
Viral Sequestration of Antigen Subverts Cross
Presentation to CD8+ T Cells
Eric F. Tewalt1, Jean M. Grant1, Erica L. Granger1, Douglas C. Palmer2, Neal D. Heuss3, Dale S. Gregerson3,

Nicholas P. Restifo2, Christopher C. Norbury1*

1 Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America,

2 Surgery Branch and Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 3 Department of

Ophthalmology, University of Minnesota, Minneapolis, Minnesota, United States of America

Abstract

Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional
antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus
infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway.
Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-
presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to
compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late
promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct
presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus
antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this
pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the
sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-
infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated
blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters
the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens
to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads
to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral
modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.
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Introduction

CD8+ T cells (TCD8+) play important roles in host elimination of

pathogens, tumors and transplanted tissues. Virus-specific TCD8+
recognize major histocompatibility complex (MHC) class I

molecules bound to peptides derived from viral proteins [1].

These peptide-MHC complexes can be generated via two spatially

distinct pathways. Virus-infected cells present peptides derived

primarily from a subset of viral proteins that are rapidly degraded

in a process known as direct presentation [2]. Alternatively, long-

lived protein substrates may be transferred from virus-infected cells

to pAPC where they are processed and presented by uninfected

cells via the cross-presentation pathway [3]. The extent to which

the direct or cross-presentation pathways contribute to the

induction of virus-specific TCD8+ in vivo remains controversial

[4]. Many pathogens have evolved mechanisms to modulate or

evade the direct-presentation pathway [5], implying that such

mechanisms may confer a survival advantage. Cross presentation

is generally thought to compensate when direct presentation is

blocked, allowing the generation of specific TCD8+ targeting such

pathogens [5]. Here we delineate a unique mechanism of viral

immune evasion whereby viral antigen is prevented from entering

the cross-presentation pathway.

We investigated the pathways used for presentation of vaccinia

virus (VACV) antigens driven by late promoters. Recombinant

antigens driven by VACV late promoters, which are active only

following DNA replication, stimulate poor or undetectable TCD8+
responses as compared with the response to identical antigens

driven by early VACV promoters [6]. This reduced response

occurs despite production of much larger quantities of late

promoter-driven antigen both in vitro and in vivo. The inability of

late VACV promoter-driven antigen to stimulate TCD8+ responses

has been correlated to an abortive in vitro infection of pAPC in

which late antigens are not produced and so direct presentation

cannot occur [7]. Here, we demonstrate that despite the

availability of the cross-presentation pathway for initiation of an

antiviral TCD8+ response the late VACV promoter driven antigen

cannot enter the cross-presentation pathway. We provide evidence

of a mechanism that is dependent upon sequestration of antigen

during the poxvirus life cycle and which is specific for the cross-
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presentation pathway within pAPC. These data are the first to

describe an evasion mechanism of the cross-presentation pathway

that in the absence of the direct-presentation pathway leads to a

complete ablation of the TCD8+ response and a likely replicative

advantage for the virus.

Results

In order to directly study the effects of driving antigen

expression with early or late VACV promoters following infection,

we used recombinant viruses in which the early p7.5 or late p11

promoter drive expression of a model antigen. We used b

galactosidase (b-gal) as a model antigen as it contains well-defined

MHC class I binding determinants and its activity can be readily

measured by enzymatic methods even when present in low

quantities. We measured proliferation of adoptively transferred

BG1 TCR transgenic TCD8+ (specific for b-gal96–103-Kb complex-

es) [8] in response to immunization with VACV expressing b-gal

driven by the p7.5 (rVACV-b-gal-Early) or p11 (rVACV-b-gal-

Late) promoters. The BG1 TCD8+ did not proliferate (Fig. 1A) or

acquire effector activity (Fig. 1B) upon immunization with

rVACV-b-gal-Late and did not accumulate above background

levels following immunization with a control VACV (data not

shown). Proliferation of BG1 TCD8+ in mice immunized with

rVACV-b-gal-Late could be stimulated following subsequent

immunization with adenovirus encoding b-gal (data not shown).

Thus, late promoter-driven b-gal does not stimulate TCD8+
responses, and the lack of a TCD8+ response does not result from

tolerance induced by high dose late promoter-driven antigen.

The reduced immunogenicity of recombinant antigens driven

by late VACV promoters has been correlated to a lack of activity

of these promoters in pAPC, such as macrophages [9] and

dendritic cells [7] in vitro. To determine whether late VACV

promoters are functional in various cell types we measured b-gal

production in a fibroblast cell line or in bone marrow-derived

dendritic cells (BMDC) infected with either rVACV-b-gal-Early or

rVACV-b-gal-Late using a chromogenic b-gal substrate. Our limit

of detection using a chromogenic b-gal substrate is 1028 mg/mL

of b-gal (Fig. S1). Figure 2A demonstrates typical expression of b-

gal from each virus in fibroblasts. rVACV-b-gal-Early produced a

linear accumulation of b-gal almost immediately following

infection, while b-gal from rVACV-b-gal-Late is not detectable

until .3 h post infection. b-gal produced from rVACV-b-gal-Late

rapidly accumulates in much greater quantities than that from

rVACV-b-gal-Early, with equivalent levels of b-gal present after

5 h of infection.

In contrast to b-gal production in fibroblasts, expression of b-gal

from rVACV-b-gal-Late was undetectable in BMDC (Fig. 2B)

while b-gal production from rVACV-b-gal-Early occurred rapidly

after infection. As our limit of detection was 1028 mg/mL we can

Author Summary

Understanding the pathways by which protective immu-
nity is mediated against viral pathogens is essential to
allow the design of effective vaccines. No effective vaccine
has been designed to activate killer cells of the immune
system expressing CD8, although CD8+ T cells are the most
effective cells at modulating anti-viral immunity. We have
studied the process that activates the CD8+ T cell to better
understand how the cells are triggered so future vaccines
might readily activate these cells. CD8+ T cells are activated
following recognition of small peptides derived from a
virus that binds to a cell surface MHC molecule. Many
viruses have evolved to prevent the presentation of these
peptide-MHC complexes to CD8+ T cells. However, the
immune system avoids these viral ‘‘evasion’’ mechanisms
by allowing virus-derived peptides to be generated from
viral proteins that are taken up by uninfected cells, a
process termed ‘‘cross presentation’’. We have shown that
a poxvirus can specifically prevent the presentation of its
proteins by uninfected cells, the first demonstration of
evasion of cross presentation. This knowledge is vital in the
use of certain viral vectors during vaccine design and adds
to the numerous ways in which viruses can evade the
immune system.

