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Introduction
Over the past decades, the incidence of cancer has increased 
constantly.1 The World Health Organization estimates that by 
2030, 1.4 million women of reproductive age will be newly 
diagnosed with cancer each year.2 In addition, therapeutic pro-
gress has improved the survival rates of children and young 
adults with cancer significantly through treatments which are 
potentially deleterious for reproductive function.1 The mecha-
nisms by which chemotherapies induce ovarian damage are 
only partially known3 as each type of drug appears to affect the 
ovaries through different processes. In addition, other factors, 
such as the patient’s age and ovarian reserve, also contribute to 
residual ovarian function following the administration of gon-
adotoxic agents. Therefore, a new population of young adults, 
survivors of cancer and exposed to the detrimental side effects 
of treatments, has emerged in recent years and will continue to 
increase. The remarkable advances in cancer treatment have led 
to rethinking the management of malignancies in young 
patients. Indeed, the quality of life after healing has become a 
major issue. In women of childbearing age, fertility is in the 
foreground.4 Therefore, specialized consultations regarding 
oncofertility are recommended before gonadotoxic treatment 
for all women of reproductive age.4 Several female fertility 
preservation (FP) techniques are available and could be 

proposed to young patients facing cancer.5 Nevertheless, few 
live births have been reported in women having used FP in 
oncological contexts. Thus, improving the FP methods cur-
rently available, developing new FP strategies, and better 
informing patients about fertility after cancer represent major 
challenges in oncofertility.

Anti-Müllerian hormone (AMH; also known as “MIS” for 
“Müllerian Inhibiting Substance”) is a member of the trans-
forming growth factor (TGF)-beta superfamily whose primary 
physiological role in mammals occurs during embryogenesis. It 
was discovered in 1947 by Alfred Jost, who was the first to 
suspect the existence of a specific factor influencing male sexual 
differentiation during embryonic life.6 The SRY gene, expressed 
on chromosome Y, is responsible for testicular differentiation, 
that is, the Müllerian ducts regress under the influence of 
AMH (produced by Sertoli cells), while Wolffian ducts are 
maintained under the influence of testosterone (produced by 
Leydig cells). In 1984, Vigier et al7 discovered that AMH was 
also secreted in women. Produced exclusively by the granulosa 
cells of small, growing follicles, it is detectable in humans from 
36 weeks of gestation until menopause. Although released into 
the blood and detectable in plasma, its physiological activity is 
essentially ovarian. It is involved in the regulation of the 
recruitment of primordial follicles and in follicular growth.8 
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Anti-Müllerian hormone assays were developed for women in 
1990s,9 and the serum AMH level has rapidly become a factor 
in a wide array of clinical applications, based mainly on its abil-
ity to be a quantitative marker of ovarian reserve.9 The AMH 
level is very useful in reproductive medicine, particularly for the 
prediction of the ovarian response to controlled ovarian stimu-
lation (COS) before in vitro fertilization (IVF), offering the 
possibility of individualized counseling and adjustments of the 
stimulation regimen.

The present article aims to review the potential utility of 
AMH in the field of oncofertility. Indeed, the serum AMH 
level can be used as a blood marker to inform patients of their 
expected ovarian function following gonadotoxic treatment, 
but it also plays a key role in guiding FP strategies. Moreover, 
this hormone could potentially be used as a new therapeutic 
option to limit chemotherapy-induced ovarian damage.

Clinical Implications of Serum AMH Levels for FP
Serum AMH Level: A Marker of Ovarian Reserve

AMH is secreted by small follicles as soon as they leave the 
quiescence phase until they reach the small antral stage.10 This 
secretion profile suggests that the AMH level could reflect 
ovarian reserve, as the initial follicular recruitment appears to 
be continuous over the course of a woman’s reproductive life 
and proportional to the number of primordial follicles remain-
ing in the ovaries.11 It has indeed been shown that serum 
AMH measurement is correlated with the number of small 
primordial follicles both in women12,13 and mice.14 In addition, 
it has been established clearly that serum AMH levels are 
strongly correlated with an ultrasound evaluation of the num-
ber of small antral follicles, a procedure which is recognized as 
another excellent marker of ovarian reserve.15,16

Serum AMH measurement offers many advantages over 
more conventional hormonal markers of the ovarian reserve, 
such as follicle-stimulating hormone (FSH), estradiol, or inhi-
bin B. In particular, it appears to be relatively constant over the 
menstrual cycle, despite some studies reporting minimal and 
probably insignificant variations in clinical practice.17 Thus, it 
has been recognized for several years as the best hormonal 
indicator of ovarian reserve18 even though it fails to predict fer-
tility or oocyte quality.19 Nevertheless, as the secretion of AMH 
is controlled by many factors, the results of this assay must be 
interpreted according to the clinical context.9

