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Cancer, as a shocking disease, is one of the most common malignant tumors among women, posing a 
huge threat to the physical health and safety of women worldwide. With the continuous development 
of science and technology, more and more high and new technologies are involved in the diagnosis and 
prediction of breast cancer. In recent years, intelligent medical assistants supported by data mining 
and machine learning algorithms have provided necessary support for doctors’ diagnosis. This study 
proposes an improved LightGBM hybrid integration model. Introducing gradient harmonic loss and 
cross entropy loss to enhance the model’s attention to minority classes in the dataset and alleviate the 
impact of data imbalance on diagnostic results. Designing whale optimization algorithm to improve 
LightGBM to achieve iterative optimization of hyperparameters, and enhance the overall performance 
of the model. Proposing Jacobian regularization method to denoise LightGBM to solve the problem of 
model sensitivity to noise. Developing the LightGBM hybrid integration model to ensure the accuracy 
and stability of model diagnosis on diverse and imbalanced datasets. The effectiveness of the proposed 
method has been comprehensively compared and verified through the dataset in the UCI machine 
learning repository, and the results show that the proposed method has achieved good diagnostic 
performance in all indicators. The hybrid integration model proposed in this paper can provide effective 
auxiliary support for doctors to diagnose breast cancer.

Keywords Breast cancer diagnosis, Whale optimization algorithm (WOA), Light gradient boosting machine 
(LightGBM), Hybrid integration, Data mining

With the gradual development of the social economy and the continuous improvement of material living 
standards, people’s emphasis on physical health is increasing day by day. As a malignant tumor with a high 
incidence rate in the world, breast cancer has a great impact on women’s health1–3. In the clinical diagnosis of 
cancer, doctors often combine various physiological indicators and imaging data of patients with experience to 
make a diagnosis. However, with the updating and iteration of science and technology, as well as the continuous 
development of statistical disciplines, the diagnosis of cancer is no longer limited to traditional data surfaces. It 
is also necessary to explore the hidden information behind the data, discover more statistical patterns from the 
data, and provide valuable reference for doctors’ diagnosis4,5.

Research shows that the 5-year average survival rate of early detection and treatment of breast cancer can 
reach more than 90%. Due to the lack of awareness of regular screening, many patients go to the hospital only 
after they have symptoms. During this period, the examination result is usually breast cancer, and metastasis has 
occurred, such as brain metastasis, lung metastasis, etc. The 5-year survival rate of these patients is only about 
20%. For breast cancer, early detection, early diagnosis and early treatment can effectively cut off the progress of 
cancer, achieve clinical cure, and enable patients to better survive6,7.

At present, the focus and difficulty of clinical research is how to carry out early diagnosis and treatment 
for breast cancer, so as to improve the survival period and quality of life of patients8,9. With the continuous 
development of medicine, the current clinical auxiliary diagnosis technology is constantly developing. The 
diagnosis of breast cancer mainly includes three types of technology: medical imaging diagnosis, molecular 
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biology diagnosis and pathological biopsy. Generally speaking, machine learning algorithms such as data mining 
and neural networks can provide necessary assistance for doctors to quickly diagnose.

In recent years, machine learning has made unprecedented progress in data processing and classification, 
providing new ideas for solving key problems in the diagnosis and treatment of breast cancer. By integrating 
breast cancer data and using advanced machine learning and artificial intelligence technology to mine in-depth 
information, the speed and accuracy of disease diagnosis have been improved. The purpose of studying the 
diagnosis and prediction method of breast cancer based on neural network models is to combine clinical practice 
with machine learning10–14, which will help medical workers to more quickly and accurately determine whether 
the disease is present, while solving the problems of overfitting, high rates of missed diagnosis and misdiagnosis in 
existing models, and improving the accuracy of prediction models. The LightGBM model occupies less memory, 
trains faster, and is more efficient, so it is widely used in disease diagnosis15. However, most models overlook that 
disease datasets are often imbalanced and have not been processed beforehand. Moreover, the LightGBM model 
has numerous parameters and is sensitive to noise. Therefore, it is necessary to establish a reasonable model to 
automatically optimize and denoise its parameters. Therefore, in order to further improve the accuracy of breast 
cancer diagnosis, this paper proposes an improved LightGBM hybrid integration model combining gradient 
harmonization regularization and Jacobian regularization for breast cancer diagnosis. Firstly, gradient harmonic 
loss and cross entropy loss are introduced to improve the imbalance of breast cancer dataset; Secondly, a whale 
optimization algorithm is designed to iteratively optimize the parameters of the LightGBM model to improve 
the performance of the breast cancer diagnosis; Then, the Jacobian regularization method proposed in this paper 
is used to reduce the noise of LightGBM, which solves the problem that the breast cancer diagnosis model 
is sensitive to noise; Finally, the LightGBM hybrid integrated model is developed to ensure the accuracy and 
stability of model diagnosis under the diverse and imbalanced dataset of breast cancer. The main contributions 
can be summarized as follows:

 (1)  An improved LightGBM hybrid integration model combining gradient harmonization and Jacobian regu-
larization is proposed for breast cancer diagnosis.

 (2)  Design whale optimization algorithm, gradient harmonic loss, and Jacobian regularization method to con-
tinuously optimize the parameters of LightGBM model, improving the problems of data imbalance and 
noise sensitivity from the perspective of objective function.

 (3)  Develop LightGBM hybrid integrated model to ensure the accuracy and stability of model diagnosis under 
the diverse and imbalanced of breast cancer.

The main structure of this paper can be summarized as follows: “Related works” reviews the related work in the 
field of breast cancer diagnosis. The technical background for breast cancer diagnosis is given in “Background”. 
The “Proposed method” includes a detailed explanation of the proposed method in this paper. The evaluation 
of the proposed method is completed in the “Performance evaluation” section. Finally, the “Conclusion” section 
summarizes the paper.

