
ORIGINAL RESEARCH
published: 20 October 2021

doi: 10.3389/fnut.2021.755007

Frontiers in Nutrition | www.frontiersin.org 1 October 2021 | Volume 8 | Article 755007

Edited by:

Tao Pan,

Jinan University, China

Reviewed by:

Lian Li,

Shandong University, China

Haiquan Ding,

Fine Mechanics and Physics

(CAS), China

*Correspondence:

Rong Liu

rongliu@tju.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Nutrition and Food Science

Technology,

a section of the journal

Frontiers in Nutrition

Received: 07 August 2021

Accepted: 17 September 2021

Published: 20 October 2021

Citation:

Li A, Li C, Gao M, Yang S, Liu R,

Chen W and Xu K (2021) Beef Cut

Classification Using Multispectral

Imaging and Machine Learning

Method. Front. Nutr. 8:755007.

doi: 10.3389/fnut.2021.755007

Beef Cut Classification Using
Multispectral Imaging and Machine
Learning Method

Ang Li 1,2†, Chenxi Li 1,2†, Moyang Gao 2, Si Yang 1,2, Rong Liu 1,2*, Wenliang Chen 1,2 and

Kexin Xu 1,2

1 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China, 2 School of

Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China

Classification of beef cuts is important for the food industry and authentication purposes.

Traditional analytical methods are time constraints and incompatible with the modern

food industry. Taking advantage of its rapidness and being nondestructive, multispectral

imaging (MSI) has been widely applied to obtain a precise characterization of food

and agriculture products. This study aims at developing a beef cut classification

model using MSI and machine learning classifiers. Beef samples are imaged with a

snapshot multi-spectroscopic camera within a range of 500–800 nm. In order to find

a more accurate classification model, single- and multiple-modality feature sets are

used to develop an accurate classification model with different machine learning-based

classifiers, namely, linear discriminant analysis (LDA), support vector machine (SVM), and

random forest (RF) algorithms. The results demonstrate that the optimized LDA classifier

achieved a prediction accuracy of over 90% with multiple modality feature fusion. By

combining machine learning and feature fusion, the other classification models also

achieved a satisfying accuracy. Furthermore, this study demonstrates the potential of

machine learning and feature fusion method for meat classification by using multiple

spectral imaging in future agricultural applications.

Keywords: multi-spectral imaging, machine learning, beef cuts, classification, feature fusion

INTRODUCTION

Beef plays an important role in daily diet and the food industry because it contains essential
nutrients with high biological value (1). The great variability of beef cuts often lead to highly
variable qualities, such as tenderness juiciness, and flavor, which are important for consumer’s
evaluation of beef quality and purchase decision (2). However, the price of high-quality beef cuts,
such as sirloin, is much higher than that of low-preference cuts, such as shank and flank. The higher
growth demand of beef leads to frauds in retail or supply chain, which means the substitution of
high-class beef cuts from low-class. In this sense, concern on beef quality management is highly
demanded to identify frauds and prevent any potential hazard. Consequently, beef cut classification
becomes essential to meet the demand of consumers and food safety regulators.

Among analytical techniques, the spectroscopy method has been proved to be of great potential
for meat analysis because of rapidness, being nondestructive, and minimum preprocessing
requirements (3–5). The basic composition of beef, such as water, proteins, myoglobin, fatty acids
and lipids, possesses functional groups with certain chemical bonds (O-H, C-H, N-H, etc.) that
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cause the deviation of a spectrum at a particular wavelength (6).
Based on vibrational spectroscopy, the chemometrics method
could be applied to extract reliable information from the
spectrum and analyze beef cuts qualitatively and quantitatively.
However, the spectroscopy approach also suffers from a small
sampling area and a lack of spatial information, which limit
its application.

The multispectral imaging (MSI) system could capture
spectral information at each pixel of a two-dimensional array
(7). The three-dimensional hypercube with both spatial and
spectral information may potentially make a classification model
more detailed (8). Therefore, a high-data dimension also requires
feature extraction and fusion to build a reliable classification
model (9). In recent years, MSI has been widely applied for
quality evaluation and variety classification of food products (10–
12). Jiang extracted spectral features and textural features from
hyperspectral data of chicken breasts, and then fused them for
classification (13). The results demonstrated that fusion features
were more conducive to the correct classification of the classifier
than single features. Pu also proved that the combination of
spectrum and texture information in the modeling process could
improve the classification accuracy of different states of pork (14).