Figure 1. Late VACV promoter-driven antigen does not elicit a TCD8+ response. In vivo proliferation (A) or ex vivo effector function (B) of
adoptively transferred b-gal specific BG1 TCR transgenic TCD8+ was examined in response to immunization with rVACV-b-gal-Early [(A), gray] or rVACV-
b-gal-Late [(A), black] or as shown (B). Proliferation was measured by dilution of CFDA-SE (A) and numbers shown represent the percentage of cells
that have diluted the dye 2 days after immunization. Ex vivo effector function (B) was measured by quantifying production of IFN-c in the presence
(black) or absence (white) of b-gal96–103 peptide.
doi:10.1371/journal.ppat.1000457.g001
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conclude that b-gal production was lower than 10 attograms/cell

(10218 g/cell) in BMDC. DC are phenotypically and functionally

specialized in vivo beyond the phenotype of BMDC. The major

subsets of DC in vivo include CD11b+ CD8a2, CD11b2 CD8a+

‘‘lymphoid-resident’’ DC and B220+ plasmacytoid DC. We

infected DC purified from the spleens of wild-type mice with

VACV expressing EGFP-OVA driven by early or late promoters

and examined expression of EGFP-OVA in each of these DC

subsets. Expression of eGFP from VACV-eGFP-OVA-Late was

not detectable above background levels in infected plasmacytoid

DC (CD11c+, B220+), CD11b+ CD8a2 DC, or CD11b2 CD8a+

DC while each DC subset readily expressed eGFP from eGFP-

OVA-Early (Fig. 2C). Thus, VACV undergoes an abortive

infection in all DC subsets such that VACV late promoter-driven

antigens are not expressed following infection.

To extend these observations in vivo we infected mice

intradermally with rVACV-b-gal-Early or rVACV-b-gal-Late

and then visualized b-gal production at the site of infection or in

the draining lymph node. Twelve h after infection, b-gal

production was readily detectable from either virus at the site of

infection (Fig. 3A). However, production of b-gal could only be

detected in the draining lymph node after infection with rVACV-

b-gal-Early (Fig. 3B,C). We have previously observed that all of

the VACV infected cells in a lymph node are macrophages or DC

at 12 h post infection [10] indicating that late promoter-driven

antigen is undetectable in infected pAPC in vivo.

The primary substrates for production of peptides in the direct-

presentation pathway are rapidly degraded proteins that may be

defective [2]. Such proteins are unlikely to acquire the secondary

structure required to become enzymatically active and so may not

be detected in our assays. To ensure that b-gal from rVACV-b-

gal-Late is not directly presented by virus-infected BMDC, we

infected BMDC or fibroblasts expressing H2-Kb and measured

antigen presentation to primary b-gal96–103-specific TCD8+.

Infected fibroblasts stimulated interferon-c production in TCD8+
regardless of whether the early or late promoter drove b-gal

production (Fig. 3D). VACV-infected BMDC triggered interferon-

c by b-gal96–103-specific TCD8+ only when infected with rVACV-

b-gal-Early (Fig. 3E) even when the infection was allowed to

proceed for .12 h (data not shown). Thus, direct presentation of

b-gal driven by a late promoter did not occur in infected pAPC.

Under conditions where the direct-presentation pathway is

blocked in vivo, the cross-presentation pathway is thought to

compensate and allow generation of TCD8+ [11,12]. However, this

compensatory mechanism does not occur with late promoter-

driven VACV b-gal (Fig. 1), despite the accumulation of large

quantities of antigen that should increase the efficiency of cross

presentation [13]. This observation has been interpreted as a

functional irrelevance of cross presentation in the induction of

virus-specific TCD8+ [14], but could also be explained by an

inability of late promoter-driven antigen to enter the cross-

presentation pathway, a hitherto undescribed phenomenon. To

examine cross presentation of b-gal driven by the early or late

promoters, we infected SV40 transformed cells that lack b2-

microglobulin (TAg-b2mneg) and are therefore direct presentation-

incompetent. At 5 h post-infection, a time point at which

equivalent levels of b-gal are expressed (Fig. 2A), the cells were

treated with psoralen and UVC to halt both protein production

and potential virus spread [15]. We measured the ability of these

cells to stimulate proliferation and effector function of adoptively

transferred BG1 TCD8+ following in vivo immunization. Under

these conditions, initiation of a TCD8+ response can only occur

following antigen presentation via the cross-presentation pathway.

TAg-b2mneg cells infected with rVACV-b-gal-Early efficiently

triggered proliferation of BG1 TCD8+ (Fig. 4B) but those infected

with rVACV-b-gal-Late failed to stimulate proliferation (Fig. 4C)

or effector function at levels above those found following

immunization with TAg-b2mneg cells infected with a control

VACV (Fig. 4D). Similar data were obtained after infection with

rVACV-b-gal-Late for up to 11 h (data not shown), a time point at

which p11-driven b-gal is present in enormous excess compared to

p7.5 driven b-gal (Fig. 2A). Infection with rVACV-b-gal-Early

allowed access to the cross-presentation pathway in vivo as soon as

1 h post-infection (Fig. 4E–G) indicating that antigen was not

limiting even when present at low intracellular concentrations.

These data clearly indicate that late promoter-driven VACV b-gal

is not accessible to the cross-presentation pathway even when

present in very large quantities.

