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Abstract

Diabetes is a global healthcare problem associated with enormous healthcare and personal costs. 

Despite glucose lowering agents that control glycaemia, both type 1 (T1D) and type (T2D) 

diabetes patients often develop microvascular complications that increase morbidity and mortality. 

Current interventions rely on careful glycemic control and healthy lifestyle choices, but these are 

ineffective at reversing or completely preventing the major microvascular complications, diabetic 

peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). 

Minocycline, a tetracycline antibiotic with anti-inflammatory and anti-apoptotic properties, has 

been proposed as a protective agent in diabetes. However, there are no reported studies evaluating 

the therapeutic efficacy of minocycline in T1D and T2D models for all microvascular 

complications (DPN, DR, and DKD). Therefore, we performed metabolic profiling in 

streptozotocin-induced T1D and db/db T2D models and compared the efficacy of minocycline in 

preventing complications to that of insulin and pioglitazone in both models. Minocycline partially 

ameliorated DR and DKD in T1D and T2D animals, but was less effective than insulin or 

pioglitazone, and failed to improve DPN in either model. These results suggest that minocycline is 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Correspondence to: Eva L. Feldman, MD, PhD, 5017 AATBSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA, 
efeldman@umich.edu;.
Author contributions
S.A.E., P.D.O., L.M.H., and E.L.F. designed the studies. S.A.E., P.D.O., L.M.H., J.M.H., F.E.M., and H.Z. conducted the studies. 
S.A.E., P.D.O., L.M.H., S.F.A., F.C.B., S.P., and E.L.F. analyzed the data. S.A.E., S.N., M.G.S., and E.L.F. wrote the manuscript. All 
authors approved the final version.

Competing interest
P.D.O. is currently employed by Eli Lilly, but all contributions made by P.D.O. occurred while he was employed by the University of 
Michigan. Eli Lilly was not involved in any way with the research presented herein.

HHS Public Access
Author manuscript
J Transl Sci. Author manuscript; available in PMC 2021 April 15.

Published in final edited form as:
J Transl Sci. 2021 February ; 7(1): . doi:10.15761/jts.1000431.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unlikely to improve outcomes beyond that achieved with current available therapies in patients 

with T1D or T2D associated microvascular complications.
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Introduction

Both type 1 diabetes (T1D) and type 2 diabetes (T2D) are associated with complications 

including diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic 

kidney disease (DKD) [1]. Glycemic control is only partially effective for preventing 

complications [2]. Thus, a better understanding of disease pathophysiology is crucial for 

developing effective therapies.

Using T1D and T2D mouse models, we and others have explored transcriptomic changes in 

complication-prone tissues and identified pathogenic pathways, including inflammation [3], 

oxidative stress [4], apoptosis [5], and mitochondrial dysfunction [6]. These observations 

defined potential therapeutic targets that may alleviate end-organ damage.

Minocycline, a tetracycline antibiotic, exerts a wide range of biological effects independent 

of its antimicrobial properties that make it an attractive therapeutic agent for diabetic 

complications. It has anti-inflammatory, anti-apoptotic, and anti-angiogenic actions, as well 

as neuroprotective effects [7]. It has been reported to improve DPN [8] and neuropathic pain 

[9], DR [10,11], and DKD [12,13], possibly due to anti-inflammatory, anti-oxidant, and anti-

apoptotic actions [10–13]. Yet, there are no reported studies that explore the simultaneous 

effects of minocycline on all three complications in both T1D and T2D mouse models.

Herein, we evaluated minocycline treatment efficacy on DPN, DR, and DKD in well-

established T1D and T2D models in comparison to insulin or pioglitazone, commonly 

prescribed to diabetic patients (Figure 1). We found that minocycline did not improve DPN, 

although partially it ameliorated DR and DKD in T1D and T2D animals, respectively.

Materials and methods

Animals

Male C57BLKS (BKS) db/+ mice (control) and BKS db/db mice were purchased from 

Jackson Laboratories (BKS.Cg-Dock7m +/+ Leprdb/J, Stock No: 000642; Bar Harbor, ME) 

at 4 weeks of age. Animals were maintained in specific-pathogen-free housing provided by 

the University of Michigan Unit for Laboratory Animal Medicine and given access to water 

and chow ad libitum. All protocols were carried out in accordance with the guidelines 

outlined by the Diabetes Complications Consortium (http://www.diacomp.org) and the 

National Institutes of Health’s (NIH) Guide for the Care and Use of Laboratory Animals 

(8th Edition). All protocols were approved by the University of Michigan’s Institutional 

Animal Care and Use Committee.
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Animal models and study design: To induce T1D, 5-week-old db/+ mice were injected 

intraperitoneally with 50 mg/kg streptozotocin (STZ, Sigma Aldrich, St Louis, MO) 

dissolved in citrate buffer (pH 4.5), for 5 consecutive days (db/+ STZ) [14]. Leptin signaling 

deficient db/db mice were used as a T2D model [14]. Diabetes was defined as fasting blood 

glucose (FBG) levels over 300 mg/dL [15]. Starting at 6 weeks of age, mice were randomly 

assigned to minocycline (db/+ MINO, db/+ STZ MINO, db/db MINO) or pioglitazone 

(db/db PIO) (Figure 1) treatment groups and fed AIN-76A standard chow supplemented 

with 55 mg/kg/day minocycline or 15 mg/kg/day pioglitazone, respectively. Minocycline 

and pioglitazone were both purchased from Michigan Medicine, University of Michigan, 

and compounded into AIN-76A by Research Diets (New Brunswick, NJ). All other groups 

were maintained on a standard chow diet (untreated). Insulin was administered via LinBit 