Related works
In recent years, many scholars have conducted relevant research on the prediction or diagnosis of breast cancer, 
which has made great contributions to the development of modern medicine. The diagnosis model of breast 
cancer can be divided into traditional model, machine learning model and deep learning model. In recent 
years, deep learning has made significant breakthroughs in fields such as speech recognition, visual recognition, 
multimedia processing, medical diagnosis, and biomedical research. Many breast cancer diagnosis systems have 
been implemented based on data mining and machine learning algorithms. The following will review some work 
related to breast cancer diagnosis.

Youness et al.16 compared the use of nonlinear algorithms such as random forest, naive Bayes, support vector 
machine, and K-nearest neighbor to predict cancer. The author compared data mining algorithms based on 
the selection of the best classifier using bioinformatics and medical classification techniques, and ultimately 
concluded that support vector machine (SVM) was more suitable than other algorithms, with an accuracy of 
97.9%. Sara et al.17considered the data of breast cancer gene expression (GE) and DNA methylation (DM), 
and selected three different classification algorithms: support vector machine (SVM), decision tree and random 
forest to create nine models that help predict cancer. Finally, they thought that the scaling SVM classifier in 
Spark environment was superior to other classifiers because it achieved the highest accuracy and lowest error 
rate in GE data set.

Huang et al.18 proposed a new hierarchical clustering random forest (HCRF) model to improve the diagnostic 
accuracy of breast cancer. Firstly, decision trees are generated using the random forest algorithm, and hierarchical 
clustering techniques are used to perform similarity analysis and clustering on these decision trees, in order to 
select representative decision trees from each cluster to construct a random forest with both low similarity and 
high accuracy. Next, the Variable Importance Measurement (VIM) method is used to optimize feature selection, 
which calculates the importance of each feature and ranks them to remove less important features and leave 
the optimal feature subset that can effectively improve classification performance. When building the decision 
tree, Gini index is used to select the best partition features to ensure the highest purity of subsets, more accurate 
classification, and ultimately effectively improve the accuracy of breast cancer diagnosis.

Zheng et al.19 developed a hybrid algorithm of K-means and support vector machine (K-SVM) algorithm, 
and used the K-means algorithm to identify the hidden patterns of benign and malignant tumors respectively. 
Finally, on the breast cancer related data set, they thought that the accuracy of the method would be improved 
to 97.38%. Habib et al.20reduced the dimensions of breast cancer data set using the principal component analysis 
method. On this basis, they used KNN algorithm and naive Bayesian algorithm to predict the diagnosis of 
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breast cancer patients, and finally believed that the model obtained using KNN algorithm could achieve the 
best results. Bikku et al.21 developed an improved quantum neural network algorithm for structural analysis of 
molecules pertaining to drug discovery. The algorithm was designed for enhancing noise rejection, scalability, 
and optimization. Lin et al.22 proposed a deep neural network model (DeepMO) based on the integration of 
multi omics data, aiming to effectively classify the subtypes of breast cancer. This model includes three coding 
subnets and one classification subnet. Each encoding subnet is targeted at different types of omics data (mRNA 
data, DNA methylation data, and CNV data), and features are learned through feedforward networks and 
optimized using Relu activation functions, dropout, and batch normalization techniques. The features output by 
the encoding subnet are connected and L2 normalized to form an integrated representation of multiple omics 
data, which is then input into the classification subnet for predicting cancer subtypes. According to the nature 
of the problem (binary classification or multi classification), the classification subnet uses the Sigmoid activation 
function in combination with binary cross entropy loss or SoftMax regression in combination with cross entropy 
loss to regularize the model to achieve accurate classification of breast cancer subtypes. The whole model is 
trained end-to-end, which effectively utilizes the complementarity of different kinds of omics data to improve 
the accuracy of breast cancer subtype classification.

Moloud et al.23 used a nested ensemble method combining stacking and voting as classifiers to detect benign 
and malignant breast tumors, and ultimately concluded that the proposed two-layer nested ensemble model 
was superior to a single classifier and most classifiers. Zhang et al.24 proposed a new approach to enhance 
Adaboost through resampling versions. In the local boosting algorithm, local errors are calculated for each 
training instance, and then used to update the probability of that instance being used in the training set for the 
next iteration. Diao et al.25 developed a feature selection approach that promotes the selection of basic models by 
treating classifiers as features after converting set predictions into training samples. Yu et al.26 proposed a Hybrid 
Incremental Ensemble Learning (HIEL) method that considers both feature space and sample space for classifier 
selection to handle noisy datasets. Tian et al.27 proposed the XGBoost algorithm based on the GBDT algorithm, 
which significantly improved the recognition accuracy and running speed of the model on the basis of GBDT.

Background
In this section, the basic concepts of the research are explained, including the LightGBM diagnostic model, 
swarm intelligent optimization algorithm, which will be further applied to the proposed method.

LightGBM diagnostic model
Light Gradient Boosting Machine (LightGBM) is an efficient gradient lifting framework based on decision 
tree28 proposed by the team of Microsoft Research Asia in 2017. It is one of the best algorithms in machine 
learning algorithms to fit the real distribution. Compared with traditional gradient boosting algorithms, it has 
the advantages of faster training speed, lower memory consumption, better accuracy, and the ability to quickly 
process massive industrial data. It has been widely used in various industries to solve prediction problems 
such as classification and regression. Its main innovations include: Gradient based One Side Sampling (GOSS), 
Exclusive Feature Bundling (EFB), Histogram based decision tree algorithm, and Leaf-wise leaf growth strategy 
with depth constraints. The algorithm flowchart of LightGBM is shown in Fig. 1.

