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Introduction
Diabetes has become a major public health problem 
worldwide with an estimate of 463 million people diag-
nosed and 232 million still undiagnosed.1 Type 2 diabetes 
(T2D) is more prevalent than type 1 diabetes (T1D) and 
accounts for ~90% of the diagnosed.2 Elevated plasma 
glucose (PG) is caused by this chronic disease due to 
insufficient insulin production or decreased insulin sensi-
tivity (SI). Life-threatening health complications can 
occur in case of prolonged elevated PG. Hence, in pro-
gressed T2D, it may be required to supplement with long-
acting basal insulin to maintain acceptable glucose levels. 

Thus, adherence to prescribed treatment and self-moni-
tored plasma glucose (SMPG) are crucial for all diabetes 
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Abstract
Background: Lack of treatment adherence can lead to life-threatening health complications for people with type 2 diabetes 
(T2D). Recent improvements and availability in continuous glucose monitoring (CGM) technology have enabled various 
possibilities to monitor diabetes treatment. Detection of missed once-daily basal insulin injections can be used to provide 
feedback to patients, thus improving their diabetes management. In this study, we explore how machine learning (ML) based 
on CGM data can be used for detecting adherence to once-daily basal insulin injections.

Methods: In-silico CGM data were generated to simulate a cohort of T2D patients on once-daily insulin injection (Tresiba). 
Deep learning methods within ML based on automatic feature extraction including convolutional neural networks were 
explored and compared with simple feature-engineered ML classification models for adherence detection. It was further 
investigated whether fused expert-dependent and automatically learned features could improve performance, resulting in a 
comparison of six different detection models. Adherence was detected throughout each day with an increasing amount of 
CGM data available.

Results: The adherence detection accuracy improved as more CGM data became available on the day of classification. The 
three classification models based on expert-engineered features obtained mean accuracies of 78.6%, 78.2%, and 78.3%. The 
classification model based purely on learned features obtained a mean accuracy of 79.7%. The two classification models 
fusing expert-engineered and learned features obtained mean accuracies of 79.7% and 79.8%. All the mentioned results were 
obtained 16 hours after time of injection.

Conclusion: The results suggest that adherence detection based on CGM data is feasible. Even though our study based on 
in-silico data indicates only slightly improved performance of more complex models, the question remains whether advanced 
models would outperform the simple in a real-world setting. Thus, future studies on adherence monitoring using real CGM 
data are relevant.
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patients.3-6 However, despite the minimal requirement of 
once-daily injections, studies report high variance in 
adherence levels.7-9

Although SMPG is the common approach to measure PG 
levels, recent continuous glucose monitoring (CGM) tech-
nology has enabled new opportunities and transformed the 
approach to diabetes care.6,10-16 CGM provides the ability to 
continuously monitor interstitial glucose levels with a pre-
defined interval (usually between 5 and 15 minutes). Even 
though the use of CGM devices is currently mainly used in 
T1D, there is a clear expansion and progress toward CGM 
use in the treatment of T2D as well.10,13

At present, the availability and accessibility of real-life 
CGM data from people with T2D are limited, and even more 
so with reliable labels with respect to adherence to prescribed 
treatment. Given this limitation, we simulate the required 
data using a modified T2D version of the well-established 
Medtronic virtual patient (MVP) model. Such simulation 
models enable generation of large amounts of CGM data and 
provide opportunities to investigate the impact of various 
factors (ie, adherence level, intraday variation of SI, intersub-
ject variance in level of consumed carbohydrate [CHO], etc.) 
on the CGM response. Most importantly for this study, the 
models provide flexible and easy-to-use simulations to facil-
itate accelerated development of decision support tools uti-
lizing CGM data. However, existing simulation models are 
not perfect in terms of providing realistic data. Therefore, 
considering the scope of this study, opportunities to improve 
the existing MVP model were sought.17,18

Recently, deep learning (DL) has achieved state-of-the-art 
performance within machine learning in different research 
areas as well as industrial and medical applications.19,20 In 
particular, DL methods have proven powerful for automatic 
feature extraction using large data sets to reduce the need for 
feature engineering by domain experts.20 Given the increas-
ing availability of connected medical devices including CGM 
and injection data, diabetes research can benefit from DL, and 
incrementally so as large CGM data sets become available.

