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A B S T R A C T

Background: Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models 
based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to 
provide a scientific basis for clinical treatment.
Methods: Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were 
calculated. The value of risk models was analysed by receiver operating characteristic curve (ROC), immune 
microenvironment and drug sensitivity. Prognostic gene-related regulatory mechanisms based on network 
database.
Results: We screened four prognosis-related genes (SQSTM1, GABARAPL1, CDKN2A, HSPB8) for model con
struction. The AUC for 1-, 2- and 3-year survival was higher than 0.6 in both the training and validation sets. The 
nomogram constructed based on risk scores, pathologic_T predicted the outcome better. There were differences 
in the tumour microenvironment between the high and low risk groups, as evidenced by differences in the 
distribution of immune cells and differences in the expression of immune checkpoints.
Conclusion: Our results illustrate that models, nomograms and risk scores were valuable for tumour progression.
Clinical trial number: Not applicable.

1. Introduction

Liver cancer is a frequent cancer in the digestive system and hepa
tocellular carcinoma (HCC) is its main histological type, accounting for 
about 70–80% of cases [1]. According to the data from the International 
Agency For Research on Cancer (IARC) 2020 [2], HCC is a highly 
prevalent malignancy with a global incidence of more than 90 million 
people. HCC even ranks among the top three of all cancers in terms of 
mortality. Both liver fibrosis and cirrhosis are precursors to HCC [3]. 
Chronic infection with hepatitis B virus (HBV) or hepatitis C virus 
(HCV), excessive and sustained intake of foods containing nitrosamines, 
alcohol, etc., and nonalcoholic fatty liver disease (NAFLD) are all po
tential triggers of cirrhosis [4,5].

HCC is highly invasive and heterogeneous, with metastasis and 
recurrence in most cases, presenting an unsatisfactory prognosis. Arti
cles [6] have shown that the 5-year survival rate is usually less than 20% 
[7]. Early interventions such as radiotherapy, chemotherapy and sur
gical resection can improve the 5-year survival rate to more than 30%, 

but the results are still unsatisfactory, and there is a high recurrence rate. 
To date, TNM tumour staging, histology and other modalities have been 
commonly used in the clinic to assess the prognosis of HCC. α-Fetopro
tein (AFP) is the most widely used as a serum marker. Although it helps 
to improve the prognosis, patients with HCC still need more accurate 
biomarkers to improve the risk prediction of HCC and thus improve the 
prognosis. Recently, a large number of studies have validated 
HCC-related prognostic models. For example, the article [8] constructed 
a risk score model that could successfully predict the 1-year recurrence 
rate of HCC patients. Through machine learning, the study built pre
dictive survival and clinically relevant models for evaluating candidate 
markers [9]. Therefore, the establishment of more reliable predictive 
models and in-depth studies could provide important information for 
clinical treatment.

Autophagy is a process due to the catabolism of cells under externally 
stimulated conditions. Autophagy participates in organelle renewal, 
which maintains the integrity of proteinaceous material and organelles, 
thus maintaining the stability of the cell in its roles of survival, 
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differentiation and regulation [10]. Due to the role of autophagy, its 
dysfunction has been shown to be closely associated with the develop
ment of a variety of diseases especially in cancer. In recent years, the 
discussion of autophagy in cancer has been complex and controversial. 
This is due to the large number of genes associated with autophagy. 
Autophagy has the ability to remove harmful cells, and some of its 
related genes exhibit cancer suppression. Then, the absence of some 
genes promotes the development of cancer. For example, some articles 
demonstrated that Beclin 1 is lowly expressed in prostate, breast, and 
ovarian cancers, and its deletion promotes tumour proliferation [11,12]. 
Down-regulation of Bif-1 promotes melanoma growth [13]. Other 
studies have shown that the metabolic sensitivity of autophagy plays an 
oncogenic role. In glioblastoma (GBM), autophagy promotes its invasive 
and drug resistance [14,15]. Thus, autophagy has a different role in 
different stages and tissues of cancer. It is imperative to study its un
derlying biological mechanisms.

In this study, we first analysed datasets from The Cancer Genome 
Atlas (TCGA) and International Cancer Genome Consortium (ICGC) to 
screen and identify differentially expressed genes associated with 
autophagy, followed by the development of a risk model, which was 
assessed to accurately predict patient prognosis. The regulatory 
network, immune infiltration and drug sensitivity of key genes were 
subsequently analysed. Finally, we formalised that these key genes have 
great potential and research value in HCC.