 (1)  Gradient based one side sampling (GOSS)

GOSS is a down-sampling algorithm whose main idea is that sample points with large gradients play a major 
role in calculating information gain. It can be understood that sample points with large gradients have a greater 
impact on information gain. Therefore, in order to maintain the accuracy of information gain evaluation, 

Fig. 1. Basic framework of LightGBM.
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the sample points with large gradients are retained during down-sampling, and the sample points with small 
gradients are randomly sampled proportionally.

 (2)  Exclusive feature bundling (EFB)

Mutually exclusive feature bundling is a method of reducing feature dimensions, which can be simply understood 
as bundling mutually exclusive or unrelated features together to form a new feature. This method is very different 
from the traditional dimension reduction algorithm. The traditional dimension reduction algorithm creates new 
features that contain as much original information as possible in a linear weighted way based on the correlation 
between features, while the EFB is different from it. From the perspective of the sparseness of high-dimensional 
data in practical applications, it makes use of the fact that there are few non-zero values in the feature space at 
the same time, and binds these mutually exclusive data together as a new feature, which achieves the purpose 
of dimension reduction without losing feature information. The schematic diagram of EFB algorithm is shown 
in Fig. 2.

 (3)  Histogram-based algorithm

To reduce storage capacity and increase computational efficiency, LightGBM introduces histogram algorithm. 
The basic idea of histogram algorithm is to discretize continuous feature values into K integers and construct a 
histogram with a width of K. In the process of node splitting in decision trees, only the rough statistical information 
of the histogram needs to be considered, without traversing all data points, thus significantly reducing the time 
complexity. The histogram algorithm has many advantages, such as: no need to save pre-sorted results, reducing 
the computational cost of segmentation gain; Only storing the discretized values of features greatly reduces 
memory usage; When seeking the leaf nodes of a certain node, the histogram subtraction method can be used to 
reduce data traversal and improve efficiency. The process of forming the histogram algorithm is shown in Fig. 3.

 (4)  Leaf-wise leaf growth strategy with depth constraints.

Most decision tree-based algorithms adopt a Level wise strategy, which allows for the simultaneous growth of 
leaves in the same layer during data traversal without overfitting. However, it treats all leaf nodes in the same 
layer equally and searches and splits many leaf nodes that do not require splitting or have low splitting gains, 
thereby increasing computational complexity. The LightGBM algorithm proposes a Leaf wise strategy to address 
the above shortcomings, as shown in Fig. 4. This method finds the leaf node with the highest splitting gain or loss 
reduction from all the currently traversed leaves and splits them, continuously reducing the overall model loss 
through cyclic splitting. Research has shown that under the same number of splits, the Leaf wise strategy reduces 
errors much more than the Level wise strategy, resulting in higher model accuracy. However, the Leaf wise 
strategy also has corresponding drawbacks. When traversing multiple leaf nodes, it will always find the node 

Fig. 3. Histogram algorithm formation process.

 

Fig. 2. Schematic diagram of EFB.
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with the most loss reduction. If the decision tree is not restricted from splitting, it will continue to split according 
to the point with the most loss reduction, resulting in overfitting. Therefore, researchers have added a maximum 
splitting depth limit to the Leaf wise growth strategy to prevent overfitting while ensuring high efficiency.

The core idea of LightGBM is to construct a new tree through feature splitting, and iteratively calculate the 
residual between predicted and actual values based on residual fitting method. Finally, the prediction results of 
all trees are summed up to obtain the final prediction result. Suppose that the training set Q consists of N  breast 
cancer data samples, where xi = [x1

i , x2
i , . . . , xn

i ] represents the input sample, n represents the dimension of 
sample characteristics, and yi = [0, 1][0, 1] represents the category label, which uses one-hot coding form to 
represent benign and malignant respectively. The integrated model LightGBM can be represented as:

 
ŷi =

k∑
k=1

fk(xi), fk ∈ F  (1)

where fk(xi) represents the i-th decision tree; xi represents the i-th sample feature of the transformer; ŷi 
represents the predicted sample category; F  represents the tree model; k represents the total number of decision 
trees. The objective function is constructed as follows:

 
G (xi) =

k∑
t=1

ϕ (yi, Ft−1 (xi) + ft (xi)) +
∑

k

Ω (fk)  (2)

 
Ω (fk) = γT + 1

2λ ∥w∥2 (3)

where ϕ (yi, Ft−1 (xi) + ft (xi)) represents the loss function; Ω (fk) represents regularization; Ft−1 (xi) 
represents the top t − 1 tree models; ft (xi) represents the t-th tree model; w represents the weight of each tree 
leaf; λ, γ is a hyperparameter; T  represents the number of leaf nodes in the tree model; yi represents the true 
category of the i-th sample.

To minimize the objective function, the LightGBM model uses Newton’s method to find a mapping 
relationship G(x) to approximate the objective function G(x), which can be derived as:

 
G (xi) ∼=

n∑
i=1

(
gift (xi) + hif

2
t (xi)
2

)
+

∑
k

Ω (fk) (4)

where gi represents the first derivative of the loss function; hi represents the second derivative of the loss 
function.