The aim of this study was to develop an early alarm sys-
tem for adherence detection using supervised learning 
based on large amounts of in-silico CGM and injection 
data. A common initial insulin treatment for T2D is once-
daily basal insulin injection, and even though it currently is 
the simplest form of insulin therapy, this daily injection 
could be forgotten. It is therefore a relevant question 
whether a missing once-daily basal insulin injection can be 
detected based on CGM data from the same day, that is, 
retrospective adherence detection, up to 16 hours after 
expected time of injection (TOI). Following the present 
setup, this is the latest TOI for a missed dose as the label of 
Tresiba states that a delayed dose should be taken within 
eight hours of the next injection.21

Adherence to prescribed treatment is essential to achieve 
glycemic control. However, people with diabetes may in their 
daily lives often forget elements of the complicated treatment 

of diabetes, which can affect their treatment. For instance, a 
previous study has shown a clear link between nonadherence 
to prescribed treatment and higher mortality and hospitaliza-
tion.5 Therefore, an early alarm system designed to detect 
adherence/nonadherence is likely to provide clinically rele-
vant treatment recommendations. Ultimately, this could delay 
or prevent onset of secondary conditions to T2D and improve 
the overall well-being of the patient.

Methods

In the context of this study, engineered CGM features 
based on three network architectures of varying complex-
ity were contrasted against DL generated features based on 
convolutional neural networks (CNNs). Additionally a 
fused approach were considered, in which engineered and 
learned features were combined and explored for two dif-
ferent network architectures. This resulted in a comparison 
of six different detection models in total.

The speed and precision of adherence detection were 
explored after an injection of once-daily basal insulin using 
the simulated CGM data. Our recent preliminary study by 
Mohebbi et al22 indicated the feasibility and potential of 
such an approach which is further evaluated and improved 
upon in this study.

In the simulations, adherence/nonadherence was defined 
binarily as either taken injection or missed injection at the 
defined TOI; thus, there were no late or suboptimal dose 
injections. In the context of this study, adherence was 
defined as a full optimal dose taken within the introduced 
time variation and nonadherence was defined as a total 
dose omission.

MVP Model

CGM data of T2D patients with labeled adherence/nonad-
herence to the prescribed once-daily insulin injection were 
simulated. The in-silico CGM data were based on the well-
established and T2D modified MVP model emulating the 
excursions of PG concentration.17,18 A schematic of the uti-
lized compartment model is presented and described in 
Figure 1.

In short, the model is based on the MVP model,17 a phys-
iological model for simulating 24-hour insulin-glucose 
dynamics in T1D patients along with quantified parameter 
sets for ten patients. Moreover, a T2D augmentation was 
implemented by Aradóttir et al,18 introducing a linear 
endogenous insulin production and a two-compartment 
model describing absorption of CHOs.17,18,23,24 Furthermore, 
relevant parameters were varied in accordance with typical 
physiological differences between T1D and T2D patients 
including body weight, SI, and fasting glucose.18,22 The full 
set of coupled differential equations describing the com-
partment model and further details are presented by 
Aradóttir et al.18
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Data Simulation

Several elements were implemented to the T2D MVP model 
in order to achieve more realistic in-silico CGM data. Each 
element is listed below followed by a short description in 
addition to conceptual plots as presented in Figure 2.

a) Random adherence sequence
 Random adherence was implemented by drawing a 

random number from a uniform distribution before 
the simulation of each CGM day and thresholding at 
the desired level of adherence (Figure 2(a)). All data 
in this article were simulated with an adherence level 
of 95% in order to imitate clinical trial data acquired 
under a controlled setup where a high adherence level 
is expected.