Because different types of beef cut might have similar
composition, they are difficult to be identified with only spectral
information. Meanwhile, the scattering and textural properties
of beef are also related to sarcomere length and collagen
content. The accuracy of a classification model is dependent
on feature extraction, fusion method, and classifier. Feature
extraction is recognized as an important approach to obtain an
informative feature from high dimensional data. Considering the
MIS measurement, feature fusion incorporating both spatial and
spectral information has been investigated intensively in a remote
sensing area to improve classification accuracy (15). Recently,
machine learning (ML) was applied for the processing of spectral
and multiple modality data (16–18).

The objective of this study is to develop a classification
method by MSI in combination with machine learning-
based classifiers. Based on multispectral images of beef cuts,
spectral and textural features were extracted to reduce the
dimension of data. Three machine learning-based classifiers were
used to establish classification models with different feature
sets. After the performance of single and multiple-modality
features was compared, the best models were put forward.
The results confirmed the feasibility of classifying beef cuts
with a satisfactory accuracy. Using multiple-modality features,
the optimally developed LDA classifier achieved a prediction
accuracy of over 90%. Therefore, the proposed approach
would provide an effective and empirical reference for meat
classification in similar future research and application.

MATERIALS AND METHODS

MSI System and Image Processing
As shown in Figure 1, the MSI system consists of a light source
(HL-2000-FHSA; Ocean Optics, Dunedin, FL, United States) and
an adjustable focus lens (Nikon, Tokyo, Japan) coupled with
a multi-channel spectroscopic camera (miniCAM5; QHYCCD,

FIGURE 1 | Schematic of the multispectral imaging system.

China). The spectroscopic camera has one TE-cooled, 16-bit
scientific CCD camera and a six-position filter wheel, in which
dichroic bandpass filters are mounted. With an adjustable focus
lens, the system achieves high-resolution imaging of 1,290 ×

960 pixels with six bands, centered at 500, 530, 570, 680, 760,
and 808 nm. In this approach, each band covers a relatively
wide range of wavelengths (about 16 nm in full-width half-
maximum, FWHM), which is typically strong for fast imaging.
MSI measurements were performed on fresh beef cuts bought
from a local market. The spectra of the beef cuts were also
measured with a visible near-infrared (VIS-NIR) spectrometer
(BTC611E; BWTEK, United States).

In order to reduce the error caused by the configuration of the
MSI system and avoid the oversaturation of the charge-coupled
device (CCD) sensor, each image was normalized as a pointwise
ratio of dark-noise-corrected intensity from the beef cuts and that
from the diffuse reflectance standard (20% reflection; Labsphere
Inc., United States), as follows:

IR =
Iraw−Idark
Iref−Idark

× 20% (1)

where IR is the calibrated reflectance, Iraw is the raw intensity
measured from the test sample, Idark is the intensity of
the dark response, and Iref is the intensity of the 20%
standard reference. This procedure could also compensate
inhomogeneous illumination fields and serve as a relative
intensity correction.

All the beef cuts were purchased from theMing Yuan abattoir.
The bulls were slaughtered according to standard procedure. The
samples were sent to the laboratory within 20min after purchase,
sliced immediately, bagged separately, and stored in a freezing
room at −18◦C. Before data collection, the samples were thawed
in a cold storage room at 6◦C for 12 h. The processing steps
of all the samples are generally the same, and the time interval
of the experiment is short, which guarantees the reliability of
the sampling process. To evaluate the representativeness of the
samples, emphasis was placed on collecting diverse data with
expected variations in color, size, and shape from different sites.
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Classification Model
As shown in Figure 2, the basic steps of the classification model
generally involved preprocessing, feature extraction, fusion, and
classification. First, the spectral and textual features of multiple-
spectral images were extracted and used as single-modality
feature sets. After normalization, feature fusion process was
introduced by concatenating the spectral and textural features
into a single array, which represents the multiple-modality fusion
features set. Linear discriminant analysis (LDA), support vector
machine (SVM), and random forest (RF) algorithms were applied
to establish the classificationmodels based on the single-modality
or multiple-modality feature sets. The classification accuracy of
different classifier and feature sets were further compared. Details
of every step are described in the following sections.

We implemented all the algorithms, i.e., feature extraction,
feature fusion, and classifiers, by employing a written script in
Python. The built-in function of LDA, SVM, and RF from the
sklearn library was used to build the classification models.

Feature Extraction and Fusion

The multispectral images contain abundant information, with
two spatial dimensions and one spectral dimension, which
give more details of the samples. However, the high data
curse of dimensionality also makes the classification model
more complex. Feature extraction is required to obtain relevant
information to make the classification model more accurate
and robust.