For the LightGBM classification model, the cross-entropy loss function (CE Loss) is commonly used. Taking 
binary classification as an example, the cross-Entropy loss can be expressed as:

 
LCE (xi, yi) =

−
∑N

i=1 (yi log P (ŷi) + (1 − yi) log (1 − P (ŷi)))
N

 (5)

where N  represents the total number of samples; yi represents the correct category of the i-th sample.
The first and second derivatives corresponding to G(x) can be expressed as:

 gi = (yi − P (ŷi)) (6)

 hi = (1 − P (ŷi))P (ŷi) (7)

Fig. 4. Schematic diagram of level-wise and leaf-wise.
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Due to the imbalance of breast cancer samples and the large proportion of benign samples in the total sample 
loss, the model will tend to predict those categories with a large proportion and learn too much about the 
characteristics of benign samples. By hiding the error rate of minority samples through the correctness of the 
majority class, the overall diagnostic performance of the model shows a high “accuracy”, but in reality, it cannot 
identify minority class samples well.

Swarm intelligent optimization algorithm
For the optimization of parameters in the diagnosis model of breast cancer, many scholars choose to seek solutions 
from the real models of nature, thus starting the research on nature inspired computing. These algorithms have 
shown good performance in adaptability, self-learning ability, robustness, and efficiency. In natural heuristic 
computing, there is a type of swarm intelligence that focuses on individuals with simple behaviors completing 
complex tasks through self-organization, called swarm intelligence (cluster intelligence), as shown in Fig. 5.

Cluster intelligence leverages all the advantages of a cluster, including self-organization, decentralized control, 
high robustness, flexibility, and low consumption. It can still provide optimal solutions when facing large-
scale complex problems. The earliest cluster intelligence algorithms29,30, including Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO), have received widespread attention and application, and have 
achieved great success in many fields, such as the classic traveling salesman problem. They generally have the 
characteristics of simple structure, few parameters, and easy implementation. Nowadays, it has been widely 
applied in practical problems such as function optimization, multi-objective optimization, solving integer 
constraints and mixed integer constraint optimization, neural network training, signal processing, routing 
algorithms, etc. The practical results have proved the feasibility and efficiency of these algorithms. In recent years, 
there has been an explosive growth in research on cluster intelligent algorithms for solving complex computing 
tasks in academia. These studies are mostly related to optimization problems, mainly focusing on fields such as 
health and hygiene, social networks, transportation, energy and climate, Industry 4.0, etc., and have achieved 
good results. Cluster intelligent optimization algorithms, in addition to the above-mentioned ones, also include 
cuckoo algorithm, firefly algorithm, bat algorithm, whale optimization algorithm, etc. Two commonly used 
swarm intelligent optimization algorithms will be introduced in the following.

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 1995, inspired by the foraging 
behavior of bird or fish flocks, to solve increasingly complex optimization problems. The two factors that need 
to be considered in particle swarm optimization are population optimality (g-best) and individual optimality 
(p-best), and particles update their velocity vectors based on these two factors. Assuming that the problem to be 
solved is in a D-dimensional search space, at time t, the current position of the i-th particle in the population 
is represented by a D-dimensional vector xt

i = (xt
i1, xt

i2, . . . , xt
iD)T , its velocity is represented by another 

D-dimensional vector vt
i = (vt

i1, vt
i2, . . . , vt

iD)T , the optimal solution position visited by the i-th particle is 
represented by pt

i = (pt
i1, pt

i2, . . . , pt
iD)T , and the index of the optimal particle in the population is g, then in 

each search iteration, the velocity and position of the i-th particle are updated by the following equations:

 vt+1
i = ωvt

i + c1r1
(
pt

i − xt
i

)
+ c2r2

(
pt

g − xt
i

)
 (8)

 xt+1
i = xt

i + vt+1
i  (9)

The above equations describe the original form of particle swarm optimization algorithm, which has achieved 
very good results in multiple application scenarios. However, the algorithm itself still has many problems. For 
example, it is easy to fall into local optima, slow down convergence speed, have random parameter selection, and 
require multiple adjustments.

Fig. 5. The relationship between swarm intelligence and artificial intelligence.
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Whale Optimization Algorithm (WOA) is a swarm optimization algorithm31 that simulates the spiral bubble 
feeding method of humpback whales during the optimization process. Optimization is carried out through three 
stages: surrounding preys, chasing preys, and attacking preys with bubble nets.

 (1)  Surrounding the preys. As shown in Fig. 6, the humpback whale uses echo to surround its preys, continu-
ously reducing the encirclement to capture more accurately. Its motion trajectory equation is:

 




Qk+1 = Qk
best − AD

D =
∣∣CQk

best − Qk
∣∣

A = 2aρ1 − a
C = 2ρ2
a = 2 − 2k

kmax

 (10)

where k is the number of iterations; Qk  and Qk
best represent vectors from the starting point to the search agent 

position and the optimal position, respectively; D is the vector between the whale and its current best individual; 
A and C  are coefficient vectors that control the way whales swim; Set ρ1 and ρ2 as random numbers between 0 
and 1; a is the convergence factor that linearly decreases from 2 to 0.

 (2)  Chasing the preys. The spiral ascent mechanism is used to calculate the optimal distance between whales 
and prey, and its motion trajectory equation is:

 

{
Qk+1 = Qk

best − D′ebl cos(2πl)
D′ = Qk

best − Qk  (11)

where b is the logarithmic spiral constant, and  is a random number between [− 1, 1].

 (3)  Attacking the preys.

To avoid getting stuck in local optima, random searches will be conducted based on each other’s positions. When 
|A| > 1, the search agent is forced to move away from the current agent to update its position, and its motion 
trajectory equation is:

 

{
Qk+1 = Qk

rand − AD′′

D′′ =
∣∣CQk

rand − Qk
∣∣  (12)

where Qk
rand represents a randomly selected position vector from the whale population.