Figure 2. VACV-infected DC do not produce late antigens. Production of b-gal was measured in TAg-b2mneg fibroblasts (A) or BMDC (B)
infected with rVACV-b-gal-Early ($) or rVACV-b-gal-Late (&). Note the 5 h time point in (A) at which production of early and late promoter-driven b-
gal is at equivalent levels. (C) Production of eGFP was measured in pDC, CD11b+ CD8a2 DC, or CD11b2 CD8a+ DC subsets that were uninfected
(white bars) or infected with rVACV-eGFP-OVA-Early (light gray bars), rVACV-eGFP-OVA-Late (dark gray bars), or VACV-WR (black bars). *P,0.001,
NS = Not Significant (P.0.05).
doi:10.1371/journal.ppat.1000457.g002
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Figure 3. Late promoter-driven b-gal is not produced in pAPC in vivo or presented to TCD8+ by infected BMDC. Production of b-gal was
visualized in vivo following i.d. infection in the ear pinnae at the site of infection (A) and draining lymph nodes [(B) Early, (C) Late]. (D) Direct
presentation by fibroblasts infected with rVACV-b-gal-Early or rVACV-b-gal-Late was measured by analyzing IFN-c production from b-gal96–103-specific
TCD8+ in the presence (white bars) or absence (black bars) of ara/c, which will block production of late genes. (E) Similarly, direct presentation by
BMDC infected with rVACV-b-gal-Early ($) or rVACV-b-gal-Late (&) was measured by analyzing IFN-c production from b-gal96–103 specific TCD8+.
doi:10.1371/journal.ppat.1000457.g003

Figure 4. Late VACV promoter-driven antigen is not available for cross presentation. Proliferation (A–C) of adoptively transferred b-gal-
specific TCR transgenic TCD8+ was measured following immunization with TAg-b2mneg cells infected with VACV that does not express b-gal (A),
rVACV-b-gal-Early (B), or rVACV-b-gal-Late (C) for 5 h. (D) b-gal96–103-specific IFN-c production by adoptively transferred BG1 TCD8+ was measured
following immunization with TAg-b2mneg cells infected for 5 h with VACV as shown. IFN-c production is shown in the presence (black bars) or
absence (open bars) of b-gal96–103 peptide. (E–G) TAg-b2mneg cells were infected with rVACV-b-gal-Early for 0 h (E), 1 h (F), or 3 h (G) and assayed for
their ability to initiate proliferation of adoptively transferred b-gal-specific TCR transgenic TCD8+.
doi:10.1371/journal.ppat.1000457.g004

Viral Subversion of Cross Presentation

PLoS Pathogens | www.plospathogens.org 4 May 2009 | Volume 5 | Issue 5 | e1000457



We have previously demonstrated that cellular protein synthesis,

which is rapidly halted following VACV infection, is not required

for antigen donation [8]. Nonetheless, it is possible that VACV

infection may block donation of all cellular antigen. To investigate

this possibility, we exploited the expression of the SV40 T antigen

(TAg) as a cellular protein in TAg-b2mneg cells. We measured

proliferation of adoptively transferred BG1 and SV40 TAg Site I-

specific TCR transgenic T cells [16] simultaneously in mice

immunized with TAg-b2mneg cells infected with rVACV-b-gal-

Early or rVACV-b-gal-Late. As before, rVACV-b-gal-Late

infected TAg-b2mneg cells failed to induce proliferation of BG1

TCD8+ (Fig. 5C) but in the same recipient mice proliferation of Site

I TAg TCD8+ occurred efficiently (Fig. 5F). The entry of cellular

antigen into the cross-presentation pathway is therefore not

blocked by VACV infection.

It is possible that VACV encoded proteins produced after

infection can bind to newly synthesized cellular antigen and

prevent entry into the cross-presentation pathway. However, as

TAg is constitutively expressed in TAg-b2mneg cells the existing

cellular pool of antigen could be resistant to such a mechanism of

inhibition of cross presentation. Ideally, to examine this possibility

one would initiate transcription of a cellular antigen after VACV

infection, but as VACV is so adept at shutting down host protein

synthesis the initiation of transcription of a cellular gene following

VACV infection is technically challenging. Therefore we intro-

duced soluble antigen into TAg-b2mneg cells after 5 h of VACV

infection and measured the response to this antigen in vivo. Again,

VACV infection did not inhibit the donation of b-gal (Fig. 5G–I)

or OVA (not shown) introduced into infected cells. These data

indicate that VACV does not globally suppress the availability of

antigen to enter the cross-presentation pathway in vivo but utilizes a

specialized mechanism to prevent the access of its own antigens to

the cross-presentation pathway.

Katsafanas and Moss recently described that soluble proteins

driven by intermediate and late promoters are concentrated within

cytosolic virus factories following coordinated transcription and

translation within these domains [17]. Virus factories are rough

endoplasmic reticulum-bound perinuclear organelles in which

VACV replication and early assembly of viral particles occurs

[18]. There is a possibility that the specialized structure of these

compartments in which late antigens are synthesized could prevent

access to the cross-presentation pathway. VACV-infected TAg-

b2mneg cells were visualized to determine the localization of b-gal

relative to virus factories labeled with DAPI and the VACV

double stranded RNA binding protein E3L (Fig. 6). b-gal from

rVACV-b-gal-Early was distributed throughout the cytosol of the

cell (Fig. 6C,D), and only 1.3% (+/20.2) of pixels staining for b-

gal were localized within virus factories. In contrast, b-gal from

rVACV-b-gal-Late was localized only to the perinuclear virus

factories (Fig. 6G,H), with greater than 83% (+/24.8%) of pixels

staining for b-gal being localized within virus factories. An altered

distribution of antigen thereby correlates with an inability of that

antigen to enter the cross-presentation pathway, and sequestration

of newly synthesized antigen within VACV virus factories likely

facilitates this process.