The clinical applications of serum AMH levels in women 
are numerous. First, it is strongly correlated with oocyte yield in 
assisted reproduction. Many studies have shown that the serum 
AMH level is the best predictor of ovarian response to IVF 
stimulation, which can be variable among women.20,21 
Nevertheless, its ability to predict pregnancy and live birth 
after assisted reproduction has not been demonstrated.22,23 
Moreover, AMH has become an additional tool for diagnosing 
premature ovarian insufficiency (POI) or polycystic ovarian 
syndrome (PCOS).24

The ability of AMH to reflect ovarian reserve in women 
facing cancer has been challenged, as several studies have 
reported that some women with cancer could have reduced 
AMH levels compared with healthy women, even before the 
beginning of gonadotoxic treatment.25,26 However, other stud-
ies have failed to find any significant difference between the 
AMH levels of women with cancer and controls.27,28 Thus, the 
actual impact of cancer on ovarian reserve and function remains 
to be determined. Nevertheless, serum AMH determination at 
the time of cancer diagnosis could still have a major role in 
informing patients and helping both patients and clinicians to 
make decisions regarding FP strategies. Moreover, AMH 
assessment during treatment and after healing may also be 
helpful in predicting ovarian function, but the results should be 
interpreted with caution.

Serum AMH Levels for FP Counseling
Using AMH to predict ovarian reserve after cancer management.  
According to several studies, serum AMH levels before cancer 
could represent a relatively good prognostic marker of ovarian 
reserve after completion of treatment.29 Indeed, it has been 
shown that women with higher pretreatment AMH levels had 
higher postchemotherapy levels,30 whereas lower prechemo-
therapy values were associated with a slower rate of recovery in 
AMH levels.31 Moreover, further investigations in breast can-
cer patients have demonstrated that AMH measurement 
before treatment, in association with age, could increase the 
accuracy of prediction of cancer-therapy-related amenorrhea 
significantly.32 These results could help to better inform 
patients about ovarian function after cancer therapy and allow 
patients to decide whether or not to undergo FP techniques 
based on their individualized risks of POI. Nevertheless, 
although some studies have revealed that AMH levels could 
predict ovarian function and ovarian reserve after chemother-
apy, an individual susceptibility to gonadotoxicity might exist. 
Indeed, in a recent study, Decanter et al33 showed that in very 
young breast cancer patients with the same ovarian reserve 
parameters and receiving the same treatment protocol, differ-
ent patterns of ovarian recovery (evaluated by ultrasensitive 
AMH assays) after chemotherapy are possible. Thus, predict-
ing ovarian reserve after healing remains a huge challenge. 
Moreover, it is essential to inform patients that there is no evi-
dence that precancer or even postcancer treatment AMH levels 
can predict posttreatment fertility, as pregnancies can occur 
even with an undetectable AMH serum level.34

AMH to guide the choice of FP technique.  Beyond representing 
an interesting tool with which to predict ovarian reserve after 
chemotherapy, the AMH level can also guide patients and phy-
sicians in choosing the best FP technique via its linkages with 
the available outcomes of different FP techniques.

Oocyte or embryo vitrification after COS is currently the 
gold standard FP technique and should be proposed when 
possible.5 In conventional COS for IVF, the AMH level rep-
resents a good marker of ovarian response in cancer patients. 
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Nevertheless, controversies exist about the impact of malig-
nancies on ovarian response to COS. In healthy patients, 
recent data have suggested that 8 to 20 mature oocytes after 
COS are needed to achieve a reasonable success of live birth, 
but this number should be individualized according to age.35 
Data on pregnancies obtained after use of vitrified oocytes 
before cancer are still scarce.36 The chances of pregnancy are 
strongly correlated with age at the time of FP as well as the 
number of mature oocytes obtained.37 Thus, patients should 
be informed that even if the AMH level cannot predict a live 
birth after use of cryopreserved oocytes/embryos, it is related 
closely to the number of potentially vitrified oocytes, and it 
can help to determine the initial stimulation dose of recombi-
nant FSH.