b) Variance in TOI
 If a day was adherent, the TOI would be at 8:00 am ± 

15 minutes. The standard deviation (SD) of 15 min-
utes was added to the TOI by adding a random num-
ber from a Gaussian distribution (Figure 2(b)). If a 
day was nonadherent the dose was fully omitted, and 
no actions were taken at the expected TOI.

c) Intraday variation of SI

 We implemented an intraday variance in SI in order to 
achieve a more realistic CGM dynamic (Figure 2(c)). 
The daily excursions of SI presented by Schulz et al25 
were extracted and confined to be within the diurnal 
and nocturnal subject-specific SI values presented by 
Kanderian et al.17 Additionally, noise was added to the 

SI value before each PG estimation. The noise was 
acquired from a Gaussian distribution with a SD of 
5% of the difference between maximum and mini-
mum of the intraday SI (Figure 2(c)).

d) Intersubject variance in level of consumed CHO
 To introduce an intersubject variance in level of 

consumed CHO, a meal factor was implemented 
(Figure 2(d)). The meal factor was chosen at ran-
dom before each simulation and multiplied on all 
meals each day. The factor was limited such that the 
daily CHO intake was below the upper boundary of 
ingested CHO presented by Kanderian et al17 and 
above the recommended minimum intake of CHO 
for T2D patients.26

e) Removal of simulation initiation bias
 Each simulation initiates with a constant PG at the 

subject-specific basal glucose level until actions are 
taken, such as a meal or insulin injection. To over-
come the pattern, we removed this initiation bias by 
excluding the first 10 days of each simulation sce-
nario consisting of 100 days (Figure 2(e)). Hence, a 
series of random choices were introduced prior to the 
11th day entailing 90 days of usable in-silico CGM.

f) A stochastic simulation scheme
 Preliminary studies showed a low intraday variance 

in the simulated data when compared with clinical 
data. A higher degree of variance was achieved in the 
simulated CGM data by applying the Euler-
Maruyama method27 introducing stochastic noise 
during simulations (Figure 2(f)).

Figure 1. Schematic representation of the compartment model used to simulate CGM data. The ingested CHO affect the PG 
concentration throught meal subcompartments 1 and 2 along with endogenous glucose production. The lowering effect of insulin on 
PG is the sum of both the subcutaneously injected insulin and the endogenous insulin production. The final PG is denoted by the plasma 
glucose concentration compartment from where CGM values are acquired.
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In order to simulate CGM signals of a T2D cohort, the 
parameter variation and meal case structure applied by 
Mohebbi et al22 was used: six fasting glucose (Gb) levels 
between ~108 and 198 mg/dL (6-11 mmol/L); decreasing SI 
by 30%, 50%, and 70%; and increasing body weight (BW) by 
10%, 30%, and 50%. These parameter variations were 
applied to nine out of ten subjects from the original MVP 
model resulting in 9 6 3 3 486subjects ⋅ ⋅ ⋅ =G S Bb I W

different sub-

ject configurations.18,22 Subject number 10 showed unex-
plainable unrealistic dynamics and was therefore excluded. 
Each configuration was simulated 20 times resulting in 
486 90 20 874800config days⋅ ⋅ = CGM days.

To further ensure realistic data simulations, CGM sensor 
noise was included following Facchinetti et al.28 The noise 
model was developed using actual CGM data, implemented 
as a sum of two autoregressive models and applied after the 
data were simulated.

The study concerns patients treated with Tresiba (Insulin 
Degludec), a once-daily long-acting insulin with a half-life of 
~25 hours.21 A pharmacokinetic (PK) profile of Insulin Degludec 
described by Heise et al was used in the simulations.29 Prior to 
each simulation, the patient-specific optimal dose was 

determined using a stepwise titration algorithm presented in a 
study by Zinman et al.30 Dose adjustments were based on the 
mean fasting PG of three days above target, or the minimum 
fasting PG if below target. A patient was considered in target if 
PG was between ~70 and 90 mg/dL (3.9-4.9 mmol/L).