Considering the anisotropic muscles of beef, the textural
features could be extracted with the gray-level co-occurrence
matrix (GLCM), which represents the probability that a pixel
of specific gray level appears in a specified direction and
distance from its neighboring pixels (19). In this study, four
statistical textural features were calculated from GLCM, namely,
homogeneity, contrast, energy, and correlation, as follows:

Homogeneity =
N
∑

i=1

N
∑

j=1

g(i−j)

1+(i−j)
2 (2)

Contrast =
N
∑

i=1

N
∑

j=1

(

i− j
)2
g
(

i, j
)

(3)
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N
∑

i=1

N
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j=1
g
(

i, j
)
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[
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]

σxσy
(5)
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∑

i

∑
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∑
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i

∑
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(
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)2
g(i, j),

and (i,j) denote the probability statistics that both pixels
with the gray levels i and j co-occur in the corresponding
texture image, and g(i,j) is the (i,j)th entry in the gray-tone
spatial dependence matrix. In general, homogeneity assesses the
prevalence of gray-tone transitions; contrast quantifies the local
variation in an image; energy reflects the uniformity of the
image gray distribution; correlation measures its gray-tone linear
dependencies. The four statistical features are obtained from the

images of each band and finally formed the textural feature set
with 24 variables.

To obtain the spectral features, the multiple-spectral images
were quantified into CIELAB color space, and the values in this
color space represent the information of the partial band intensity
values of the multi-spectrum (20). First, the multispectral images
were converted into the CIEXYZ space as follows:
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where R, G, and B are the values of RGB channels and X, Y,
and Z are the values in the CIEXYZ space. Then, the values in
the CIEXYZ space were converted into the CIELAB space by
the following:
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Finally, the L, a∗, and b∗ values of the CIELAB space were used
as the spectral features.

The spectral and textural features could be used as an
input for the classification separately, and are referred to as
a single-modality feature set. For multimodal measurement,
feature fusion could combine the information obtained by a
different modality and generate a composite representation
containing more informative description than the single-
modality feature could provide. In feature-level fusion, the
spectral and textual features could be concatenated integrated
into a high-dimensional vector used for classification. In order to
eliminate the degradational effect of the feature value, the features
were normalized by subtracting the mean and dividing by the
standard deviation of each feature vector.

Classification Model

In this study, three supervised machine learning-based
algorithms, LDA, SVM, and RF, were used to build the
classification model for identifying three kinds of beef cuts.
Among them, LDA is a generalization of Fisher’s linear
discriminant, which finds a linear combination of features that
characterizes or separates two or more classes. After the input
variables are first projected to low dimensions, LDA aims at
maximizing the ratio of between-class cluster to within-class
cluster. SVM separates different types of samples by mapping
the low-dimensional space to the high-dimensional space with a
kernel function (21). Generally, the linear kernel function is often
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FIGURE 2 | Flow chart of main steps in data acquisition and analysis using multispectral images combined with machine learning for classification of beef cuts.

a good choice that works with high speed and efficiency. For
multi-classification tasks, multiple classifiers can be constructed
through “one-vs.-one” strategies to vote. RF generates an
ensemble of decision trees and is trained to get majority votes
from all the trees with the highest information gain (22). Given
an estimate of important variables in the classification, the single
tree does not affect the overall prediction. Different trees may
show different results from the same classification task, and the
most popular result will be selected as the final result.

Considering the dimensionality of the features, we chose
the optimization algorithm of “singular value decomposition”,
which is good at handling high-dimensional features for LDA.
The kernel function and penalty factor were the key parameters
of the SVM model. In this study, we used linear as kernel
function because of its being highly efficient. The best values
for C = 0.6 were optimized using a grid search method. An
RF classifier was constructed using the maximum number of
features as the square root of the number of features, and the
minimum number of samples in the leaf node as 1 to achieve high
classification accuracy and efficiency. We tested the results of our
proposed model on a various number of trees and found the best
performance of RF when the number of trees was 160.

Model Evaluation

The experiments were carried out on 550 samples, including
200 cuts of sirloin, 195 cuts of shank, and 160 cuts of flank. All
the samples were divided into two subsets manually, namely,
calibration set (445 samples) and prediction set (110 samples).
The samples in the calibration set were used to establish the
classification model. A hierarchical 10-fold cross-validation was

performed on the calibration set to verify the performance of
the model.