In vitro maturation (IVM) of cumulus oocyte complexes 
(COCs) followed by oocyte cryopreservation has recently 
emerged as an option for urgent FP or when ovarian stimulation 
is contraindicated. This technique is still considered to be experi-
mental. It has been reported that the number of mature oocytes 
after IVM is highly associated with serum AMH levels.13,38,39 In 
healthy patients, data indicate that 8 to 20 cryopreserved oocytes 
after COS maximize the chance of obtaining a live birth.35,40 
Nevertheless, data obtained from infertile PCOS women have 
shown a reduced competence of IVM oocytes when compared 
with oocytes recovered after COS.41 Moreover, the potential of 
cryopreserved IVM oocytes from cancer patients remains 
unknown. As a consequence, the optimal number of IVM 
oocytes frozen in candidates for FP is currently unpredictable. 
However, it seems that this technique should be considered for 
FP only when ovarian stimulation is unfeasible, particularly 
when markers of the follicular ovarian status are in a relatively 
high range.38 Indeed, we showed that high values of AMH and 
antral follicle count (AFC) were needed for freezing a signifi-
cant number of in vitro mature oocytes.38 In this study, a thresh-
old of 20 antral follicles and 3.7 ng/mL AMH were deemed 
necessary for the cryopreservation of at least 10 MII oocytes 
after IVM. In contrast, for a cancer patient presenting with a low 
to normal ovarian reserve, the best strategy to be proposed in the 
case of urgent FP must be considered.

Ovarian cortex cryopreservation and transplantation (OCT) 
is another experimental FP technique available when oocyte or 
embryo vitrification after COS cannot be performed. A recent 
study suggests that the serum AMH level is the best predictor 
of primordial follicle density in a population of young women 
with presumably healthy ovaries and may thus represent a reli-
able marker of the pool of nongrowing follicles.13 This correla-
tion between AMH and primordial follicle count was also 
reported in other studies.12,42,43 The current recommendations 
propose that women older than 35 years of age should not be 
considered candidates for OCT due to both low ovarian reserve 
and reduced oocyte quality.44 However, to date, no data have 
been reported on the effectiveness of ovarian tissue graft in 
young women who have reduced ovarian reserve, so no reliable 
conclusions can be drawn.

Potential Therapeutic Clinical Applications of 
AMH

Chemotherapy induces a decrease in fertility by exerting direct 
toxicity on the ovaries. It leads to a depletion of the oocyte 
stock through several possible mechanisms that are still being 
debated. Recently, a new mechanism for follicular depletion 
induced by cyclophosphamide, called the “burn-out effect,” has 
been proposed and consists of a massive growth of resting fol-
licles, which are then destroyed. As AMH is one of the factors 
regulating the recruitment of primordial follicles from the 
ovarian reserve, it could be used in a new treatment to limit 
follicular depletion induced by chemotherapy.

Background

Mechanisms of chemotherapy gonadal toxicity.  During chemo-
therapy administration, drugs induce, almost systematically, 
the destruction of growing follicles, resulting in transient 
amenorrhea occurring rapidly after the first cycles of chemo-
therapy. This effect may be transitory, as evidenced by the 
possibility of normal ovarian function after the completion 
of treatment.45 However, chemotherapy protocols may 
induce a more or less significant alteration in the follicular 
stock. The depth of follicular depletion is largely dependent 
on several factors, such as the type and dose of molecule used 
as well as the patient’s age and ovarian reserve at the time of 
treatment.46

Mechanisms to explain the gonadotoxicity of these different 
molecules have been explored in various experimental models, 
ranging from histological studies of female ovaries after chem-
otherapy to cell cultures in the presence of active metabolites of 
chemical agents. Moreover, animal models have been used 
widely to understand the effects of different cytotoxic agents 
on ovarian function. A large number of studies have been car-
ried out, and several hypotheses have been raised.3

The most commonly accepted theory is based on a direct 
alteration of the DNA of oocytes contained in primordial fol-
licles resulting in follicular atresia.47 Double strand breaks rep-
resent the main DNA lesions caused by cytotoxic agents. These 
DNA alterations can lead to either DNA repair pathways 
allowing cell survival or cell death by apoptosis. According to 
this theory, chemotherapy induces follicular depletion by 
affecting the primordial follicles that undergo atresia directly.

More recently, it has been suggested that some chemothera-
pies, such as cyclophosphamide or cisplatin, may induce simul-
taneously a massive growth of primordial follicles and apoptosis 
of growing follicles.48–50 According to this theory, the drugs 
induce recruitment of primordial follicles through the activa-
tion of the PI3K pathway, known to be essential for primordial 
follicle resting.51,52 This concept of ovarian reserve depletion is 
called the “burn-out effect.”48 This model could also explain 
the alteration of the ovarian reserve induced by the presence of 
an ovarian endometrioma53 or massive follicular loss secondary 
to ovarian cortex transplantation.54,55
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Finally, histological analyses of ovaries after chemotherapy 
show endothelial vascular complications that may cause tissue 
fibrosis and, consequently, impaired ovarian function.56

Better understanding of the gonadotoxicity mechanisms is 
essential, and the progress made thus far has led to the develop-
ment of methods to limit the impact of chemotherapy on the 
ovaries.