2. Materials and Methods

2.1. Data source

TCGA training set: HCC gene expression matrices and clinical traits 
were downloaded from the TCGA database from UCSC Xena (https://xe 
na.ucsc.edu/public/) for a total of 424 samples, of which 01A (HCC, 369 
samples) and 11A (Control, 50 samples) samples were used for the an
alyses; among the HCC samples, there were 363 samples that contained 
survival information.

Validation set: ICGC-LIRI-JP was downloaded from the ICGC (In
ternational Cancer Genome Consortium) database (https://dcc.icgc. 
org/projects/LIRI-JP#!) for gene expression data and survival infor
mation for 232 HCC samples, which were used to validate the accuracy 
of the prognostic model.

Immune checkpoints: In the literature [16] 17 receptors, 16 ligands, 
3 cell adhesion, 3 co-stimulators, 14 antigens, 7 co-suppressors and 5 
other relevant immune checkpoints were obtained.

Autophagy-associated genes: A total of 222 autophagy-associated 
genes were obtained from the Human Autophagy Genebank (HADb, 
http://www.autophagy.lu/index.html) (Supplementary Table 1).

2.2. Differential expression analysis

Differential expression analysis was performed using the DESeq2 
(version 1.38.3) [17] to screen for significantly differentially expressed 
genes (DEGs). Significant differentially expressed genes were screened 
by |log2FC| ≥ 1 and p-adj< 0.05. Visualisation was performed by using 
ggplot2 (version 3.3.6) [18] and ComplexHeatmap (version 2.14.0) 
[19]. Venn was shown by using UpSetR (version 1.4.0) [20] to obtain 
intersecting genes.

2.3. GO and KEGG

The clusterProfiler (version 4.4.4) [21] was used for ID conversion, 
followed by GO and KEGG enrichment analyses (p.value < 0.05) and 
finally visualised by using the ggplot2 package (version 3.3.6).

2.4. Protein-protein interaction (PPI)

The STRING (https://cn.string-db.org/) database was used to 

construct protein-interaction networks. Cytoscape (version 3.9.1) was 
used to construct network graphs, and concepts from reference articles 
[22] were used to construct networks.

2.5. Risk modelling and assessment

Autophagy-related genes with prognostic impact on HCC were 
screened by Cox regression analysis with the survival (version 3.4.0) 
[23] and survminer package (version 0.4.9) [24], followed by further 
screening of genes that could be used to construct risk models by pro
portional risk assumption test and multifactorial Cox. The risk score 
calculation formula was shown below. 

riskScore= β1X1 + β2X2 + … + βnXn 

β denotes Cox regression coefficient and X denotes gene expression. 
Subsequently, the genes were divided into high-risk and low-risk groups 
based on the median value of the risk score. Finally, the survival rate of 
patients between the two groups was compared by Kaplan-Meier curve 
(p < 0.05). The predictive ability of the genes was assessed by plotting 
the results at 1/2/3 years through the receiver operating characteristic 
curve (ROC) curve and comparing the area under the curve (AUC) by 
survivalROC (version 1.0.3.1) [25]. AUC closer to 1 indicates better 
recognition ability. AUC = 0.5 is a randomised classification, at which 
point the identification ability is not available.

2.6. Nomogram construction

The reliability of the model was further assessed on the basis of 
clinical traits, and significant clinical traits were obtained by Cox anal
ysis for the construction of nomogram and DCA correction curves. No
mograms were drawn using the survival and rms (version 6.3.0) [26] 
packages to predict 1-, 2-, and 3-year patient survival. Correction curves 
were plotted using ggDCA (version 1.2) [27], with closer to 45◦ indi
cating better prediction.

2.7. Gene set enrichment analysis

The KEGG gene set was downloaded as the background set using the 
msigdbr package (version 7.5.1) [28] in R. And the sequenced genes 
were enriched in the background gene set using the GSEA function (adj. 
p < 0.05), and the enrichment results were represented by the enrichplot 
package (version 1.16.2) [29].

2.8. Tumour microenvironment analysis

The ESTIMATE algorithm (version 1.0.13) [29] was used to calculate 
the StromalScore, ImmuneScore and these two scores were added 
together to obtain the ESTIMATEScore. Differences between subgroups 
were analysed according to p < 0.05. Samples in the training set were 
analysed using GSVA (version 1.44.5) [30] to obtain enrichment scores 
for 28 immune cells using the immune-related genes provided in the 
literature [31] as the background gene set. The Wilcoxon test was used 
to analyse between-group differences in immune cell enrichment scores. 
Correlations between prognostic genes, risk scores and differential im
mune cell enrichment scores were analysed using the Spearman anal
ysis. Finally, the differences in the expression of each immune 
checkpoint between the groups were analysed using the Wilcoxon test.