Day-to-Day Variance

Initial exploratory analysis indicated the fasting PG to be a 
primary feature in the detection of adherence. To ensure that 
the simulated CGM data had a degree of day-to-day variance 
proportional to that of actual PG measures, the simulated data 
were compared with clinical data. The coefficient of variance 
(CV) of the prebreakfast PG in the simulated CGM data were 
compared with the CV of prebreakfast SMPG measurements 
from a large clinical study containing 770 patients with T2D 
on once-daily Tresiba treatment.30 For the simulated CGM 
data the prebreakfast PG was defined as the lowest mean hour 
(lowest mean acquired from a sliding window of 12 consecu-
tive PG values),31 between 6:00 am and 9:00 am. The pre-
breakfast PG CV of the clinical study was 17% in comparison 
with 18% in the simulated CGM data.

Figure 2. Conceptual plots illustrating six additions to the simulation setup. (a) Random adherence sequence, (b) variance in time 
of injection, (c) intraday variation of insulin sensitivity, (d) intersubject variance in level of consumed carbohydrate, (e) removal of 
simulation initiation bias, and (f) introduction of a stochastic simulation scheme.
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Deep Learning

DL builds on neural networks and is characterized by hav-
ing multiple hidden layers. As opposed to relying on fea-
tures designed by domain experts, this enables the automatic 
extraction of features from large data sets by learning fea-
ture representations of increased complexity as the layers 
are traversed.

In this study, we investigated the potential for using 
CGM for adherence detection considering DL architec-
tures for classification. Ground truth treatment adherence 
was available for the in-silico CGM data entailing the two 
class labels of adherence and nonadherence as output. The 
training error used is the cross-entropy error function 
defined by:
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where yn  and yn^  are the desired output and the estimated 
class probability for the nth CGM signal. The estimated class 
probability is defined by the logistic sigmoid activation 
function:
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In case of logistic regression (LR), zn  is given by the linear 

model z w x bn i nii
= +∑  in which xni  is the ith engineered 

feature (described in Table 1) of CGM observation n. We fur-
ther considered a multilayered feed-forward neural network 
based on multilayer perceptrons (MLPs) and CNNs, the lat-
ter based on the raw CGM as input to the model. As nonlin-
ear activation functions we employed rectified linear units.32

In order to find the optimal values for the model param-
eters, represented by weights wi  and b in the case of LR, 
the cross-entropy function was minimized. Here, LR is a 
convex problem, whereas the MLP and CNN models are 
nonconvex with issues of local minima. The minimum 
was found using the Adam optimizer based on stochastic 
gradient optimization.33 The classification methods were 
implemented using the PyTorch framework version 0.4.1 
in Python version 3.6.5.

Data Input

The input of the LR and MLP models was based on 11 engi-
neered features of the CGM signal described in Table 1. Out 
of the 11 features, 7 were chosen with inspiration from the 
key metrics from the international consensus on the use of 
CGM34 and the remaining 4 were lowest mean hour, pre-
breakfast PG, and minimum and maximum measurements.

Considering the input to the feature-based architectures, 
the first ten features were computed every four hours 
throughout the day of classification (DOC) (midnight to 
4:00 am, 4:00 am to 8:00 am, . . ., 8:00 pm to midnight), 

resulting in a total of six feature sets (6 ⋅ 10 features). In the 
same manner, historical data were also included to the input 
with the four-hour interval feature sets acquired from one to 
five days prior to DOC. Furthermore, a set of all 11 features 
were calculated for a 24-hour interval when a full day of 
CGM was available (from midnight to midnight). The addi-
tional feature, restricted to 24-hour intervals, was the pre-
breakfast PG defined as lowest mean hour between 6:00 am 
and 9:00 am. For a clearer understanding, Equation (3) is 
included showing an example of input for adherence detec-
tion on a DOC at 8:00 am:
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Similarly, a new feature set was added to the input data for 
each added four-hour interval. Furthermore, a set of 24-hour 
features were added at midnight on the DOC.