Physiological role of AMH in ovaries.  AMH is a glycoprotein hor-
mone expressed by granulosa cells surrounding the oocytes. It 
is produced by follicles from the primary stage of development 
until selection for dominance10 and plays a key role during fol-
liculogenesis. It was demonstrated in several experimental 
models that AMH is implicated in the inhibition of the recruit-
ment of primordial follicles and in the regulation of the sensi-
tivity of granulosa cells to FSH.

First, AMH seems to be involved in the initial recruitment 
of primordial follicles.57 Indeed, the ovaries of Amh-/- mice 
show both a decreased number of primordial follicles and an 
increased number of growing follicles compared with wild-
type ovaries.58 These results suggest that AMH could act as a 
major factor in the regulation of primordial recruitment. 
Moreover, in vitro experiments on human,59 bovine,60 and 
rodent ovaries61,62 have revealed that the transition from pri-
mordial into growing follicle was improved in the absence of 
AMH, whereas this activation was blocked when AMH was 
added to the culture medium. Another experimental model, 
using a graft of a mouse ovarian cortex onto a chicken embryo 
containing high levels of AMH, confirmed this hypothesis.63 
Indeed, the recruitment of primordial follicles was decreased 
when the mouse ovarian cortex was inserted into the chicken 
embryo. However, primordial follicles were recruited at a high 
rate after the transplantation of Amhr2-/- mouse ovarian cortex 
or when the graft was performed on a gonadectomized chicken 
without endogenous AMH.63

AMH seems to also be involved in the regulation of follicu-
lar sensitivity to FSH and in the selection of the dominant 
follicle.64 It was shown that the proliferation of antral follicle 
granulosa cells, induced by FSH, was inhibited by the addition 
of AMH.64 Moreover, AMH reduces the synthesis of P450 
aromatase, whereas this synthesis is induced by FSH.65,66 In 
addition, in human luteinized granulosa cells, AMH decreases 
the expression of the CYP19a1 gene encoding aromatase and, 
consequently, the production of estradiol.67

Other roles of AMH such as antiproliferative action on dif-
ferent malignant ovarian cell lines have been reported.68 This 
antiproliferative action has also been demonstrated in other 
organs expressing the AMH receptor, such as breast, uterine, 
and endometrial cells.69

Another unexplored effect of AMH on ovarian function is 
its potential involvement in pituitary function, thus potentially 
assigning it a secondary effect on growing follicles. This impact 
of AMH on the hypothalamus and pituitary is newly demon-
strated and needs to be confirmed.70

AMH to Preserve Ovarian Reserve

Currently, in the field of oncofertility, efforts are constantly 
being made to improve existing FP techniques and to develop 
treatments to limit follicular depletion in vivo.3,45 To date, 
these therapies have nearly all reached the fundamental 
research stage.

Because AMH has been shown to limit the activation of 
primordial follicles in in vivo or in vitro mouse models,58,62,71 it 
was suggested in 2 recent studies that this hormone could be an 
effective treatment in terms of limiting chemotherapy-induced 
gonadotoxicity. This hypothesis was supported by the expres-
sion of the specific AMH receptor, AmhrII, in mice follicles 
following in the primordial stage.62,72

Kano et al72 reported that, in mice, superphysiological doses 
of AMH, delivered either by recombinant protein via osmotic 
pumps or a gene therapy, could decrease primordial follicle loss 
induced by cyclophosphamide, cisplatin, or doxorubicin, chem-
otherapies used currently in oncology. The protective effect of 
AMH varied between drugs and was stronger for carboplatin 
than for cisplatin or cyclophosphamide. These data suggest dif-
ferent mechanisms for ovarian damage which may depend on 
the toxicity of each drug to granulosa and/or germ cells. In 
addition, this study revealed that AMH could also represent a 
new contraceptive method, as continuous daily exogenous 
administration of AMH in mice induced an alteration in estrial 
cycles and a drastic decrease in fertility in a dose-dependent 
manner. These data are in accordance with the role of AMH in 
FSH sensitivity.64