Proposed method
The proposed LightGBM hybrid integration model combining gradient harmonization and Jacobian 
regularization for breast cancer diagnosis involves the following and is shown in Fig. 7 to improve the diagnostic 
accuracy and stability of the model for breast cancer as a whole. Introducing gradient harmonic loss and cross 
entropy loss, the model’s attention to minority classes in the dataset is enhanced, alleviating the impact of data 
imbalance on diagnostic results. Designing whale optimization algorithm to improve LightGBM to achieve 

Fig. 6. Search methods for WOA.
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iterative optimization of hyperparameters, enhancing the overall performance of the model. Proposing Jacobian 
regularization method to denoise LightGBM, solving the problem of model sensitivity to noise. Developing 
the LightGBM hybrid integrated model to ensure the accuracy and stability of model diagnosis on diverse and 
imbalanced datasets.

 (1)  Breast cancer data input: Select the appropriate cancer data based on the research question and download 
them.

 (2)  Model training: Preprocess the raw data, and conduct model training, including data imbalance mitigation, 
LightGBM parameters optimization, noise sensitivity elimination and integrated learning classification.

 (3)  Output and validation: Output the diagnosis results and validate the findings using dataset.

Data imbalance mitigation: gradient harmonic loss and cross entropy loss
Generally, in the breast cancer dataset, benign samples account for a large proportion, and there is imbalance 
between different data samples. Using the cross-entropy loss function for training can lead to the model focusing 
too much on the majority of class samples. Therefore, a gradient harmonic loss function is proposed, which uses 
a progressive weighted histogram to rank the gradients of samples, and then assigns a dynamic weight to each 
rank, so that difficult to rank samples (such as extremely small positive samples or highly similar samples) obtain 
higher weights, thereby promoting the model’s learning of these samples. It can effectively alleviate the problem 
of data imbalance:

 LGHM = βiLCE  (13)

where LCE  represents the cross-entropy loss function, LGHM  represents the gradient harmonic loss function, 
and βi is the weight of the i-th sample.

The βi represents the importance of each sample, calculated by the gradient density GD(gi) of the i-th 
sample, which is as follows:

 

{
βi = N

GD(gi)

GD(gi) = Rind(gi)
ζ

 (14)

where Rind(gi) represents the number of samples in the region with gi as the center and length ζ .
However, through practice, it is found that in the breast cancer diagnosis task, directly using gradient harmonic 

loss to replace cross entropy loss cannot achieve the best network diagnosis performance. After analysis, it was 
found that some fault data were mistakenly identified as outliers, resulting in a decrease in weight and ultimately 
poor diagnostic performance. And cross entropy loss is calculated on a data-by-data basis. Therefore, this article 
combines gradient harmonic loss and cross entropy loss as the total loss function of the model. The fusion loss 
function mainly uses gradient harmonic loss to solve the problems of imbalanced data and difficult sample 
separation, supplemented by cross entropy loss to reduce the misjudgment of outliers by gradient harmonic loss. 
The fusion loss function can be expressed as:

 LF US = (1 − α)LCE + αLGHM  (14)

where α is the hyperparameter proportional coefficient that balances gradient harmonic loss and cross 
entropy loss. After experience and multiple experimental analyses, it is generally found that the optimal model 
performance is achieved when the value is 0.8.

According to the analysis, for a small number of samples in the breast cancer dataset—malignant samples, 
the derivative has fewer samples in the nearby area ζ , which will obtain smaller gradient density GD(gi), and 
its loss function will obtain greater weight βi. On the contrary, for the majority of samples—benign samples, 
smaller weights will be obtained. Therefore, in order to minimize the objective function, the model will increase 
its attention to minority class samples, thereby reducing the loss value of minority classes.

Fig. 7. Flow diagram of the proposed method.
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LightGBM parameters optimization: WOA-LightGBM
In the LightGBM model, there are numerous hyperparameters included, and different hyperparameter settings 
have varying impacts on the diagnostic performance of the model. Seven important hyperparameters were 
selected for optimization in the LightGBM model. These seven parameters have a significant impact on the 
recognition accuracy, training speed, fitting performance, and diversity of the model, but have a wide range of 
values, making it difficult to obtain the optimal parameter values based on experience. The Whale Optimization 
Algorithm (WOA) is a versatile, efficient, and robust optimization method that is well-suited for solving complex, 
multi-dimensional, and non-linear problems across a wide range of fields. Its ease of implementation and the 
ability to balance exploration and exploitation make it particularly appealing for real-world applications. In this 
paper, the WOA algorithm is used to optimize them and establish the WOA LightGBM model. WOA needs to 
optimize parameter settings as shown in Table 1.

The parameter optimization process of the WOA algorithm for the LightGBM model is essentially to use the 
above parameters in the model as the position vectors in the WOA algorithm, and through iterative optimization 
of the WOA algorithm, find the global optimal position in the algorithm and output it as the final parameters of 
LightGBM. The specific implementation process is as follows:

 (1)  Initialize the whale population, maximum iteration times, and dimensions in the WOA algorithm, and set 
the search range for hyperparameters in LightGBM.

 (2)  Set the fitness function. Firstly, the position of each humpback whale in the WOA algorithm is randomly 
initialized within the boundary range. The fitness value corresponding to each whale in the current popu-
lation is calculated through the fitness function, and the position of the humpback whale with the smallest 
fitness value is selected as the global optimal solution for the current population. In this article, the mean 
square error function of the LightGBM model is selected as the fitness function, and the specific mathemat-
ical expression is:

 
f(xi) = 1

n

n∑
j=1

(θi,j−θ̂i,j)2 (15)

where xi represents the position of the i-th humpback whale in the current population, θi,j  is the j-th true value 
in the i-th individual, and θ̂i,j  is the LightGBM model predicted value corresponding to the true value.