The input to the raw CGM models was the PG mea-
surements having 288 evenly distributed samples per day 
(every five minutes). As for the feature models, CGM 
readings from five prior days were included in addition to 
the available data from the DOC. The input of the models 
based on both raw CGM and features takes the entire fea-
ture input as described above in addition to the raw CGM 
signal. It was chosen to include the previous five days as 
Tresiba is expected to still have a presence in the plasma 
given the PK dynamics.

As mentioned before, 874 800 days of CGM were simu-
lated with an adherence level of 95%. Hence 43 740 and 

Table 1. List of Engineered CGM Features Used to Detect 
Adherence and Nonadherence.

Features

Minimum PG measure of the interval
Maximum PG measure of the interval
Mean of entire interval
SD of the interval
Percent of interval with PG above 90 mg/dL (5 mmol/L)
Percent of interval with PG above 108 mg/dL (6 mmol/L)
Percent of interval with PG above 126 mg/dL (7 mmol/L)
Percent of interval with PG above 144 mg/dL (8 mmol/L)
Area under the PG measures in the interval
Lowest mean hour of the interval
Lowest mean hour between 6:00 am and 9:00 am*

Abbreviations: CGM, continuous glucose monitoring; PG, plasma glucose; 
SD, standard deviation.
*This feature is restricted in time and only calculated for 24-hour 
intervals.
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831 060 nonadherent and adherent days, respectively. It was 
desired to have class-balance in the data set to have a baseline 
accuracy of 50%. Therefore, 43 740 of the adherent days were 
selected at random resulting in a data set of 2 ⋅ 43 740 = 87 
480 CGM observations with a forced class-balance. Figure 3 
presents examples of an adherent and nonadherent CGM 
observation including DOC and the five prior days of CGM 
data used for detection.

Architectures and Hyperparameters

Figure 4 shows the architectures investigated in this study. 
A progression in model complexities was examined as 
shown in Figure 4 going from simple feature-based mod-
els (A0-A2) to more complex architectures based on raw 
CGM data (A3) in addition to a combination of these (A4 
and A5). This was done in order to examine whether 
advanced models based on automatic feature extraction 
would outperform simple expert-dependent feature mod-
els as well as if added expert insight would increase the 
performance in the fused models. The circles on the left of 
each architecture indicate CGM feature input or raw CGM 
input.

A0 is a LR model represented by a single hidden unit in 
a single hidden layer. A1 and A2 are MLP architectures with 
1 and 2 hidden fully connected (FC) layers, respectively. A3 
is the architecture developed by Mohebbi et al22 based on 
CNN layers (automatic feature extraction) followed by a FC 
layer accountable for the classification. Architecture A4 
combines the automatic feature extraction part (CNN lay-
ers) from A3 with the expert-dependent features in a FC 
layer and performs classification based on all the features. 
A5 is similar to A4, but with an added FC layer before the 
output. In general, adding hidden FC layers introduces fur-
ther nonlinearity into the model. Despite A0 being a simple 
LR model, it was trained using the exact same framework as 
the other models for consistency.