2.9. Stemness index and drug sensitivity analysis

The stemness index between tumour samples was calculated using 
the synapser package (version 1.1.0) [32]. Models were constructed 
using the v2 version of data from the GDSC (Genomics of Drug Sensi
tivity in Cancer) database as a training set (805 cell lines, 17,419 genes, 
198 drugs) to predict the IC50 values (the half inhibitory concentration 
of the antagonist being measured) by oncoPredict (version 0.2) [33]. 
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Correlations were assessed by Spearman correlation analysis.

2.10. Transcription factor prediction and ceRNA analysis

TFs associated with 4 prognostic genes were predicted by using 
miRNet (https://www.mirnet.ca/) based on the RegNetwork database 
(https://regnetworkweb.org/) with degree ≥1. Associated regulatory 
networks were mapped using Cytoscape (version 3.9.1) [34]. The Star
Base database (http://starbase.sysu.edu.cn/starbase2/) was used to 
predict gene-associated miRNAs, lncRNAs, and construct related 
networks.

2.11. Clinical sample

Tissue samples from 10 HCC patients and paracancerous tissue 
samples were obtained from the Second Affiliated Hospital of Kunming 
Medical University. The samples were histologically characterized. The 
study was approved by the Ethics Committee of the Second Affiliated 
Hospital of Kunming Medical University (PJ-2024-147). All samples met 
the requirements of medical ethics (Declaration of Helsinki). The pa
tients agreed and signed an informed consent form.

2.12. Western blotting

The tissue was lysed using RIPA lysis solution (Sigma, USA). The 
supernatant was extracted after centrifugation at 12,000 g at 4 ◦C. 
Proteins were separated using SDS-PAGE and transferred to a PVDF 
membrane. Incubate with primary antibody after sealing using BSA. 
Antibody information was shown below, anti-CDKN2A (Abcam, 
ab270058, 1:1000), anti-GABARAP1 (Abcam, ab109364, 1:1000), anti- 
HSPB8 (Abcam, ab151552, 1:1000), anti-SQSTM1 (Abcam, ab207305, 
1:1000). Quantitative analysis of the grey values of the bands was per
formed using ImageJ.

2.13. Immunohistochemistry (IHC)

Tissues were preserved in 4 % paraformaldehyde. Serial 4 μm sec
tions of the sample tissue were used to prepare paraffin. After baking the 
paraffin sections, the paraffin sections were dehydrated and antigeni
cally repaired. Primary antibody was added and they were incubated at 
37 ◦C. Tissue sections were then stained with diaminobenzidine 
(Beyotime, China) and hematoxylin (Beyotime, China) for colour 
development. The results were quantitatively analysed using ImageJ as 
described in the article. Antibody information was shown below, anti- 
CDKN2A (Abcam, ab270058, 1:500), anti-GABARAP1 (Abcam, 

Table 1 
Primer sequence.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

CDKN2A GATCCAGGTGGGTAGAAGGTC CCCCTGCAAACTTCGTCCT
GABARAPL1 ATGAAGTTCCAGTACAAGGAGGA GCTTTTGGAGCCTTCTCTACAAT
HSPB8 CTCCTGCCACTACCCAAGC GGCCAAGAGGCTGTCAAGT
SQSTM1 GCACCCCAATGTGATCTGC CGCTACACAAGTCGTAGTCTGG

Fig. 1. Flowchart of design for this study.
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ab109364, 1:500), anti-HSPB8 (Abcam, ab151552, 1:100), anti- 
SQSTM1 (Abcam, ab207305, 1:2000).

2.14. qPCR

Total RNA from tissues was extracted using a Trizol reagent (Invi
trogen, USA). The extracted RNA was reverse-transcribed (Yeasen, 
China) and assayed using the kit (ThermolFisher, USA) according to the 
manufacturer’s instructions. The primer sequences are shown in Table 1.

2.15. Statistical analysis

Statistical results were expressed as mean ± standard deviation, and 
the number of replications represented is illustrated in the legend. Stu
dent’s t-test using GraphPad Prism 9 (USA) was used to count the dif
ferences between the two groups.