To test whether sequestration of antigen within virus factories is

essential for the blockade in cross presentation we used

recombinant VACV expressing the model antigen HSV-1

Figure 5. VACV infection does not inhibit the cross presentation of cellular antigen. Proliferation of adoptively transferred CFDA-SE
labeled b-gal-specific (A–C) or SV40 TAg Site I-specific (D–F) TCR transgenic TCD8+ was measured following immunization with TAg-b2mneg cells
infected with VACV that does not express b-gal (A,D), rVACV-b-gal-Early (B,E), or rVACV-b-gal-Late (C,F). Proliferation of adoptively transferred b-gal-
specific (G–I) TCR transgenic TCD8+ was measured following immunization with TAg-b2mneg cells incubated with 1 mg/mL b-gal (G), electroporated
with 1 mg/mL b-gal (H), or infected with rVACV for 5 h and electroporated with 1 mg/mL b-gal (I).
doi:10.1371/journal.ppat.1000457.g005
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glycoprotein B (gB) driven by the p11 promoter (rVACV-gB-Late)

[19]. The egress of some late VACV proteins from virus factories

is required for viral replication. Targeting of such proteins to the

secretory pathway allows proteins to leave the virus factories, so we

surmised that similar sequences within the gB protein might allow

this protein to exit the factories. Figure 7A–D demonstrates that,

Figure 6. Late antigen that is not available for cross priming is sequestered in VACV viral factories. TAg-b2mneg cells were infected with
rVACV-b-gal-Early (A–D) or rVACV-b-gal-Late (E–H) for 5 h and stained with antibodies to the VACV protein E3L (B,D,F,H) and b-gal (C,D,G,H). All cells
were incubated with the nuclear counterstain DAPI (A,D,E,H). The white arrows indicate the location of viral factories in infected cells.
doi:10.1371/journal.ppat.1000457.g006

Figure 7. Late VACV promoter-driven antigen that exits virus factories is not directly presented, but is available for cross priming.
TAg-b2mneg cells were infected with rVACV-gB-Late (A–D) for 5 h, fixed and stained with a polyclonal antisera to VACV (B,D) and a monoclonal
antibody to HSV gB (C,D) and the nuclear counterstain DAPI (A,D). The white arrows indicate the location of viral factories in infected cells. (E) Direct
presentation to a gB498–505 specific TCD8+ line was measured following infection of BMDC with rVACV-gB-Late ($) or rVACV-gB498–505 (&). (F–I)
Proliferation of adoptively transferred gB498–505-specific TCR transgenic TCD8+was measured following immunization with rVACV-gB-Late (F), VACV
that did not express gB (G), TAg-b2mneg cells infected with rVACV-gB-Late (H) or TAg-b2mneg cells infected with VACV that did not express gB (I).
doi:10.1371/journal.ppat.1000457.g007

Viral Subversion of Cross Presentation
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in contrast to b-gal driven by a late VACV promoter, gB driven by

the identical p11 promoter distributes across many cellular

membranes and is not confined to VACV factories. The ability

of gB to leave virus factories did not allow direct presentation of

the gB498–505 peptide by pAPC, as BMDC infected with rVACV-

gB-Late did not activate a gB-specific T cell hybridoma (Fig. 7E).

However, proliferation of adoptively transferred gB-specific TCR

transgenic TCD8+ could be detected following immunization with

rVACV-gB-Late (Fig. 7F). As direct presentation was blocked in

pAPC, the proliferation likely resulted from cross presentation of

gB-derived peptides. To test whether gB restricted to the cross-

presentation pathway was immunogenic in vivo we immunized

mice with TAg-b2mneg cells infected with VACV-gB-Late for 5 h.

In contrast to the results observed with b-gal that was sequestered

within VACV factories, TAg-b2mneg cells infected with VACV-

gB-Late did stimulate proliferation of gB-specific TCR transgenic

TCD8+ (Fig. 7H). Thus, antigen that can leave VACV factories is

available for cross presentation but antigen that remains

sequestered within these factories is blocked from entering the

pathway.

Having gained a mechanistic insight into the means by which

VACV acts within the virus infected cell to prevent access of late

antigen to the cross-priming pathway we sought to investigate at

what point the blockade of cross presentation occurred within

pAPC. In order to preserve the in vivo nature of our studies we

examined presentation of early or late promoter-driven b-gal by

the MHC Class II presentation pathway. MHC Class II-mediated

presentation of exogenous antigens shares many common

components with the MHC Class I-restricted cross-presentation

pathway so a differential ability to enter this pathway would give a

strong indication of the point at which cross presentation is

blocked. In order to study MHC Class II-restricted presentation of

b-gal in vivo we constructed a transgenic mouse (BG2) bearing a T

cell receptor specific for a b-gal peptide presented in complex with

MHC Class II. The majority of CD4 cells in the resulting mice

expressed the Va11 chain from the transgene (Fig. 8B) and

produced IL-2, IFN-c and TNF-a in response to peptide

sequences corresponding to residues 725–735 from b-gal [20]

(Table 1). The TCD4+ from the transgenic mice also proliferated

following adoptive transfer into a wild-type mouse that was then

infected with rVACV-b-gal-Early (Fig. 8C).

MHC Class II-restricted presentation can occur through a

number of pathways, including presentation of endogenously

synthesized antigen [21]. Early antigen may enter this pathway,

but late antigen is not synthesized within pAPC (Fig. 1) and so will

not be presented from endogenous sources. To ensure that we

were directly comparing MHC Class II-restricted presentation of

b-gal driven by early or late promoters we adoptively transferred

both BG1.SJL TCD8+ and BG2.SJL TCD4+ into mice and then

immunized with TAg-b2mneg cells infected with rVACV-b-gal-

Early, rVACV-b-gal-Late or control rVACV as above. We readily

detected MHC Class I- and MHC Class II-restricted responses

following immunization with rVACV-b-gal-Early or with TAg-

b2mneg cells infected with rVACV-b-gal-Early (Fig. 8D,F,H,J). As

previously shown we did not observe an MHC Class I-restricted

response following immunization with rVACV-b-gal-Late (Fig. 8I)

Figure 8. Sequestered antigen is not available for cross priming, but can be presented via the MHC Class II processing pathway.
Expression of the Va11 T cell receptor chain in TCD4+ from wild-type (A) or BG2.SJL (B) mice. (C) Division of adoptively transferred BG2.SJL TCD4+
following immunization with rVACV-b-gal-Early (black) or a VACV that does not express b-gal (white). Division of adoptively transferred b-gal-specific
TCD4+ (D–G) or TCD8+ (H–K) following immunization with rVACV-b-gal-Early (D,H), rVACV-b-gal-Late (E,I), TAg-b2mneg cells infected with rVACV-b-gal-
Early (F,J) or TAg-b2mneg cells infected with rVACV-b-gal-Late (G,K).
doi:10.1371/journal.ppat.1000457.g008
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or cells infected with rVACV-b-gal-Late (Fig. 8K) but we did

detect an MHC Class II-restricted response under both of these

circumstances (Fig. 8E,G). Sequestration of antigen, therefore,

specifically blocks components of the cross-priming pathway but

not the MHC Class II presentation pathway.