Leave-One-Subject-Out Cross-Validation and 
Ensembling

During training of the models, the simulated data from sub-
jects 1 to 6 were used in a leave-one-subject-out cross-valida-
tion setup as indicated in Figure 5. For each fold the model 
yielding the best validation accuracy was chosen based on 
five re-initializations and training of model parameters. CGM 
data from subjects 7 to 9 were used as the final unknown and 
unused test set. In this context, ensembling was obtained by 
averaging the probabilities obtained from different models 
before making a classification. Specifically, we ensemble the 
output probabilities acquired from the six models obtained 
during the cross-validation step. Furthermore, four consecu-
tive runs (repeating the random selection of adherent days 
from the data set followed by the process illustrated in Figure 
5) were performed for each tuned classification model in 
order to check for consistency/robustness of the developed 
models. Hence, the performance metric is qualitatively 
depicted by the mean ensemble test accuracy (META) ± SD 
across the four repetitions. For a single repetition, accuracy is 
defined by Equation (4):

 Accuracy
TP TN

=
+
N

,  (4)

where TP is the true positives, TN is the true negatives, and 
N is the total number of observations.

Statistical Considerations

Due to the exploratory scope and nature of this study, compari-
sons are descriptive. Although formal statistical testing could 
be employed, the present study is based on simulated data for 
which arbitrary power can be achieved by additional simula-
tions. Furthermore, the validity of the simulated data and how 
the results generalize to real CGM data can be questioned. The 

Figure 3. An illustrative example of an adherent and nonadherent day including the five days prior to the day of classification.
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Figure 4. High-level schematic of the six architectures investigated in this study. The circles on the left of each architecture indicate 
CGM feature input or raw CGM input. The single circle to the right of each architecture illustrate the output neuron. A0 is a logistic 
regression model; A1 and A2 are multilayer perceptrons with 1 and 2 hidden layers, respectively; A3 is the convolutional neural network 
(CNN) from Mohebbi et al22; and lastly A4 and A5 are a combination of automatic and expert-dependent feature extraction with, 
respectively, 1 and 2 hidden layers before the output. The CNN-related hyperparameters are as follows: eight filters in each CNN layer 
followed by max-pooling layer of dimension [1, 2], local receptive field of length 18 (corresponding to 1.5 hours), and a stride length of 2. 
For all the architectures, the mini-batch size was chosen to be 250 including a total of 10 epochs for each training session.

Figure 5. Schematic presentation of how the simulated data were used to train, validate, and test the models. All simulations were 
divided into nine parts corresponding to the nine subjects. Simulations from subjects 1 to 6 were used in leave-one-subject-out cross-
validation scheme used for tuning of learning rates for all architectures and number of hidden units (NHU) in the fully connected (FC) 
layers (no regularization employed) of each architecture excluding A3 as NHU was optimized by Mohebbi et al.22 The parameters were 
optimized in a sequential manner with: 1) learning rates in 4 steps between 10–2 and 10–5 with the NHU fixed to 10, followed  
by 2) optimization of NHU in FC layers in 5 steps between 5 and 100. Optimal learning rate was found to be 10–3 for all architectures 
and the NHU to be 5 in the FC layers for all architectures excluding A3 where NHU were 10. Simulations from subjects 7 to 9 were 
used as test data, and for each day, six class probabilities were calculated using the models originated from the cross-validation steps and 
averaged, before making an ensemble classification.
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present study indicates the potential for adherence detection 
using both simple and advanced DL approaches, which forms 
an important framework for future investigations using formal 
assessments based on real CGM data.

Results

The study shows that for the best performing DL architec-
ture, adherence and nonadherence could be detected 16 hours 
after expected TOI with a META of 79.8% ± 0.5%. The 
result was achieved by the most complex architecture A5, 
and the closely related architectures A3 and A4 had similar 
performance. The simplest architecture A0 performed a 
META of 78.6% ± 0.6% at 16 hours after expected TOI. 
Figure 6 presents a plot of the META of the architectures 
with increasing data available after the expected TOI.

