will
stimulate glycogenolysis and gluconeogenesis that will maintain
release of glucose into the blood for use by the body cells, and
G6Pase is a very important enzyme in both of these metabolic
processes that are paramount during fasting. In glycogenolysis,
various enzyme systems remove glucose molecules from glycogen
stands in the form of G6P, which remains in the cell unless it is
dephosphorylated (cleaved) by the enzyme G6Pase to produce free
glucose and free phosphate anion. Thus, the free glucose can be
transported out of the liver to cells into the blood to maintain
adequate glucose supply to many body cells. Continuous fasting-
induced reduction in insulin level leads to gluconeogenesis where
muscle proteins and adipose tissue triglycerides are catabolised
into amino acids, free fatty acids and lactic acids. More importantly,
the amino acids and lactic acid are used to form new G6P in the
liver cells through the process of gluconeogenesis. Interestingly, the
last step of gluconeogenesis, like that of glycogenolysis, involves
the dephosphorylation of G6P by G6Pase to form free glucose and
phosphate. Is artesunate-induced reduction in blood glucose
related to its alternation in this key enzyme?

The glycogen storage disease type 1 (GSD 1) is an inherited
disease that leads to the inability of the liver to sufficiently break
down its stored glycogen and thus disrupt glucose homeostasis. It is
divided into two main types (GSD 1a and GSD 1b), which differ in
cause, presentation and treatment. The GSD 1a is caused by a
deficiency in the enzyme G6Pase while GSD 1b is caused by a
deficiency in the enzyme glucose-6-phosphate translocase (G-6-P-
T) that transports G6P from the cytoplasm to the microsomes [54].
Since glycogenolysis is a major metabolic pathway by which the
liver supplies glucose to the body during fasting, deficiency of both
enzymes can cause severe low blood glucose and a corresponding
excess glycogen storage in the liver. In our present study, we
observed that the G6Pase concentration was reduced in male rats
that received low and high doses of artesunate for 5 days, and in
those that received high dose of artesunate for 15 days. We also
observed that the G6Pase concentrationwas reduced in female rats
that received low and high doses of artesunate for 5 days, but
increased and unchanged in those that received low dose and high
dose artesunate respectively for 15 days. Our present data also
showed that glycogen was increased by both doses of artesunate at
5 days but unchanged by both doses at 15 days in both male and
female rats. Taken together with our observation of reduction in
glucagon level, the artesunate-induced reduction in G6Pase and
increase in glycogen indicate that glycogenolysis is inhibited by
artesunate, which led to glycogen accumulation in the liver
9

especially during the 5 days’ duration. What led to the return of
glycogen to normal level at 15 days in both male and female rats is
not yet understood and needs further investigation.

The G6P has been reported to modulate the activity of 11b-
hydroxysteroid dehydrogenase type 1 (11bHSD1). In GSD 1a for
instance, G6P excess has been documented in the endoplasmic
reticulum, which has been associated with an increase in the ac-
tivity of 11bHSD1 [55]. The 11bHSD1, an endoplasmic reticulum-
bound enzyme, is typically expressed in glucocorticoid receptor-
rich tissues (e.g. liver, brain, lung, and adipose tissue) and is
responsible for the conversion of inactive cortisone to an active
cortisol [56]. The 11bHSD1 plays a key role in the development of
metabolic syndrome and Cushing’s syndrome [57,58] and 11bHSD1
knockout mice are resistant to the development of metabolic syn-
drome [59]. In fact, a decrease in the hypothalamic-pituitary-
adrenal negative feedback response has been reported in the
G6PD knockout mice [60] and GSD 1a patients have reportedly
shown high cortisol level [61]. Interestingly, 11bHSD1 needs
NADPH (generated from the G6PD-mediated conversion of G6P to
6-phosphogluconactone) as a cofactor [62]. Though our present
study did not determine the activity of 11bHSD1, we strongly
speculate that the artesunate-induced increase in cortisol observed
in all the male rats and in female rats that received low dose
artesunate for 5 days in this study might be associated with the
already-established artesunate-induced increases in G6P, G6PD and
NADPH, all of which play parts in the activation of 11bHSD1. This is
consistent with a previous report that accumulation of G6P in the
endoplasmic reticulum fuels the G6PT-G6PD-11bHSD1 system that
eventually leads to increased activation of glucocorticoids [63].
Even though the level of cortisol was increased by artesunate, it
could not elicit glycogenolysis or gluconeogenesis because of
artesunate-induced reduction in G6Pase.