 (3)  Start iterating. During the iteration process of the WOA algorithm, the individual positions of the hump-
back whales are updated using three methods: encircling prey, spiral search, and random search, ensuring 
that the updated individual positions meet the pre-set boundary conditions. If the obtained result exceeds 
the boundary, randomly generate the position of individual humpback whales within the boundary range;

 (4)  Calculate the fitness value. After the above three individual position update processes are completed, the 
obtained position of the humpback whale is input into the fitness function, and the fitness result of each in-
dividual is calculated. The position of the individual with the best fitness value is taken as the global optimal 
solution at this time;

 (5)  Repeat the above steps until the preset maximum number of iterations is met. At this time, the global op-
timal solution is the lightGBM model optimal parameter output by the WOA algorithm, and it is brought 
into the model for breast cancer diagnosis.

The intuitive flowchart corresponding to the above process is shown in Fig. 8.

Noise sensitive elimination: Jacobian regularization
LightGBM adjusts the weights of samples based on the results during each iteration. As the number of iterations 
increases, the model’s bias decreases, making it sensitive to noise. Therefore, this paper proposes a Jacobian 
regularization method to denoise LightGBM.

Firstly, use the F-norm of the networked Jacobian matrix to regularize it. The idea is to represent the input 
of the network as a d-dimensional vector and the output as a k-dimensional vector. Assuming that the training 
dataset consists of N  examples, each sample xi is a D-dimensional vector, the index l = 1, 2, . . . , L is used to 
specify a specific layer in the network with L layers. z(l) is the output of the -th layer of the network, and z(l)

k  
is the output of the k-th neuron in that layer. In addition, λ is used to represent the hyperparameters of the 

WOA parameters Set LightGBM parameters Default Optimization range

Population 10, 30, 50, 100, 150, 200, 250

n_estimators 100 (1, 500)

num_leaves 31 (2, 2000)

learning_rate 0.1 (0.001, 1)

max_iter 150
max_bin 255 (2, 255)

max_depth -1 (1, 1000)

Dimension 7
subsample 1 (0.1, 1)

Colsample_bytree 1 (0.1, 1)

Table 1. Description of WOA and LightGBM parameters.
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regularization penalty term in the control loss function. The input of the network is xi, the output is f(xi), and 
the predicted class of xi is k∗

i = arg max xkfk(xi), where f(xi) = soft max{z(l)(xi)} is the output of the 
last fully connected layer in the network. ∇xz(l)(xi) is the Jacobian matrix of layer L evaluated at point xi, i.e., 
J(L)(xi) = ∇xz(l)(xi). The corresponding J(L)

k (xi) = ∇xz
(l)
k (xi) is the k-th row in matrix J(L)(xi). The 

networked Jacobian matrix is:

 

J (xi) ≜ J(L) (xi)

=




∂z
(L)
1 (xi)
∂x(1)

. . .
∂z

(L)
1 (xi)

∂x(D)
...

. . .
...

∂z
(L)
K

(xi)
∂x(1)

· · · ∂z
(L)
K

(xi)
∂x(D)


 ∈ RK×D

 (16)

Therefore, the Jacobian regularization term for input sample xi is:

 
∥J (xi)∥2

F =
D∑

d=1

K∑
k=1

(
∂

∂xd
z

(L)
k (xi)

)2
=

K∑
k=1

∥∥∥∇xz
(l)
k (xi)

∥∥∥
2

2
 (17)

Therefore, the loss function modified by Jacobian regularization is defined as follows:

 

Lloss = LF US + λ

√√√√
D∑

d=1

K∑
k=1

N∑
n=1

(
∂

∂xd
z

(L)
k (xi)

)2
 (18)

Fig. 8. Flowchart of WOA-LightGBM for breast cancer diagnosis.
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Ensemble learning classification: stacking learners
The proportion coefficient of the fusion loss function LF US  changes with the change of data samples, and the 
optimal proportion coefficient α in this paper may not be applicable to other datasets. In order to achieve good 
performance of LightGBM without the need for experimental determination of the optimal value for practical 
and variable operating conditions, this paper innovatively integrates LightGBM with different specific values 
based on the Stacking framework, and proposes a LightGBM hybrid ensemble model that is more suitable for 
practical and variable operating conditions.

Stacking, also known as stacking generalization32, is a heterogeneous serial learning method that consists of 
multiple base learners forming the first layer prediction model and using a meta learner as the fusion model for 
the second layer. The prediction results of the base learner are used as inputs for the meta learner, and the final 
prediction results are generated through retraining. The core idea of Stacking is to utilize the prediction results 
of multiple base learners and improve overall prediction performance through the fusion of meta learners. The 
performance of the Stacking framework is related to the selection of base and meta learners. The model selection 
in this paper is as follows:

 (1)  Selection of base learners: In the base learning layer of the Stacking model, selecting models with significant 
differences can increase the diversity of the model and reduce the correlation between the output labels of 
the base learning layer. By using differential models, stacking models can integrate the advantages of vari-
ous models and model data from multiple perspectives, better adapting to different data distributions and 
features. This combination of diversity and reduced correlation can bring stronger learning ability and rec-
ognition performance to Stacking models. Therefore, when choosing a base learning layer model, priority 
should be given to models with significant differences to highlight the diversity of the model and reduce the 
correlation between output labels. This strategy can better utilize the advantages of integrated models and 
improve overall performance.

This paper selects four LightGBM models with different values as the first layer base learners, namely 
α = 0, 0.4, 0.8, 1. The above models are all based on tree models. To increase the diversity of the first layer 
base learners, the nonlinear model SVM is also selected as the first layer base learner. SVM33 can use nonlinear 
kernel functions φ(x) to map samples to high-dimensional feature spaces, making transformer data samples 
that were originally inseparable in low dimensional spaces separable in high-dimensional spaces. Its principle 
can be expressed as:

 




min 1
2 ∥ω∥2 + c

l∑
i=1

ξi

s.t.yi

[
ωT ϕ (xi) + b

]
≥ 1 − ξi, ξi ≥ 0, i = 1, 2, . . . , l

 (19)

where ω represents the normal vector of the hyperplane, c represents the penalty coefficient vector, ξi represents 
the relaxation coefficient vector, and b represents the bias parameter.