3. Results

3.1. Autophagy-related differentially expressed genes (DE-ARGs) and 
functional enrichment analysis

The flow of the whole experiment was completed as shown in the 
figure (Fig. 1). We analysed the differences in gene mRNA expression 
levels between the HCC and Control groups and screened for differen
tially expressed genes (DEGs) using |log2FC| ≥ 1 and P < 0.05 as criteria 
(Supplementary Table 2). Our results found that a total of 2991 DEGs 
were obtained (Supplementary Table 3), including 2026 up-regulated 
genes (Supplementary Table 4) and 965 down-regulated genes 
(Supplementary Table 5). Gene differential expression was demon
strated by volcano plots (Fig. 2A), and we selected the top 20 genes to 
demonstrate expression in HCC and control by heatmaps (Fig. 2B). 
Subsequently, we intersected with 222 autophagy-related genes (ARGs) 
and then obtained 28 autophagy-related differential genes (DE-ARGs) 
(Fig. 2C–Supplementary Table 6). To further understand the biological 
functions and pathways associated with DE-ARGs, we performed GO and 
KEGG analyses. In GO, a total of 549 entries were enriched, including 28 

Fig. 2. Analysis and enrichment of DEGs 
A) Differential gene expression volcano plot, red represents significant up-regulated genes, green is significant down-regulated genes, grey is non-significant genes. B) 
The up- and down-regulated TOP20 genes were selected by logFC sequencing, with red representing high expression and blue representing low expression. C) Venn of 
intersecting genes, with the left bar showing the number of genes in each subset and the top bar showing the number of genes in each intersection. D) GO enrichment 
results. The size of the box indicates the number of genes enriched, and the colour indicates the significance. E) KEGG enrichment results. Showing TOP30 functional 
pathways (in order of significance); the size of the box represents the number of genes enriched, and the colour shade indicates significance. F) PPI network analysis.
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CCs, 56 MFs and 465 BPs (Supplementary Table 7). In KEGG, 44 func
tional pathways were enriched (Supplementary Table 8). Among them, 
Cellular senescence, Mitophagy-animal, NOD-like receptor signalling 
pathway and other pathways are related to autophagy (Fig. 2D). Hep
atitis B, ECM-receptor interaction, IL-17 signalling pathway, etc., are 
closely related to the development of hepatocellular carcinoma 
(Fig. 2E). Finally, we constructed protein-protein interaction (PPI) net
works of intersecting genes, which resulted in the identification of 24 
genes with interactions (Fig. 2F–Supplementary Table 9), including 47 
interacting relationship pairs.

3.2. Screening for prognosis-related genes by cox analysis

We performed univariate Cox regression analyses for the 28 DE- 
ARGs and screened for genes significantly associated with survival (p 
< 0.05, Supplementary Table 10); we obtained 12 genes (Fig. 3A, Sup
plementary Table 11). Based on the results of Cox, the Proportional 
Hazards (PH) Assumption test was performed to screen out the genes (p 
> 0.05). Then, a total of 9 genes (SQSTM1, IKBKE, GABARAPL1, 
CDKN2A, TME, M74, HSPB8, FOXO1, SPHK1 and ITGA3) passed the 
selection (Supplementary Table 12). Using multifactorial Cox analysis 
for further screening. From the risk model construction (Supplementary 
Table 13), we found a total of 4 model genes (SQSTM1, GABARAPL1, 
CDKN2A, and HSPB8). Risk scores were calculated with the formula: 

RiskScore = SQSTM1*0.25- 
GABARAPL1*0.20+CDKN2A*0.13+HSPB8*0.12.                                 

3.3. Assessment of prognostic analyses

Based on the risk scores obtained from the model, the samples were 
divided into high- and low-risk groups with median values 
(Supplementary Tables 14 and 15). In both the TCGA training datasets 
and ICGC validation sets, the number of death samples in the high-risk 
group was more than in the low-risk group (Fig. 3B). The expression 
of prognostic genes in groups was shown by heatmap (Fig. 3C). Except 
for GABARAPL1, which is expressed less in the high-risk group, the 
expression of the other three genes in the high-risk group is higher than 
that in the low-risk group. In addition, based on Kaplan-Meier analysis, 
we found that in both datasets, the survival of high- and low-risk pa
tients’ survival was significantly different (p < 0.05), with high-risk 
patients having lower survival than the low-risk group (Fig. 3D). 
Finally, we assessed the predictive effect of the model by ROC curves. 
The 1-, 2-, and 3-year survival ROC curves are plotted in the training and 
validation sets, and we find that the Area Under Curve (AUC) values of 1, 
2, and 3 years in the two datasets are higher than 0.6, which indicates 
that the model has a better prediction effect (Fig. 3E).