Discussion

The data presented here demonstrate three significant points.

First, we show that cross presentation is an important compen-

satory mechanism of antigen presentation which when blocked

results in a complete ablation of the TCD8+ response. If a virus

inhibits the direct-presentation pathway in vivo the resulting TCD8+
response is often unchanged [12,22]. In contrast, we have

demonstrated that if entry to the cross-presentation pathway is

blocked when the direct-presentation pathway is unavailable, the

TCD8+ response for the affected antigens is undetectable. Second,

although many studies have described the modulation of the

direct-presentation pathway, this is the first to describe a viral

strategy to evade the cross-presentation pathway. Third, our data

demonstrate that the blockade in cross presentation occurs

because a number of viral antigens are sequestered within virus

factories indicating that the subcellular localization of antigen may

prevent access to the cross-presentation pathway. This observation

has far reaching implications, as an altered localization of cellular

antigens that are normally sequestered from the cross-presentation

pathway may allow the induction of TCD8+-mediated autoimmu-

nity. The blockade in cross presentation is specific for the cross-

presentation pathway, as MHC Class II-restricted presentation of

exogenous late antigen is unaffected.

A previous study has examined the impact of altered cellular

localization upon donation of antigen during cross presentation.

The authors found that cellular localization could affect the

efficiency of cross presentation [23] but the study could not rule

out an effect of altered antigen stability, a known factor in the

effectiveness of cross presentation [3]. Thus, prior investigations

have not produced direct evidence to indicate that alteration of the

cellular localization of an antigen can enhance or prevent its entry

to the cross-presentation pathway. VACV infection alters vesicular

trafficking within infected cells and induces the formation of

specialized structures such as virus factories. VACV virus factories

are cytoplasmic structures that are bound by rough ER. The ER

membrane surrounding VACV virus factories is not continuous,

however, and ‘‘holes’’ to the cytosol do exist [18]. Intermediate

and late VACV proteins are transcribed and translated within

virus factories [17] and require specialized signals to leave these

structures [24]. The rules governing exit from VACV virus

factories remain to be fully characterized. In our current study

identical antigens with different cellular localizations are presented

differently, with cross presentation of those sequestered within viral

factories being completely ablated whereas those that are localized

to the cytosol are available for cross presentation. This could

indicate that alteration of the localization of cellular antigen may

also prevent the entry of antigen into the cross-presentation

pathway and subsets of the cellular proteome could be unavailable

to the cross-presentation pathway. Point mutations in motifs

responsible for the targeting of protein to compartments that

sequester antigen from the cross-presentation pathway would

render these antigens immunogenic, potentially producing TCD8+-

mediated autoimmunity via the cross-presentation pathway.

The blockade in cross presentation is specific, as the MHC Class

II pathway that shares many components with the cross-

presentation pathway is unaffected. Thus, pAPC-mediated

internalization and degradation of late antigens sequestered within

virus factories is likely unaltered. As MHC Class I-restricted direct

presentation of late antigens sequestered within virus factories

readily occurs this strongly indicates that the mechanism involved

targets a specific component of the cross-presentation pathway.

The unique component of the cross-presentation pathway involves

release of antigen from within an endosomal/lysosomal compart-

ment into the cytosol [25,26], a process that may involve the

retrotranslocation machinery involved in ER-associated degrada-

tion [27]. Human Cytomegalovirus alters ER-associated degrada-

tion to increase the degradation of MHC Class I heavy chains

within infected cells, so the manipulation of this degradative

pathway by viruses is possible [28]. Cross presentation of b-gal

derived from VACV-b-gal-Early requires the TAP transporter

(data not shown), and thus retrotranslocation into the cytosol. This

process of release of antigen into the cytosol represents the likely

mechanism responsible for blockade of the cross-presentation

pathway.

Our studies have utilized model antigens expressed by VACV

but the observations made can readily be extended to native

VACV antigens. A number of studies have mapped MHC class I-

Table 1. Mapping of the BG2 b-gal-specific TCD4+ response.

Peptide # Antigen Cytokines (ng/ml)

IL-2 IFN-c TNF-a

APC Only bd bd 0.007

No Ag bd bd 0.012

b Gal 0.62+/20.08 8.61+/20.76 0.97+/20.20

123 EAGHISAWQQWRLAEN bd bd 0.012

124 SAWQQWRLAENLSVTLP bd bd 0.013

125 RLAENLSVTLPAASHAI 1.16+/20.22 0.33+/20.04 0.31+/20.05

126 SVTLPAASHAIPHLTTS 1.33+/20.31 1.88+/20.31 0.36+/20.06

127 ASHAIPHLTTSEMDFCI bd bd 0.012

128 HLTTSEMDFCIELGNKR bd bd 0.011

To map the BG2 determinant, transgenic T cells were incubated with splenocytes in the presence of overlapping peptides (1 mM) or whole bgal (50 mg/ml).
Supernatants were collected for cytokine analysis 48 hr post-stimulation using the CBA kit from BD Biosciences. Only the peptides shown stimulated cytokine
production by BG2 cells.
doi:10.1371/journal.ppat.1000457.t001
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restricted antigenic determinants from VACV proteins restricted

by either mouse [29,30,31] or human MHC molecules [32,33,34].

The source of the mapped determinants reveals that the majority

of peptides recognized are derived from early VACV gene

products. In contrast, the majority of MHC Class II-restricted

determinants are found within late VACV gene products [35]. A

small number of peptides recognized by TCD8+ are found in late

genes. All of these immunogenic late VACV genes contain N-

terminal signal sequences or hydrophobic transmembrane do-

mains and are components of the intracellular mature virus,

intracellular enveloped virus, or extracellular enveloped virus

membranes that would leave virus factories. The remainder of the

determinants mapped within late VACV gene products are

present within proteins that may associate with other VACV

proteins (e.g. A10L that associates with A4L [36]) to facilitate their

exit from factories. These data validate our hypothesis that late

VACV proteins that remain within virus factories are not

immunogenic whereas those that can leave can generate TCD8+
responses, likely via the cross-presentation pathway.