 (2)  Meta learner selection: The Stacking framework requires the selection of models with strong generalization 
and learning ability as meta learners. Therefore, this article chooses ELM34 as the meta learner.

ELM is a machine learning algorithm based on feedforward neural networks, which has the advantages of strong 
generalization and learning ability. The structure of a single hidden layer ELM is shown in Fig. 9, and its specific 
principle is as follows:

Fig. 9. Single hidden layer ELM structure diagram.
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o∑
j=1

θj [µ (aj · xi + γj)]T = ŷj , i = 1, 2, . . . , N  (20)

where µ represents the activation function; o represents the number of neurons in the hidden layer; aj  represents 
the weight vector; γj  represents the bias vector;  represents the inner product of vectors; θj  represents the 
weight parameters from the hidden layer to the output layer; N  represents the total number of samples.

In summary, this paper selects LightGBM1(α = 0), LightGBM2(α = 0.4), LightGBM3(α = 0.8), 
LightGBM4(α = 1), SVM5, a total of 5 models as the base learners, and ELM is used as the meta learner. The 
proposed LightGBM based hybrid ensemble model framework is shown in Fig. 10.

Performance evaluation
In this section, we first introduce the evaluation criteria, then introduce the breast cancer dataset used, and 
finally give the diagnosis results of the algorithm in this paper. All experiments were conducted on the Ubuntu 
system and achieved CUDA acceleration of RTX3090. To improve the reliability of the experiment, 80% of the 
samples were used as the training set and 20% as the testing set, and all results were reported as the average after 
10 independent runs.

Evaluation criteria
The model evaluation metrics used in this article include ten-fold cross validation score, accuracy, precision, 
recall, etc. The above evaluation indicators are estimated based on true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). Among them, TP represents the number of samples belonging to Class 1 
that are also judged as Class 1 by the model; FN represents the number of samples belonging to class 1 that were 
incorrectly identified as class 0 by the model; FP represents the number of samples belonging to class 0 that were 

Fig. 10. Hybrid integrated model framework for LightGBM.
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incorrectly identified as class 1 by the model; The number of samples belonging to class 0 represented by TN is 
also determined by the model as the number of samples belonging to class 0.

Accuracy is the most commonly used metric for evaluating models, which represents the proportion 
of correctly predicted samples (including positive and negative categories) to all samples. The equation for 
calculating accuracy is as follows:

 
Accuracy = T P + T N

T P + T N + F P + F N
 (21)

Precision, also known as precision, refers to the proportion of correctly predicted positive classes among all 
predicted positive classes. Accuracy refers to the prediction results, which represents how many of the predicted 
positive class samples are truly positive class samples. The equation for calculating accuracy is as follows:

 
P recision = T P

T P + F P
 (22)

Recall, also known as completeness rate, refers to the proportion of correctly predicted positive samples to the 
total actual positive samples. The recall rate is specific to the original sample and represents how many positive 
class samples in the entire sample were correctly predicted. The calculation equation is as follows:

 
Recall = T P

T P + F N
 (23)

Dataset
This paper uses the Wisconsin breast cancer diagnosis public dataset23 on the UCI website, and analyzes the 
diagnostic data of 569 patients in total. The sample size of the data set is shown in Fig. 11. The data consists of 32 
columns, with two columns used to represent the patient’s ID and labels indicating whether the patient’s tumor 
is benign (0) or malignant (1). The remaining 30 columns describe the maximum, average, and minimum values 
of the 10 features of the patient’s cell nucleus. The average value was selected as the experimental data for this 
experiment.

Results and comparisons
Performance analysis of data imbalance methods
In order to compare the effectiveness of the methods proposed in this article for solving data imbalance, several 
commonly used comparison algorithms were selected, including (1) the method proposed in this article, which 
introduces gradient harmonic loss and cross entropy loss to enhance the model’s attention to minority classes 
in the dataset and alleviate the impact of data imbalance on diagnostic results. (2) Using Focal loss35 improved 
F-LightGBM, referring to the selection of hyperparameters in the paper, gamma = 2.5, alpha = 0.75. (3) 
The commonly used oversampling technique for handling imbalanced data, Borderline Synthetic Minority 
Oversampling Technique (Borderline SMOTE)36, is an improved BS-LightGBM, in which oversampling uses 
the maximum number of samples to sample the original data. (4) U-LightGBM, an improved under-sampling 
technique commonly used for handling imbalanced data, uses under-sampling to sample the raw data with the 
minimum number of samples. (5) In the proposed method, the removal of gradient harmonic loss LightGBM/G 
did not address the issue of data imbalance. The experimental results are shown in Fig. 12.

The analysis shows that the proposed method has the best performance in the diagnosis of breast cancer, and 
is superior to the commonly used under sampling, over sampling, and other data imbalance processing strategies. 

Fig. 11. Breast cancer data distribution.
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Although oversampling techniques can solve the problem of sample imbalance, the overall performance is not as 
good as the algorithm and F-LightGBM proposed in this paper, indicating that gradient harmonic loss and Focal 
loss can increase the model’s attention to difficult to distinguish samples. However, the gradient harmonic loss 
function proposed in this paper is more effective in alleviating data imbalance. The under-sampling technique 
can solve the problem of decreased accuracy caused by imbalanced samples, but under-sampling destroys the 
integrity of the samples, making it impossible for the model to fully recognize other data, resulting in a decrease 
in all indicators. It is necessary to adopt an unbalanced processing strategy to further optimize the LightGBM/G 
model. The above results indicate that the proposed algorithm has superior performance in handling data 
imbalance.