3.4. Correlations between prognostic models and clinical factors

To investigate the reliability of the prognostic model in clinical set
tings, we obtained the following 8 clinical features in the TCGA training 
set: age, gender, grade, pathologic M, pathologic N, pathologic T, stage 

Fig. 3. Risk model construction and assessment 
A) Single-factor, multifactor Cox Forest plots. B) Risk curve. The top half of the graph shows the distribution of samples from low to high according to the risk score 
differentiated by median value. The lower half of the graph shows the corresponding survival status and time of the samples. The vertical coordinate is the survival 
time. C) Intergroup expression of prognostic genes. D) Survival curves for high and low risk groups. The horizontal coordinate is the survival time, and the vertical 
coordinate is the survival rate, and the continuous type of step curve plotted to illustrate the relationship between survival time and survival rate. The number in the 
bottom axis of the graph is the number of samples that survived during the corresponding survival period. E) ROC curve.
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Fig. 4. Clinical trait analysis and alignment diagram 
A) Between-group distribution of risk scores across traits. B) Single-factor Cox Forest plots and multifactor Cox Forest plots. C) Alignment graphs and calibration 
curves. D) DCA curves for nomogram.
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and race in the TCGA training set. Through the Wilcox rank sum test and 
the Kruskal-Wallis test, we found that there were significant differences 
in risk scores between the Grade, pathologic T, and Stage groups (p <
0.05) (Fig. 4A, Supplementary Table 16). Subsequently, we used uni
variate Cox regression and found that risk score, pathologic T, and stage 
all had a significant effect on patient survival (p < 0.05, Supplementary 
Tables 17 and 18). Based on this result, we performed a multifactorial 
Cox analysis and obtained 2 significant shapes (risk score, pathologic T) 
(Fig. 4B–Supplementary Table 19). Finally, we plotted Nomogram plots 
(Fig. 4C), calibration curves, and Decision Curve Analysis (DCA) curves 
for 1,2, and 3 years (Fig. 4D). The calibration curves are close to the 
diagonal, and the net returns of the column-line plots are all higher than 
the individual factors, suggesting that the model’s predictions are 
convincing.

3.5. Gene set enrichment analysis (GSEA) of prognosis-related genes

To understand the biological functions and the differences of sig
nalling pathways involved in prognostic-related genes, we performed 
GSEA analysis with the KEGG gene set as the background. In the TCGA 
training set, the correlations between prognostic genes and other genes 
were calculated and ranked separately, and the top 5 enriched pathways 
were finally selected for presentation. Among them KEGG_TR

YPTOPHAN_METABOLISM, KEGG_CELL_CYCLE and so on were 
associated with the development of hepatocellular carcinoma (HCC) 
(Fig. 5A–D, Supplementary Tables 20–23).

3.6. The immune microenvironment of the model

Enrichment scores for 28 immune cells were obtained using the 
immune-related genes in the Methods section as the background gene 
set (Supplementary Table 24). In the training set, we used the ESTIMATE 
algorithm to calculate the scoring traits of the samples. We based on the 
grouping of the samples in our previous model (high-risk and low-risk 
groups) to compute how the scores differed between groups. The re
sults obtained a total of 3 scores, StromalScore, ImmuneScore and 
ESTIMATEScore. The ImmuneScore was significantly different between 
the two groups (p < 0.05) and was lower in the low-risk group than in 
the high-risk group, while the remaining two scores were not 

significantly different between groups (Fig. 6A, Supplementary 
Table 25). Subsequently, we analysed the differences in the enrichment 
scores of each immune cell between the groups using the Wilcoxon test. 
The results showed that the 15 immune cells’ enrichment scores 
significantly differed between the groups (p < 0.05, Fig. 6B). Except for 
Eosinophil, the rest of the significant immune cells were lower in the 
low-risk group than in the high-risk group. By Spearman correlation 
analyses of correlations between prognostic genes, risk scores, and im
mune cell enrichment scores for between-group differences, we found 
that the risk scores had the highest correlation with Activated CD4 T 
cells, Natural killer T cells, and Activated Dendritic cells (r = 0.44, 0.42, 
0.33, Fig. 6C–Supplementary Tables 26–27). Finally, we analysed the 
differences in the expression of each immune checkpoint between 
groups based on previous groupings in the TCGA training set. The results 
showed that there were a total of 51 immune checkpoints that were 
differently expressed in the two groups (high-risk and low-risk), of 
which 13, 12, and 14 were receptor, ligand, and antigen-associated 
immune checkpoints, respectively (Fig. 7). As can be seen from our re
sults, most of the immune checkpoints were expressed less in the low- 
risk group than in the high-risk group. These results suggest that the 
grouping of risk models can reflect different immunity levels.