Peptides derived from late gene products can enter the direct-

presentation pathway, irrespective of whether the protein from

which they are derived cannot exit the virus factory (Fig. 3D).

However, late VACV gene products are not produced within

infected pAPC, and so any immunogenicity in the TCD8+
compartment likely results via the cross-presentation pathway.

VACV is closely related to the cowpox virus [37], which has been

demonstrated to inhibit direct presentation by inhibiting move-

ment of peptide-loaded MHC Class I molecules out of the ER

[38,39]. It is not beyond the realm of possibility that a common

ancestor of cowpox virus and VACV inhibited MHC Class I-

restricted presentation of the majority of virus proteins. If egress of

a particular late protein was required for virus replication then

presentation of that antigen via the cross-presentation pathway

could be evolutionarily tolerated. However, VACV has clearly

gone to significant lengths to prevent access of other antigens to

the cross-presentation pathway producing a newly discovered

mechanism of evasion of the adaptive immune response.

Materials and Methods

Animals
Female C57BL/6 mice were purchased from Charles River

Laboratories (Wilmington, MA). OT-1 TCR RAG12/2 trans-

genic mice [40,41] were obtained from the NIAID Exchange

Program (Line 4175). gBT-1.3 mice were a kind gift from Dr.

Frank Carbone (University of Melbourne, Victoria, Australia)

[42]. B6.SJL-Ptprca/BoAiTac mice were purchased from Taconic

Farms (Germantown, NY) and bred to both OT-1 TCR and BG1

TCR mice to produce OT-1.SJL and BG1.SJL offspring,

respectively. SV40 Site I TCR mice were a kind gift from Dr.

Satvir Tevethia (Milton S. Hershey Medical Center, Hershey, PA)

[16]. All mice were maintained under specific pathogen-free

conditions at the M. S. Hershey Medical Center. All studies were

approved by the Penn State College of Medicine Institutional

Animal Care and Use Committee.

Development of BG2 TCR Transgenic Mice
BG2 mice that express a T cell receptor on TCD4+ specific for an

MHC class II-I-Ab-restricted epitope of b-gal on a C57BL/6

background were generated. Total RNA was isolated from an I-

Ab-restricted, b-gal specific TCD4+ clone and the a and b TCR

were amplified by a 59-Rapid Amplification of cDNA Ends (59

RACE, Invitrogen, Carlsbad, CA) using constant region anti-sense

primers a1 (59-GGCTACTTTCAGCAGGAGGA-39) and b1 (59-

AGGCCTCTGCACTCATGTTC-39), respectively. 59-RACE

products were amplified with nested TCR alpha and beta constant

region primers a2 (59-GGGACTCAAAGTCGGTGAAC-39) and

b2 (59-CCACGTGGTCAGGGAAGAAG-39) and cloned into

pCR4TOPO TA sequencing vectors (Invitrogen). Genomic

cloning PCR primers were designed based upon the method

previously described [43]. The genomic variable domains were

validated by sequencing, subcloned into TCR cassette vectors

kindly provided by Dr. Diane Mathis (Harvard), and coinjected

into fertilized C57BL/6 embryos (SAIC, Frederick, MD) yielding

TCR transgenic founder mice. Mice were bred with B6.SJL mice

and maintained as heterozygotes. Transgene expression monitored

by PCR or by staining of blood cells. For PCR, tail samples from

3–4 week old mice were employed for genotyping of BG2 mice

using the red Extract-N-Amp Tissue PCR kit (Sigma, St. Louis,

MO). Primers used are as follows: BG2 Alpha F1:

ACAACCCGGGATTCCACAG; BG2 Alpha R1: GTA-

TAGCGGCCGCCTCCTAGTGCAATGGT; BG2 Beta F1:

TATCTCGAGTCCTGCCGTGACCCTACTATG; BG2 Beta

R1: CAGCCGCGGAACCCAACACAAAAACTATAC.

Transgene expression was monitored by flow cytometry

following staining with anti-PE-Va11 (Clone RR8-1) and anti-

PE-Cy5-CD4 (Clone L3T4) antibodies. To map the BG2

determinant, transgenic T cells were incubated with splenocytes

in the presence of overlapping peptides (1 mM) or whole bgal

(50 mg/ml). Supernatants were collected for cytokine analysis 48 h

post-stimulation using the CBA kit from BD Biosciences (San Jose,

CA). Only the peptides shown in Table 1 stimulated cytokine

production by the BG2 cells.

Viruses
VACV (Western Reserve strain), rVACV-b-gal-Late, rVACV-

b-gal-Early, rVACV-gB-Late, rVACV-OVA, rVACV-gB498–505,

rVACV-CD4 [44] and recombinant adenovirus expressing b-gal

(Ad-b-gal) were a kind gift from Dr. Jon Yewdell and Dr. Jack

Bennink (Laboratory of Viral Diseases, NIAID, Bethesda, MD).

VACV expressing the b-gal96–103 peptide (rVACV-b-gal96–103)

targeted to the endoplasmic reticulum (ER) with a signal sequence

derived from the adenovirus E3/19k protein was previous

published [45].

Generation of VACV-eGFP-OVA Constructs
The plasmid pRB21 expressing the full length vp37 VACV

ORF with the p7.5 early/late promoter was a kind gift from Dr.

Bernard Moss (Laboratory of Viral Diseases, NIAID, Bethesda,

MD) [46]. The peGFP-C1 plasmid expressing full-length OVA

(peGFP-C1-OVA1–385) was a kind gift from Dr. Kenneth Rock

(Department of Pathology, University of Massachusetts Medical

School, Worcester, MA) [23]. For construction of VACV-eGFP-

OVA-Late pRB21 backbone DNA was ligated with eGFP-OVA

using T4 DNA Ligase (Invitrogen). Following ligation, plasmid

DNA was sequenced to ensure that the vp37, p7.5 early/late

promoter, and eGFP-OVA1–385 sequences were correct. To make

rVACV-eGFP-OVA-Late the p11 promoter was inserted in place

of the p7.5 promoter. rVACV-eGFP-OVA-Early and rVACV-

eGFP-OVA-Late were generated by infecting transfected BSC-1

cells infected with VACV-vRB12 at an MOI of 1 using the

CellPhect Transfection Kit (GE Healthcare, Buckinghamshire,

UK). As VACV-vRB12 contains the flanking sequences of vp37,

homologous recombination occurred to allow virus spread [46].