Considering Figure 6 the performances based on accuracy 
are very similar 16 hours after TOI. However, the architec-
tures utilizing the automatic feature extraction (ie, A3, A4, 
and A5) are slightly superior in contrast to the simpler archi-
tectures which only have the expert-dependent features as 
input. Furthermore, it is apparent that the difference between 
models is reduced as the available CGM data increases. At 
the TOI and the following 4 hours there seem to be limited or 
even no information on adherence detected by the models. 
The limited information on adherence at 4 hours after 
expected TOI (ie, at noon) can be an artifact caused by the 
confined TOI always being followed by postprandial PG 
excursions following breakfast and lunch, thus concealing 
the signal caused by an injection or omission.

Figure 7 depicts the 24 (4 runs of each of the 6 models) 
receiver operator curves (ROCs) for 8 hours (Figure 7(a)) 

Figure 6. Performance of the six architectures at expected time of injection in addition to 4, 8, 12, and 16 hours after. Each data point 
represents the META ± SD of the four runs, whereas the 50% accuracy (dashed black line) is the baseline performance. META, mean 
ensemble test accuracy; SD, standard deviation.

Figure 7. Presentation of 24 (4 runs of each of the 6 models) receiver operator curves for (a) 8 hours and (b) 16 hours after time of injection.
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and 16 hours (Figure 7(b)) after TOI. These ROCs support 
the results presented in Figure 6. It is easy to spot the differ-
ent model performances between 8 and 16 hours after TOI. In 
general, the trade-off between sensitivity and specificity are 
similar for all the models at 16 hours after TOI. However, at 
eight hours after TOI, a tendency of a more favorable sensi-
tivity–specificity trade-off is observed for the automatic fea-
ture extraction and hybrid models as opposed to the models 
relying only on the engineered features (ie, A0, A1, and A2). 
As we detect an injected dose of insulin, it should be empha-
sized that a true positive rate is more important than the false 
positive rate. This is due to the risk of overdose if a recom-
mendation of a delayed injection was sent even though the 
patient did in fact take the dose at the expected TOI. The 
final results for 8 and 16 hours after TOI are presented in 
Table 2 including META and the average area under the 
receiver operator curve values as performance metrics for 
each model.

These results support the fact that the performance of 
each model is similar while the classification models based 
on automatic feature extraction (A3-A5) provided margin-
ally better performance within four to eight hours after TOI.

Discussion

In this study, thorough modifications and additions to the 
MVP model were applied followed by simulation of in-silico 
CGM data of a diverse T2D cohort. Several subject configu-
rations were obtained and the simulated CGM data were set 
to be realistic through a comparison with clinical data 
acquired from a similar population.

There is an indication that the developed classification 
models can detect daily injection adherence with an accu-
racy of ~80% within DOC (ie, 16 hours after injection). 
Furthermore, there seems to be a benefit when using DL 
architectures both with and without engineered and 
expert-dependent features. Within four to eight hours after 
TOI using the models based on automatic feature extrac-
tion seems superior. On the other hand, the simple 

feature-engineered LR model performed almost as well as 
the more complex DL architectures at 16 hours after TOI. 
Thus, even simple features of the CGM data are promising 
for early adherence detection if the entire CGM day is 
available.

It should be emphasized that there is a clear benefit of 
using simple models in contrast to more complex models. 
One benefit is the lower requirements to the necessary 
number of observations for training due to fewer parame-
ters being learned. Another benefit of the simple LR model 
is the superior explainability; that is, it is easier to explain 
how decisions regarding the adherence are made. However, 
a more comprehensive investigation on the architectures 
and hyperparameter optimization is needed to elucidate the 
full potential of DL adherence detection including present 
and other models (eg, recurrent neural networks). Hence, 
we expect that better tailored DL frameworks can further 
improve upon the presented performance.

The primary limitation of the study is the simulated data 
and the inherent modelling choices made. Choices pertain to 
the limiting of the model to only include intraday SI variance, 
and not interday variation of the SI dynamic. Also, the choice 
to confine TOI is only realistic in settings with strict treat-
ment time schedules such as the presently considered clinical 
setting. Patients living on a once-daily treatment scheme can 
vary much more in TOI producing significantly different 
results. However, even though real life may have larger vari-
ability in TOI, most people are habitual in their medication 
patterns, and the simulated data represent a reasonably habit-
ual cohort of T2D patients.