Cross-validation is an effective and widely used technique
to evaluate classification models by partitioning the original
sample into a training set to train the models, and a test set
to evaluate it. In 10-fold cross-validation, the original sample is
randomly partitioned into 10 subsamples of equal size. Of the
10 subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining nine are used as
training data. The cross-validation process is then repeated 10
times (the folds) with every subsample used exactly once as the
validation data. For classification problems, the advantage of this
method is each fold contains roughly the same proportions of
class labels.

The performance of the classification models was evaluated
in terms of accuracy, sensitivity, and specificity, which were
calculated as follows:

Accuracy = TP + TN
TP + TN+ FP+ FN × 100% (12)

Precision =
TP

TP + FN × 100% (13)

Recall = TP
TP + FN × 100% (14)

where TP is the number of samples correctly classified as positive;
TN is the number of samples correctly classified as negative; FP
is the number of samples incorrectly classified as positive; FN is
the number of samples incorrectly classified as negative. Based on
these metrics, confusion matrices were also calculated to explore
detailed classification performance.
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RESULTS AND DISCUSSION

VIS-NIR Spectrum and Multispectral
Images of Beef Cuts
As shown in Figure 3A, the reflectance spectrum of three types
of beef cut shows different intensity and absorption features in
the range of 500–800 nm. There are obvious absorption peaks
centered at 510, 550, and 640 nm. The absorbance at 510 nm
corresponds to light absorption by muscle pigments, while the
absorption bands at 550 nm are related to the oxymyoglobin
absorption (23, 24). Red meats also show an absorption band at
630 nm, which has been attributed to sulfmyoglobin (24). The
weak absorption peak centered at 760 nm corresponds to the
third overtone region of O-H or an absorption band produced
by deoxymyoglobin (23, 25). Because sirloin contains more water
and deoxymyoglobin, the absorption peak around 760 nm is
obvious. The main component of flank and shank is a muscle,
which contains less water and deoxymyoglobin, resulting in less
absorption at 760 nm. These compositions also determine the
color and reflectance intensity of the beef, which makes the
absorption differ between beef cuts. Among these three kinds of
beef cuts, the shank cuts have lower absorption, because they have
more white tendons and lipids.

The multispectral images of the beef cuts also show
heterogeneity in the arrangement of protein fibers and the
presence of intramuscular fat and other tissues, as shown in
Figures 3B-G. However, the texture properties also differed
with spectral bands. The textural feature also reflects the main
components of the beef cuts. Due to the high absorption of
myoglobin in muscle, all the three types of beef cuts show lower
reflectance at 500 nm, but the heterogeneity of beef was more
detailed in this band.

Results of Classification Model Based on
Single-Modality Features
As mentioned above, the three kinds of classification models
established were LSVM (linear support vector machine), LDA
(linear discriminant analysis), and RF (random forest). In order
to prevent overfitting, the regularization parameters need to be
set properly in SVM, and it was set as 1 finally. The optimization
algorithm in LDA is set as singular value decomposition that
is good at handling high-dimensional features. As for RF, the
number of trees needs to be set reasonably to achieve high
classification accuracy and good computing efficiency. In the
attempt, it was found that after the number of trees reached 10,
the accuracy of the model no longer improved significantly. The
model parameters have been set so far, and model building and
prediction are completed using the sklearn library in python3.

As shown in Table 1, the performance of the classification
models based on single-modality features was validated by 10-
fold cross-validation and prediction test. Generally, classification
models based on textural features achieve a better accuracy than
those based on spectral features. There was not much difference
in the result between two linear classifiers with textual features.
The SVM and LDA classifiers achieved a prediction accuracy of
70.91 and 72.73%, respectively. With the spectral features, the RF
classifier achieved a cross-validation accuracy of 68.07% and a

prediction accuracy of 64.55%. However, the prediction results
of the model with spectral features were always lower than that of
the model with textural features.

The confusion matrix was calculated to present the metrics
of sensitivity and recall, providing insights into the classification
capability of the models. As shown in Figure 4, the correctly
classified results were located on the diagonal, which also
indicated the sensitivity of the model. The results demonstrated
that most of the sirloin cuts could be correctly classified based
on the spectral features. Meanwhile, 97% of the shank could be
identified by the LDA classifier with textural features, because
the shank cuts have more textural features related to strips of
white fascia and unique muscle fiber directions, which can be
easily identified as a textual feature. However, the sensitivity of
the shank cuts is below 60% with the three classification models,
indicating that the flank samples are more difficult to distinguish
with single-modality features. According to the confusionmatrix,
the classification accuracy of different beef cuts varied with the
feature set. In that sense, the classification model could be further
improved by multiple-modality feature fusion.