Performance analysis of parameters optimization methods
In order to compare the effectiveness of the WOA LightGBM method proposed in this paper, this paper selects 
several commonly used comparison algorithms for comparison, including LightGBM/W, which directly 
diagnoses breast cancer without optimization algorithm, and the PSO LightGBM model, which is optimized 
by the commonly used particle swarm optimization algorithm. The experimental results are shown in Fig. 13.

It can be seen from the analysis that the above models can accurately diagnose breast cancer. The LightGBM 
model without parameter optimization has a slightly worse diagnostic performance than the proposed algorithm 
and PSO optimized diagnostic model due to the random parameter selection. However, using the WOA 
algorithm designed in this article, there is a relatively good improvement in the effectiveness of the diagnostic 
model.

Performance analysis of noise elimination methods
In order to compare the effectiveness of the Jacobian regularization method proposed in this paper, the 
LightGBM/R method without noise cancellation was selected for comparison. The experimental results are 
shown in Fig. 14.

It can be seen from the analysis that in terms of breast cancer diagnosis, the LightGBM model after Jacobian 
regularization has relatively improved its effect. This is because in the process of gradual iteration, the deviation 
of the model will continue to decrease, which will lead to the model being sensitive to noise. The proposed 
Jacobian regularization can better reduce noise and improve the performance of the LightGBM model for breast 
cancer diagnosis.

Fig. 13. Diagnostic results of breast cancer with different parameters optimization methods.

 

Fig. 12. Diagnostic results of breast cancer with different unbalanced methods.
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Performance analysis of integrated methods
In order to verify the superiority of the LightGBM hybrid ensemble model, this paper uses accuracy as the 
evaluation index and selects Stacking1, Stacking2, Stacking3, ELM, and the unintegrated LightGBM model 
(LightGBM/I) for comparative analysis. The Stacking algorithm uses ELM as the meta learner, Stacking1 uses 
LightGBM, CNN, and SVM as base learners, Stacking2 uses LightGBM and CNN as base learners, and Stacking3 
uses LightGBM and SVM as base learners. The experimental results are shown in Fig. 15.

Analysis shows that Stacking1, Stacking2, and Stacking3 are currently the most accurate ensemble methods. 
From the results, it can be seen that the proposed method, Stacking1, Stacking2, Stacking3 and other recognition 
models in an integrated manner can integrate the advantages of each basic learner. Compared with a single 
model, the recognition accuracy is higher. And the method proposed in this article has the highest recognition 
performance, surpassing traditional integration methods.

Performance comparison of different models
In order to verify the performance of different comparison models, this paper compares the proposed algorithm 
with diagnostic models such as ICA-MLP37, SVM-RFE38, CAD39, SELF40, Sun et al.41, etc. The experimental 
results are shown in Fig. 16 and Table 2.

It can be seen from the analysis that there are some differences in the diagnosis results of different diagnostic 
models for breast cancer, but the performance advantages of the methods proposed in this paper are significantly 
improved after integrating different targeted strategies. Meanwhile, the methods proposed in this paper also 
achieved the better diagnosis results with low complexity at high speed.

Ablation study
In this paper, gradient harmonic loss and cross entropy loss are introduced, whale optimization algorithm, 
Jacobian regularization and integrated learning are used to modify the LightGBM model (recorded as K1–K4 
respectively), so as to improve the diagnosis effect of breast cancer. To verify the effectiveness of each method, 
each module was removed separately and its impact was analyzed. The results are shown in Fig. 17.

Analysis shows that the gradient harmonic loss and cross entropy loss proposed in this article, as well as 
whale optimization algorithm, Jacobian regularization, ensemble learning, and other methods, have shown 
varying degrees of performance improvement for the LightGBM diagnostic model. In particular, ensemble 
learning methods have shown significant improvement in the performance of the proposed algorithm. To sum 

Fig. 15. Diagnostic results of breast cancer with different integrated methods.

 

Fig. 14. Diagnosis results of breast cancer with or without noise elimination method.

 

Scientific Reports |         (2025) 15:2569 15| https://doi.org/10.1038/s41598-025-86014-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


up, several improved methods added in this paper are effective and can greatly improve the accuracy of breast 
cancer diagnosis results.

Conclusion
In order to improve the accuracy of breast cancer diagnosis, this paper proposes an improved LightGBM hybrid 
integration model combining gradient harmonization and Jacobian regularization for breast cancer diagnosis. 
Through comparative experiments with other diagnostic models, the results show that the diagnostic effect of 
this model has been greatly improved, and the problems such as imbalanced data, random parameters selection, 
noise sensitivity, and poor diagnosis results in breast cancer diagnosis have been solved. It can provide valuable 
information for prediction and diagnosis of breast cancer, and help doctors to make auxiliary reference for 
medical diagnosis. Although the effectiveness of the proposed method has been validated on the UCI Wisconsin 
dataset, future research will focus on experimental validation on more complex data or clinical data due to issues 
such as small dataset size and insufficient diversity.

Fig. 17. Diagnosis of breast cancer by ablation study.

 

References Accuracy Runtime Paired t-test

ICA-MLP 83.18 302 0.0069

SVM-RFE 78.45 21 0.0018

CAD 80.74 389 0.0043

SELF 97.63 460 0.0315

Sun et al. 97.86 280 0.0924

Proposed 99.38 278 –

Table 2. Diagnostic results of comparisons.

 

Fig. 16. Diagnostic results of breast cancer in different models.
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