3.7. mRNA expression-based stemness index (mRNAsi) analysis

We quantified the stemness of the tumour samples and calculated the 
mRNAsi in the training dataset, which reflects the gene expression 
characteristics of stem cells. The correlation between stemness index 
and risk score was subsequently analysed, and the results showed that 
there was a significant positive correlation between stemness index and 
risk score, with the stemness index in the high-risk group being signif
icantly higher than that in the low-risk group (Fig. 8A, Supplementary 
Table 28). This means that the risk score can indicate the ability of 
tumour progression and self-renewal to a certain extent.

3.8. Prediction of drug sensitivity

We used data from the GDSC (Genomics of Drug Sensitivity in Can
cer) database to construct a model to predict the IC50 values of each drug 
in the disease samples. Drugs were screened by calculating intergroup 

Fig. 5. GSEA enrichment trends of top 5 pathways for model genes 
A) The first five enriched pathways of SQSTM1. B) Enrichment pathway analysis of GABARAPL1. C) Pathways enriched in CDKN2A sorted by top 5. D) Enrichment 
analysis of HSPB8.
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Fig. 6. Immune microenvironmental analysis of key genes 
A) Differences between groups in tumour stroma scores. B) Differences in immune cell enrichment scores between groups (purple indicates High > Low, green 
indicates High < Low, black means not significant). C) Prognostic genes, risk scores and immune cell correlations. ns. p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, 
and ****p ≤ 0.0001.
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differences (high- and low-risk groups) in IC50 values for all drugs and 
correlations with risk scores. The screening conditions were 1) signifi
cant differences between high- and low-risk groups; 2) absolute corre
lation between drug IC50 values and risk scores ≥0.3. After the analysis, 
15 drugs were finally obtained (Fig. 8B–Supplementary Tables 29–31). 
The results of Sabutoclax show that its IC50 value is lower, indicating 
that a smaller amount of Sabutoclax may have a better inhibitory effect 
on tumour cells. The IC50 value of Sabutoclax in the high-risk group is 
significantly higher than that in the low-risk group, indicating that low- 
risk patients have a better response to Sabutoclax treatment.

3.9. Analysis of prognostic gene regulatory networks

We used miRNet, based on the RegNetwork database, to predict four 
prognostic gene-associated transcription factors (TFs) with degree ≥1, 
resulting in 61 TFs (Fig. 8C–Supplementary Table 32). We then analysed 
the regulatory network of competing endogenous RNA (ceRNA) 
(Fig. 8D). We predicted 4 prognostic gene-related miRNAs and lncRNAs 
in Starbase. Here, we screened miRNAs with the criterion of being 
predicted in both miRanda and miRmap databases; then, 56 miRNAs 
were obtained by filtering (Supplementary Table 33). Predicting 
miRNA-associated lncRNAs using clipExpNum≥ 20 as a criterion, we 
obtained 65 (Supplementary Table 34).

3.10. Validation of prognostic gene expression levels

To further validate the expression of prognostic genes, we analysed 
the data from the training set. It was found that SQSTM1, CDKN2A, and 
HSPB8 were up-regulated genes, and GABARAPL1 was down-regulated 
(Fig. 8E). We used IHC (Fig. 9A–B), western blotting (Fig. 9C–D) and 
qPCR (Fig. 9E) in 10 HCC samples and their para-cancerous tissues. The 
experimental results were consistent with our analysis. The full un
cropped blots were shown in the supplementary file.

4. Discussion

HCC has always been a hot topic of discussion among cancers. Early 
diagnosis is effective in reducing the mortality rate of HCC [35]. Most of 
the clinics use imaging tests, marker tests or puncture tests. Nowadays, 
treatments for HCC include surgical resection, liver transplantation, 
chemotherapy and immunotherapy [36]. Most common methods have 
the best cure rates only for patients with early-stage HCC. Although 
transcatheter arterial chemoembolisation (TACE) combined with drug 
therapy improves the overall survival rate for patients in terminal stages 
[37], the results are still poor compared to early-stage patients. There
fore, the discovery of reliable genes for early diagnosis and treatment of 
HCC is urgent.