Results of Classification Models With
Multiple-Modality Fusion Features
Table 2 summarizes the performance of the classification models
with multiple-modality fusion feature sets. The classification
accuracy was improved by merging the spectral and textural
features. All of the three classifiers performed better with
the multi-modality feature fusion set of MS- CIELAB-texture.
Regarding feature fusion, the optimally developed LDA classifier
shows the biggest improvement, achieving a prediction accuracy
of over 90%. The RF classifier is not improved much as the two
linear classifiers, because nonlinear classifier needs larger number
of samples for training to find good classification criterion.

As shown in Figure 5, the classification accuracy of the
linear classifiers is significantly improved with multiple-modality
feature fusion sets. Compared with a single textural feature, the
classification accuracy of flank was greatly improved with MS-
CIELAB-texture set, achieving a sensitivity of 80% with the LDA
classifier, as shown in Figure 5C. Meanwhile, the classification
accuracy of sirloin and flank was also improved. The sensitivity
of the LDA classifier with MS-textural features set was 98%
for sirloin cuts, while the sensitivity for shank also reached an
excellent level of 100% with the combination of CIELAB and
textural features.

All the results demonstrate that the multiple-modality feature
could efficiently improve the accuracy and synergy of the
classification model. Thus, feature fusion can combine the
sensitive feature by which the classifier established performed
better. However, the number of features will also affect the
performance of a classifier, such as error tolerance, number
of iterations, and training time. More importantly, we should
consider all aspects of the model comprehensively when selecting
feature set and classification algorithm.

To date, multimodality approaches have shown a considerable
capacity to improve the performance of classification and analysis
applications. However, most researches have merged redundant
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FIGURE 3 | Visible near-infrared (VIS-NIR) spectrum of (A) three kinds of beef cut and corresponding multispectral images at 500 nm of (B) sirloin, (C) flank, (D)

shank; and multi spectral images at 760 nm of (E) sirloin, (F) flank, and (G) shank.

TABLE 1 | Performance of the classification models based on single-modality features.

Types of data No. of Feature Variables Mean Accuracy (%) of Cross-Validation Accuracy (%) of Prediction

LSVM LDA RF LSVM LDA RF

MS 6 52.79 66.25 69.25 57.27 43.64 68.18

CIELAB 3 37.51 45.24 46.79 47.27 64.55 50.91

Texture 24 66.46 74.33 71.71 70.91 72.73 59.09

FIGURE 4 | Confusion matrix detailing the multiclass discrimination results of three different beef cuts using (A) random forest (RF) model with multispectral data (B)

linear discriminant analysis (LDA) model with CIELAB data, and (C) LDA model with texture data.

TABLE 2 | Performance of the classification models based on multiple-modality features.

Types of Data No. of Feature Variables Mean Accuracy (%) of Cross-Validation Accuracy (%) of Prediction

LSVM LDA RF LSVM LDA RF

MS + Texture 30 84.25 88.06 75.75 86.36 83.64 80.00

CIELAB + Texture 27 74.83 74.13 71.92 78.18 84.55 61.62

MS +Texture + CIELAB 33 85.37 89.42 80.69 90.00 90.91 80.00
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FIGURE 5 | Confusion matrix detailing the multiclass discrimination results of three different beef cuts using (A) the linear support vector machine (LSVM) classifier

with MS-texture fusion features, (B) the LDA classifier with CIELAB-texture fusion features, and (C) the LDA classifier with MS-CIELAB-texture fusion features.

information based only on different vibrational spectroscopy
techniques. More than improving the classification accuracy, this
study tries to provide a better interpretation of a chemometric
model and machine vision method.

Recently, portable multispectral devices were developed
to meet the increasing requirements of food analysis. This
study utilized portable equipment with simplified snapshot
measurement, providing the potential to develop a low-cost
instrument for online detection. By taking advantage of high-
efficiency data acquisition and processing, the MSI approach
could be widely applied for many tasks with a low budget.
There is also a large potential for combining molecular
information and machine vision in data fusion models for
applications to different matrices, such as food authenticity
and storage.

CONCLUSION

In this study, a classification method was proposed to
identify different beef cuts with MSI and machine learning-
based classifiers. With feature extraction and fusion strategy,
multispectral images were converted into single-modality and
multiple-modality feature sets and used further as input of
machine learning-based classifiers. The results demonstrated that
the classification model with multiple-modality fusion feature set
performed better than the model with a single feature set. The
performance of the LDA classifier was greatly improved with
multiple-modality feature fusion, achieving a prediction accuracy

of above 90%. This study also provided a better interpretation of
the MSI approach, which should be considered for use in routine,
nondestructive analyses of the food industry.
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