Recently, we performed a study to asses this protective effect 
of AMH in pubertal mice treated with cyclophosphamide.73 In 
our model, we first confirmed the inhibitory role AMH plays 
in the recruitment of primordial follicles, as, 1 week after a sin-
gle administration of AMH, the proportion of primordial fol-
licles increased, contrasting with the decrease in the proportion 
of early-growing follicles. Second, we showed that in the ova-
ries of mice treated with concomitant injections of cyclophos-
phamide and AMH, the number of primordial and 
early-growing follicles were similar to what was observed in 
the controls, whereas the ovaries of cyclophosphamide-treated 
mice were depleted of primordial follicles, suggesting that 
AMH effectively protects the follicular stockpile from cyclo-
phosphamide-induced damage. Next, we evaluated the long-
term effect of these treatments on ovarian function and fertility. 
We showed, via mating experiments, that 15 weeks after the 
end of the treatment, the cumulative number of pups was 
slightly greater in mice having received both treatments as 
compared with cyclophosphamide alone and that the number 
of ovulated eggs after ovarian simulation was significantly 
reduced in Cy-treated mice and rescued by AMH coadminis-
tration. Overall, in this pubertal mouse model, our results pro-
vide new evidence that AMH inhibits the recruitment of 
primordial follicles and could therefore protect mice from 
cyclophosphamide-induced gonadotoxicity.
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If these results are confirmed and approved in women, 
recombinant AMH could be a new option for preserving the 
fertility of women who require alkylating treatment. Currently, 
several “fertoprotectant” molecules, such as rapamycin or mel-
atonin, have been developed and studied in terms of their 
abilities to limit chemotherapy-induced ovarian damages in 
mice.45,74,75 Nevertheless, these treatments are involved in 
ubiquitous signaling pathways or apoptosis; therefore, they 
could interfere with physiologic mechanisms or the efficacy 
of chemotherapy. As AMH is produced only by ovaries and 
acts through a specific receptor expressed mainly by the ova-
ries, this hormone might be a particularly interesting new 
agent in terms of protecting the ovarian reserve and subse-
quent fertility as it acts as a targeted therapy.

Recombinant AMH has also been used to improve the 
results of ovarian tissue cryopreservation, a still experimental, 
but promising, FP technique.5 The autograft of cryopreserved 
ovarian tissue have resulted in a live birth in a patient healing 
from cancer and allowed the restoration of hormonal function 
in a young girl.76 Nevertheless, it has been shown that the 
manipulation of the ovarian cortex after removal induced a 
large loss in primordial follicles, possibly via a burn-out 
effect.54,55 Consequently, in vivo or in vitro AMH treatment 
could protect the follicular stockpile under these conditions 
and improve the FP technique.77 Indeed, this treatment, which 
allows the inhibition of initial primordial follicle growth, could 
preserve quiescent follicles in the ovarian cortex and ameliorate 
the ovarian graft function and duration.

Thus, all these data have revealed that AMH might repre-
sent a new treatment for limiting primordial follicle depletion 
induced by chemotherapy, but these encouraging results need 
to be confirmed.

Other Roles of AMH in Oncology

The primary role of AMH is to induce the regression of the 
Müllerian ducts during embryonic development. As most gen-
ital tract tumors derive from these structures, it has been pro-
posed that AMH may inhibit the growth of some gynaecological 
tumors.69 By acting only on cells expressing the AMH receptor, 
this molecule could act as a targeted therapy.78,79

AMH was first proposed as a potential therapy in ovarian 
cancer. It has been shown in rodents that AMH could induce 
the proliferation inhibition and apoptosis of ovarian epithelial 
cancer cells in vitro and in vivo.80 These results appear to be 
transposable in women, as human cancer ovarian cells express 
AMHR2 and their in vitro growth is inhibited by recombinant 
AMH.68 Endometrium and the uterine cervix also express 
AMHR2, and in vitro studies have demonstrated this antipro-
liferative role of AMH in human endometrial or cervical can-
cer lines.81,82 Finally, weak expression of AMHR2 has also been 
documented in human breast tissue both in physiological and 
pathological conditions, and AMH also appears to have an 
antiproliferative effect on breast cancer cell lines.83

Conclusion
In conclusion, recombinant AMH may represent a new tar-
geted and innovative therapy with a large spectrum of applica-
tions in oncology and FP. However, to date, this molecule has 
never been tested in women, and extensive additional studies, 
both fundamental and clinical, are necessary. If these results are 
confirmed in women, it seems possible that recombinant AMH 
could represent a future treatment for FP during chemotherapy. 
Nevertheless, the indication, the mode, and the duration of 
administration as well as the potential secondary effects of this 
molecule must be evaluated. Thus, the recent developments 
summarized in the review have provided specific research ques-
tions on the role of AMH. Moreover, future clinical trials should 
be performed to better evaluate and understand the use of 
AMH in oncofertility.
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