Many studies have shown that inhibition of autophagy brings 
improvement in clinical outcomes. Models have demonstrated that the 
combination of anticancer drugs and autophagy inhibitors can have an 

Fig. 7. Differences in immune checkpoint expression between groups. Differences in expression of immune checkpoints between groups. Horizontal coordinates are 
the immune checkpoints, vertical coordinates are the expression levels, green is the low-risk group, red is the high-risk group, and the top is the difference in the 
expression levels of the immune checkpoints between the groups. The significance of the difference in the expression level of the immune checkpoints between groups 
is shown at the top. ns. p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001.
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anti-tumour effect [38]. A retrospective study illustrates that dysregu
lation of autophagy is associated with multiple types of cancer pro
gression [39]. It has been illustrated that PARK2 inhibits the 
development of pancreatic tumours via mitochondrial autophagy [40]. 
Through the establishment of a mouse model [41], the article demon
strates that autophagy-related gene 7 (Atg 7) deletion leads to abnor
malities in autophagy and steatosis in the liver, which ultimately leads 
to HCC. Herein, we screened DEGs in the normal and HCC groups by 
differential gene analysis. To further obtain DE-ARGs, we took the 
intersection of these genes and ARGs to obtain 28 DE-ARGs. GO and 
KEGG enrichment analyses indicated that DE-ARGs were enriched in 
signalling pathways closely related to autophagy, such as cellular 
senescence, Mitophagy-animal, and NOD-like receptor signalling 
pathway, as well as pathways related to hepatocellular carcinomas, such 
as hepatitis B, ECM-receptor interactions, and IL-17 signalling. The re
sults of these analyses confirmed the reliability of the candidate genes 
for further screening of reliable genes in subsequent analyses.

Although the regulatory role of autophagy in cancer is diverse, the 
mechanisms are becoming clearer with the establishment and validation 
of different models. Recent studies illustrate that by regulating 
autophagy-related genes, tumour development can be mediated 
[42–44]. In our article, after finding HCC and autophagy-related genes, 
we obtained a total of 9 prognostically relevant genes based on Cox 
analysis and PH hypothesis testing. Based on further analysis and 
screening by risk model, we finally obtained 4 genes (SQSTM1, 
GABARAPL1, CDKN2A, HSPB8). Next, we evaluated the diagnostic 
value of the four prognostic genes by risk curves, KM curves, and ROC 
curves. The risk scores were calculated to group and compare the dif
ferences in the distribution of survival between the samples. Using risk 

curves and heat maps, we found that GABARAPL1 was less expressed in 
the high-risk group, and the remaining three were more expressed in the 
high-risk group than in the low-risk group. Subsequently, through 
validation we found that the AUC values of 1, 2, and 3 years were higher 
than 0.6, indicating that the model had a better prediction effect. Some 
previous research reports illustrated the reliability of some prognostic 
models in HCC and demonstrated the prognostic value of the charac
terized genes such as AFM, AKR1C3, and GPC3 in HCC by means of 
multivariate regression models, elastic nets, and columnar plots [45]. 
Some researchers have also determined the AUC of DEGs by machine 
learning methods and it has been shown to be useful for early HCC 
diagnosis [46]. Consistent with our analysis, there are many articles 
showing the significance of these four key genes in cancer. SQSTM1 is 
associated with autophagy in lung cancer and is involved in the regu
lation of lung cancer cell plasticity [47]. In gastric cancer, autophagy 
regulates important immune checkpoint proteins through SQSTM1, thus 
regulating the therapeutic effects [48]. Other articles have also 
demonstrated the regulation of SQSTM1 in HCC, where it binds to a 
protein, DDX5, thereby stimulating autophagy to ultimately inhibit liver 
tumour growth [49]. GABARAPL1 regulates hormonal pathways in 
prostate cancer and is involved in the regulation of autophagy [50]. 
GABARAPL1 has been shown in other HCC research articles to be 
associated with poor patient prognosis [51] as well as being a signature 
gene for mitochondrial autophagy [52]. The regulatory mechanisms of 
both CDKN2A [53] and HSPB8 [54] in HCC related to autophagy were 
validated in the stage in the article. In the current study, we used clinical 
samples to validate the expression of key genes, which was consistent 
with the database analysis. GABARAPL1 was lowly expressed in tumour 
samples, whereas CDKN2A, HSPB8 and SQSTM1 were lowly expressed 