The resulting rVACV were plaque purified three times prior to

characterization. The resulting rVACV-eGFP-OVA-Early and

rVACV-eGFP-OVA-Late produced green fluorescence upon

infection of WT3 cells and sequencing revealed the presence of
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the correct promoter and OVA sequences in DNA purified from

virions.

Cell Lines and Cultures
All media were purchased from Invitrogen. WT3 [47], TAg-

b2mneg [15] and L929 fibroblasts that stably express Kb (L-Kb)

were maintained in Dulbecco’s Modified Eagle Media containing

10% fetal bovine serum (FBS) supplemented with penicillin/

streptomycin and 2 mM L-glutamine. E22 cells (the H2b EL4

thymoma transfected with b-gal) [45] were maintained in RPMI

1640, 5% FBS, penicillin/streptomycin, 2 mM L-glutamine and

400 mg/ml G418. The gB498–505-specific LacZ T cell hybridoma,

2E2, was a kind gift from Dr. Frank Carbone (University of

Melbourne, Victoria, Australia) and was maintained in RPMI

1640, 5% FBS, penicillin/streptomycin, 2 mM L-glutamine.

Bone marrow-derived dendritic cells (BMDC) were generated as

previously described [48].

DC Isolation
C57BL/6 mice were inoculated i.d. with approximately 56105

Flt3 ligand expressing B16 tumor cells. Two weeks later the

spleens from immunized mice were harvested, microdissected, and

incubated in 1 mg/mL Collagenase D (Roche Diagnostics,

Indianapolis, IN) at 37uC for 20 min. Following lysis of red blood

cells the remaining cells were incubated with Pan-DC microbeads

(Miltenyi Biotec, Auburn, CA) and positively sorted. Purified DC

were infected with rVACV-eGFP-OVA1–385-Early or rVACV-

eGFP-OVA1–385-Late at an MOI of 10 for a duration of 7 hours

in the presence or absence of cytosine arabinoside and analyzed by

flow cytometry for the expression of eGFP.

T Cell Culture
Live mononuclear splenocytes from mice immunized 30 d

previously with 16106 pfu Ad-b-gal were harvested by centrifu-

gation over a Lymphocyte Separation Medium (LSM) cushion

(BioWhittaker, Walkersville, MD), washed once and resuspended

at 16107 cells per well in RPMI 1640 with 10% FBS, 1% non-

essential amino acids, penicillin/streptomycin, 2 mM L-gluta-

mine, and 7.5 U/ml of IL-2 (Peprotech, Rocky Hill, NJ). Cells

were stimulated weekly with 2.56105 irradiated E22 cells per well.

Adoptive Transfer of TCR Transgenic Cells
Spleens and lymph nodes were removed, homogenized to

produce a single cell suspension, and mononuclear cells isolated as

above. Where indicated, cells were labeled with 5 mM 5-(and-6)

carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE, In-

vitrogen) for 10 min at 37uC and washed once prior to injection.

Electroporation
Approximately 46106 TAg-b2mneg cells were suspended in

phosphate buffered saline (PBS) containing 1 mg/mL ovalbumin

(OVA) or 1 mg/mL b-gal with 10 mM MgCl2 and incubated on

ice for 10 minutes. The cells were then electroporated in

disposable cuvettes (Bio-Rad, Hercules, CA) on a Bio-Rad gene

pulser at 0.25 kV or 0.45 kV with a capacitance of 250 uFD.

Following electroporation, cells were incubated on ice for an

additional 10 min and washed three times with 10% Iscoves

Modified Dulbecco’s Medium (IMDM). Cells were irradiated at

20,000 rad prior to injection.

In Vivo Cross Presentation
For in vivo immunization, mice were infected i.v. with 16107 pfu

of VACV or were injected i.p. with TAg-b2mneg that were either

infected with VACV or electroporated with antigen as described

above. TAg-b2mneg were infected with VACV at a multiplicity of

infection of 10 and then treated with psoralen and ultraviolet light

(UV-C) as previously described [3]. As VACV will not infect all

cells, in some experiments TAg-b2mneg were infected with

rVACV-CD4, and infected cells were sorted using anti-CD4

microbeads (Miltenyi Biotech).

Intracellular Cytokine Staining
Mononuclear cells isolated from splenocytes or TCD8+ lines were

washed twice after isolation over an LSM cushion and plated in

triplicate into individual wells of a 96 well plate (36106 cells per well).

Cells were stimulated with 1026 b-gal96–103 peptide for 2 h at 37uC or

were incubated with BMDC infected with VACV as indicated. After

2 h of stimulation, 10 mg/mL Brefeldin A (BFA, Sigma, St. Louis,

MO) was added and the cells were incubated for another 4 h. TCD8+
were then assayed for production of IFN-c by flow cytometry.

In Vitro Antigen Presentation
BMDC were incubated with anti-CD11c microbeads (Miltenyi

Biotech) and positively sorted. Purified DC were infected with

VACV (MOI = 20) for a duration of 7 h in the presence or

absence of cytosine arabinoside. Infected BMDC were then

incubated with b-gal96–103-specific T cells generated as outlined

above, and activation of the T cells was determined either by

intracellular cytokine staining, or by activation of the LacZ

hybridoma 2E2 using the chlorophenol red b-D-galactopyranoside

(CPRG) substrate of b-gal as outlined below.

Flow Cytometry
For all assays, cells were incubated on ice with Fc block

containing 20% normal mouse serum (Sigma) for 20 min prior to

staining. For intracellular cytokine staining analysis, all antibodies

were purchased from BD Biosciences except where noted. Cells

were stained with anti-CD8 PE-Cy5 (Clone 53-6.7), washed once

with PBS, and fixed with 1% paraformaldehyde (PFA). Fixed cells

were then stained with anti-IFN-c-FITC (Clone XMG1.2) in 0.5%

saponin, washed, and analyzed. Antibodies used to identify OT-

1.SJL or BG1.SJL cells were anti-CD45.1-PE (Clone A20).