We investigated whether some of the gender differences asso-
ciated with artesunate effects reported in this study are associated
with sex hormones (testosterone and oestrogen) or not. We
observed that oestrogen concentration was not affected in male
and female rats that received both doses of artesunate, except in
male rats that received low dose for 5 days where it was increased
and in female rats that received high dose for 15 days where it was
reduced. We also observed that except in male rats that received
high dose of artesunate for 15 days, artesunate did not affect
testosterone concentration in all other male and female groups. Our
no-effect observation is consistent with the previous report [64]
that also observed that treatment with artesunate-amodiaquine
and artemether-lumenfantrine for 3 and 6 days caused no signifi-
cant effect on testosterone. The authors further showed that arte-
sunate had no effect on the luteinising hormone, follicle
stimulating hormone, and even the weights of the testis, epidid-
ymis, prostate, and seminal vesicule. It is worthy of note that the
authors [64] also used 2.86 and 8.58 mg/kg of artesunate-
amodiaquine for 3 days and 6 days, which are similar to our own
doses, while their experimental durations are also within ours.

However, while it appears that the sex hormones played no role
in the effects of artesunate generally, the sharp rise in the plasma
level of oestrogen in a similar manner with insulin in the male rats
treated with the low dose of artesunate for 5 days suggests that
oestrogen might have contributed to the hyperinsulinaemia and
hypoglycaemia observed in those rats. A previous study has re-
ported a decrease in fasting levels of glucose upon the adminis-
tration of oral oestrogen replacement in postmenopausal women
[65]. In animal studies, the main steroids of the ovary, the oes-
trogens and the progestins, have been shown to provide a protec-
tive influence to the susceptibility to experimental diabetes [66,67].
Furthermore, an increase in basal glycaemia and an impaired
glucose tolerance have been observed in ovariectomised mice as
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well as rats; while steroid replacement experiments indicated that
a deficiency of oestrogens is mainly responsible for the deteriora-
tion of glucose tolerance [68,69]. Transdermal oestradiol replace-
ment therapy in oestrogen-deficient postmenopausal women was
shown to improve beta-cell function in vivo and to augment insulin
secretion in response to an acute glucose challenge [70,71]. This
effect was proposed to involve a tropic action of oestradiol on
pancreatic islets in combination with an increase in glucose
transport in the muscle and inhibition of gluconeogenesis [71].
Indeed, the islets of Langerhans have been demonstrated to express
oestrogen receptors (El Seifi et al., 1981) and to show a tropic
response to oestradiol treatment in vivo [72].

While this study is not making a strong case for the therapeutic
use of artesunate as hypoglycaemic agent, it points out the fact that
there is gender difference in themechanism of action of artesunate-
induced hypoglycaemia. It also suggests that dose and duration
have impacts in the effect of artesunate of hormones and enzymes
that modulate glucose homeostasis. However, this study is limited
by our inability to measure other molecular actors in the glucose
homeostasis signaling pathway apart from G6Pase. The present
study suggests that artesunate causes reduction in plasma glucose
by reducing plasma glucagon concentrations and inhibiting liver
glycogenolysis via inhibition of G6Pase activity in both sexes. In
addition, increase in plasma insulin concentration contributed to
the reduction in blood glucose caused by artesunate in male but not
female rats; and artesunate-induced increase in G6P, a substrate for
G6PD, could enhance NADPH generation and antioxidant enzyme
activation in male rats.
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