Fig. 8. Further validation of key genes 
A) Correlation of mRNAsi with riskscore. B) Correlation between Sabutoclax IC50 values and risk scores and differences between groups. C) TF-mRNA network. The 
figure shows prognostic genes in red and transcription factors in yellow. D) ceRNA network, prognostic genes in red, miRNAs in green and lncRNAs in purple. E) 
Intergroup expression of prognostic genes.
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in tumours.
Based on the above candidate genes we constructed a risk model. We 

analysed and found that there was a correlation between the risk score 
and Grade, pathologic_T, and Stage. Based on the above model, we 
analysed and found that there was a correlation between the risk score 
and clinical features such as grading, pathological staging, and inter- 
staging. Independent prognostic analyses using these clinical traits 
with correlations were used to construct the nomogram. The nomogram 
demonstrated better predictive results, which confirmed the potential of 
the genes we screened for in clinical prognosis. In a previous study, Chen 
et al. [55] confirmed prognostic genes associated with hypoxia and 
immunity in pancreatic ductal carcinoma in the same way.

We then analysed the risk score model and the immune environment. 
We found that the low-risk group had lower immune scores than the 
high-risk group. By analyzing the immune infiltration of immune cells in 
each group, we got that among the immune cells with differential 
expression, the immune cell scores were lower in the low-risk group than 
in the high-risk group, except for Eosinophil. The study of Wang et al. 
[56] indicated that the genes related to Eosinophil were biomarkers with 
prognostic characteristics of HCC. In addition, prognostic genes and risk 
scores were correlated with immune cells. In our results, risk score and 
Activated CD4 T cell, Natural killer T cell, Activated Dendritic cell had 
high correlation. CD4 T cell was also shown to correlate with increased 
cholesterol in tumour microenvironment in HCC [57]. Natural killer T 
cell has a complex regulatory role in HCC and is one of the future 
therapeutic directions [58]. It has been indicated that Dendritic cell 
activation may be a reliable way to regulate HCC [59]. In addition, we 
analysed risk scores and immune checkpoints, and the results indicated 
that the expression of most immune checkpoints was lower in the 
low-risk group. Immune checkpoints and immune checkpoint inhibitors 
(ICIs) in HCC are considered to be effective future treatments for HCC 

based on immune response [60]. These further confirmed the close as
sociation of our risk score with the immune microenvironment. Based on 
our risk score model, it provides a basis for performing immunotherapy 
classification.

Cancer stem cells, as a key factor influencing the course of cancer, are 
thought to contribute to tumour metastasis and influence treatment 
resistance [61]. Evaluating strategies related to cancer hepatocytes will 
facilitate the development of additional therapeutic modalities. We next 
performed stemness index analysis and found that it was significantly 
and positively correlated with the risk score, suggesting that the risk 
score can indicate tumour progression and self-renewal ability. Also, we 
performed a drug correlation analysis based on the risk score and found 
that low-risk patients had a better response to Sabutoclax treatment. 
Sabutoclax has been shown experimentally to inhibit cancer stem cells 
in breast cancer [62]. However, its association with HCC still lacks the 
support of substantial experimental evidence.

Our study established and evaluated the potential clinical signifi
cance of risk modeling in HCC. GABARAPL1, CDKN2A, HSPB8, and 
SQSTM1 are reliable biomarkers associated with autophagy, and risk 
models based on them have the potential to diagnose HCC. Despite the 
reliability of the models indicated by analysis and validation, there are 
some limitations of the study. For example, there is a lack of cellular or 
animal models to validate the regulatory mechanisms of key genes. The 
article is based on database analysis and lacks practical application in 
clinical settings. Our subsequent study expects further evaluation based 
on risk modeling. In summary, the autophagy-related prognostic model 
we constructed may provide new ideas for diagnosing HCC.

Significant statement

Our study identified autophagy-related genes SQSTM1, 

Fig. 9. Validation of expression of key genes in clinical samples 
A) Immunohistochemical detection of gene expression, scale bar = 100μm, x10, n = 10. B) Statistical results of positive area of IHC. C) Western blotting to detect 
gene expression, n = 10. D) Statistical results of western blotting. E) qPCR to detect gene expression, n = 10.
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GABARAPL1, CDKN2A, and HSPB8 in HCC by bioinformatics analysis. 
Their prognostic value was evaluated, providing a basis for the discovery 
of biomarkers and therapeutic targets in liver cancer.
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