A second limitation is due to the confinement of the 
adherence level to 95%, which may indicate that the results 
could be transferrable to only a very adherent group of T2D 
patients. In reality, patient adherence levels vary a lot, indi-
cating the need of further investigations of different adher-
ence levels.

A third limitation is that actual CGM data often have 
various device and subject induced gaps, which were not 
considered in this study. On the other hand, incremental 

Table 2. Mean ± SD of the AUROC and META for Each of the Detection Models at 8 and 16 hours After Expected TOI  
(Based on Four Runs).

Model

8 hours after TOI 16 hours after TOI

META AUROC META AUROC

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

A0 63.9% ± 0.7% 0.691 ± 0.003 78.6% ± 0.6% 0.869 ± 0.001
A1 63.9% ± 0.5% 0.687 ± 0.004 78.2% ± 0.8% 0.864 ± 0.001
A2 64.0% ± 0.5% 0.688 ± 0.013 78.3% ± 1.1% 0.867 ± 0.002
A3 68.6% ± 0.9% 0.765 ± 0.005 79.7% ± 0.4% 0.870 ± 0.002
A4 68.1% ± 0.3% 0.745 ± 0.004 79.7% ± 0.8% 0.878 ± 0.001
A5 67.6% ± 1.2% 0.737 ± 0.015 79.8% ± 0.5% 0.873 ± 0.002

Abbreviations: AUROC, area under the receiver operator curve; META, mean ensemble test accuracy; SD, standard deviation; TOI, time of injection.
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improvements of future devices and consistent patient usage 
are anticipated to lower the impact of this limitation.

The results based on simulated data are inconclusive in 
terms of indicating either a benefit of the more complex DL 
architectures or a benefit of the simpler models. Therefore, 
applying the models to real CGM data to assess whether the 
simple models would perform similarly to the complex 
models in a real-life context is needed. In particular, this 
should include exploration of the advantage of the advanced 
models until eight hours after TOI due to the potential clini-
cal implications. Detecting a missed injection already after 
eight hours provides an opportunity to recommend the 
patient to take the day’s injection of Tresiba, benefitting 
from the flexibility of injection time of Tresiba in accor-
dance with the label.21

On the condition that the results in this study can be 
reproduced using real CGM data, an early adherence detec-
tion system could be implemented as a part of a decision and 
treatment support tool. It could be in the form of presenting 
a notification on a mobile app, to check whether a dose was 
injected or not. Furthermore, data from an adherence detec-
tion system could be shared to a cloud providing dynamic 
information and valuable insights about patient behavior to 
health care professionals (HCPs). This enables informed 
decisions by HCPs toward tailored diabetes treatment for 
each individual patient.

Conclusion

The T2D modified version of the MVP model was success-
fully used to simulate a large amount of realistic CGM data. 
The data were used to develop methods for treatment adher-
ence detection. The automatically extracted features based 
on DL methods with added expert-dependent features per-
formed best with accuracy of 79.8% ± 0.5% 16 hours after 
TOI. Although the fused CNN model with learned and 
expert-dependent features was the best performing model, it 
should be emphasized that almost equal performance could 
be achieved by the CGM consensus inspired11,34 simple fea-
ture-engineered models at 16 hours after TOI with accuracy 
of 78.6% ± 0.6%. However, eight hours after TOI the mod-
els based on automatic feature extraction indicated a clear 
advantage and should be further explored due to the poten-
tial clinical implications. According to the Tresiba label,21 
the injection time can be flexible, as long as the injection is 
taken at least eight hours before next expected injection. 
This window of adherence detection is within the time win-
dow where a clinically relevant treatment recommendation 
can be provided.
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