Antibodies used to identify gBT-I.3 cells were anti-Va2-PE (Clone

B20.1). For SV40 Site I and BG1.SJL double adoptive transfers,

cells were stained in triplicate with anti-CD8-PE-Cy7 (Clone 53-

6.7) and anti-Vb7-PE (Clone TR310) for SV40 site I TCR cells

and anti-CD45.1-PE-Cy5 (eBioscience, San Diego, CA, Clone

A20) for BG1.SJL TCR cells. For BG2 and BG1 double adoptive

transfer cells were stained with anti-CD45.1-PE to identify

adoptively transferred cells and with anti-CD8-Alexa Fluor 750

and anti-PE-Cy5-CD4 (Clone L3T4) to distinguish the two cell

populations. Antibodies used to distinguish DC subsets were anti-

CD11c-PE (eBioscience, Clone N418), anti-CD8a-PerCP-Cy5.5

(Clone 53-6.7), anti-CD11b-Alexa Fluor 750 (eBioscience, Clone

M1/70), anti-CD45R/B220-Alexa Fluor 647 (eBioscience, Clone

RA3682), anti-CD90.2-Biotin (eBioscience, Clone 53-2.1), anti-

NK1.1-Biotin (eBioscience, Clone PK 136), anti-CD19-Biotin

(eBioscience, Clone 1D3), and PE-Cy7 Conjugated Streptavidin.

DC subsets were distinguished based on the expression of CD11c

(CD11c+, CD8+, CD11b2, B2202) (CD11c+, CD82, CD11b+,

B2202) (CD11c+, B220+) and the lack of expression of CD90.2,

NK1.1, and CD19.

Assays for b-Gal Activity
To measure expression of b-gal, cells were infected with VACV for

1–12 h at a MOI of 10 in IMDM. Activity of b-gal in cells was
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determined using either of the b-gal substrates, o-nitrophenol b-D-

galactoside (ONPG) or CPRG. Briefly, for the ONPG assay,

approximately 3–56105 cells were lysed with 150 mL 1% Igepal

(Sigma, St. Louis, MO) and 10 ml aliquots incubated with 150 mL

1 mg/mL ONPG substrate in Z buffer (0.06 M Na2HPO4, 0.04 M

NaH2PO4, 0.01 M KCl, 0.001 M MgSO4, 40 mM b-mercaptoeth-

anol) for 10 min at 37uC. After 10 minutes the reaction was stopped

by addition of 50 mL Na2CO3. b-gal activity was measured using a

micro-plate reader (Dynex, Chantilly, VA) at 405 nm wavelength.

For the CPRG assay 16105 cells per well were washed twice in cold

PBS and incubated with 0.15 mM CPRG, 10 mM phosphate buffer,

1 mM MgCl2, and 0.1255% Igepal. Upon color change, 50 mL of

stop buffer (300 mM glycine, 15 mM EDTA, 10 M NaOH) was

added, and absorbance measured at a wavelength of 595 nm, with

630 nm as a reference wavelength.

Intracellular Fluorescence
To measure localization of virally expressed recombinant

antigen, TAg-b2mneg cells were plated in 8 well Permanox

chamber slides (Nalge Nunc International, Rochester, NY) and

allowed to adhere overnight. Cells were infected at a MOI of 20

with VACV for 5 h and then fixed for 15 min with 4% PFA. Cells

were permeabilized with 0.2% Triton X-100 (Bio-Rad) and

blocked with 20% goat serum (Sigma) for 20 min. Infected cells

were stained with primary antibodies as follows in 10% goat

serum: Unconjugated polyclonal rabbit anti-b-gal IgG antibody

(AbCam, Cambridge, MA), mouse anti-vaccinia E3L (TW2.3

supernatant) [49], unconjugated mouse anti-gB IgG antibody

(Virusys, Sykesville, MD) or polyclonal rabbit anti-vaccinia IgG-

FITC antibody (Biogenesis, Kingston, NH). Secondary antibodies

used were goat anti-rabbit IgG-Alexa Fluor 647, goat anti-mouse

IgG-Alexa Fluor 647, and goat anti-mouse IgG-Alexa Fluor 488

(all from Invitrogen). The slides were overlaid with ProLong Gold

antifade reagent with 49-6-diamidino-2-phenylindole (DAPI)

(Invitrogen) and allowed to cure overnight.

Ear and Lymph Node Sections
Mice were infected i.d. in each ear with rVACV-b-gal-Early or

rVACV-b-gal-Late. Twelve h post-infection, ears were removed

and fixed in 2% PFA/0.2% gluteraldehyde. Cervical lymph nodes

were frozen in Tissue-Tek OCT Compound (Fisher Scientific,

Pittsburgh, PA), sections (15 mm) cut using a Bright Cryostat

(Hacker Instruments, Winnsboro, SC) and then fixed with 10%

buffered formalin phosphate. b-gal expression was visualized using

5-bromo-4-chloro-3-indolyl-b-D galactopyranoside (X-gal,

0.25 mg/ml) in 2 mm potassium ferrocyanide, 5 mM ferricyanide

and 2 mM MgCl2 in PBS following overnight incubation at 37uC.

Microscopy
All images of infected cells, murine ear and lymph node sections

were acquired on an Olympus IX81 deconvolution microscope

(Olympus, Center Valley, PA) using Slidebook 4.0 software

(Intelligent Imaging Innovations, Denver, CO) or Q Capture

software (QImaging, Burnaby, BC, Canada). Colocalization was

measured using the Colocalization Plugin for ImageJ analysis

software (NIH).

Supporting Information

Figure S1 b-gal activity limit of detection using a CPRG assay.

b-gal protein was titrated from 1024 mg/mL to 10212 mg/mL,

and a CRPG assay was used to determine the limit of detection of

b-gal activity. Our limit of detection of b-gal activity was

1028 mg/mL of b-gal protein with no activity detected at

1029 mg/mL of b-gal protein.

Found at: doi:10.1371/journal.ppat.1000457.s001 (0.73 MB TIF)
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