(both from LinShin, Toronto, Canada) according to the manufacturer’s instructions to the 

db/+ STZ insulin group starting at 6 weeks of age, with implants replaced every 4 weeks 

until study termination (i.e., at 10 and 14 weeks). The study duration was 10 weeks and 

ended when the animals were aged 16 weeks. After phenotyping for each complication, 

mice were euthanized with 150 mg/kg sodium pentobarbital administered intraperitoneally. 

Blood was collected from the superior vena cava for glycated hemoglobin (%HbA1c) 

analysis and plasma processing. Hind paws were isolated for intraepidermal nerve fiber 

density (IENFD) analysis.

Metabolic phenotyping: Animals were weighed every 2 weeks. Fasting blood glucose (FBG) 

was measured using an AlphaTRAK glucometer (Zoetis, Parsippany-Troy Hills, NJ) every 2 

weeks throughout the experimental period. %HbA1c was measured by ELISA at study 

termination using the manufacturer’s instructions (Mouse Hemoglobin A1c Assay Kit, cat# 

80310; CrystalChem, Elk Grove Village, IL). Serum lipid profiles were analyzed by the 

Mouse Metabolic Phenotyping Center (MMPC) at Cincinnati (University of Cincinnati 

Medical Center, OH, USA; www.mmpc.org).

DPN phenotyping: DPN was measured using the protocols outlined by the Diabetes 

Complications Consortium (www.diacomp.org/shared/protocols.aspx). Nerve conduction 

velocities (NCVs) were assessed as a measure of large-fiber nerve function in sural sensory 

and sciatic-tibial motor nerves at the termination of the study as previously described [16]. 

IENFD is an anatomical measure of small nerve fibers. Fixed hind paw plantar tissue was 

stained with a pan-axonal marker, ubiquitin C-terminal hydrolase L1 (UCHL1; 1:2000; 

Proteintech, Rosemont, IL) [17]. Three random fields per mouse were imaged (1024×1024 

pixel resolution, 3.3 µm optical section thickness, FluoView 500 confocal microscope, 

20×1.2 objective, Olympus, Tokyo, Japan). MetaMorph (Molecular Devices, San Jose, CA) 

flattened ten images per stack, and IENFD was represented as fiber counts per mm.

DR phenotyping: DR was evaluated using protocols from the Diabetes Complications 

Consortium. Briefly, retinal DNA fragmentation was measured at the study termination by 

apoptotic DNA cleavage ELISA (Cell Death Detection, Roche Applied Science, 

Indianapolis, IN) and normalized to retinal wet weight [18].

DKD phenotyping: DKD was assessed using protocols from the Diabetes Complications 

Consortium and as previously reported [19]. Urinary albumin-to-creatinine ratio (ACR) was 
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measured in mice placed in metabolic cages for the last 72 h of the study. Urine from the 

final 24 h-period was collected and analyzed for albumin and creatinine using the Albuwell 

M and Creatinine Companion assays (Exocell, Philadelphia, PA) [20]. To assess glomerular 

hypertrophy, perfused left kidney tissue was fixed in paraformaldehyde, paraffin-embedded, 

sectioned to 3 µm thickness, and stained with periodic acid-Schiff (PAS) stain [19]. Fifteen 

glomerular tufts per mouse were randomly chosen for hypertrophy analysis. Mesangial 

index was determined by calculating the PAS-positive area of each glomerulus relative to 

total area. MetaMorph was used for quantification of glomerular and PAS-positive areas and 

microscope images were captured using a digital camera, as per our published protocol [19].

Statistical analyses

Statistical analyses were performed using GraphPad Prism 7 [21]. Normality of data was 

determined using Brown-Forsythe F-tests. Statistically significant differences (P < 0.05) for 

normally distributed data were analyzed using one-way ANOVA followed by Tukey’s post-

test for multiple comparisons. Datasets were log2 transformed for non-normally distributed 

data, and the Brown-Forsythe F-test rerun. When log2-transformation normalized 

distribution, a one-way ANOVA followed by Tukey’s post-test for multiple comparisons was 

used. When log2-transformation did not normalize distribution, the non-parametric Kruskal-

Wallis test, with Dunn’s post-test for multiple comparisons was used on the original, non-

transformed dataset. Data are presented as mean ± standard error of the mean (SEM).

Results

Minocycline only marginally affects metabolic phenotypes in T1D and T2D mice. 

Throughout the study, T1D db/+ STZ mice showed significant weight loss (Figures 2A and 

2C) and elevated FBG (Figures 3A–3C) relative to nondiabetic controls (db/+). At study 

termination, the higher FBG was reflected by increased %HbA1c in T1D db/+ STZ mice 

versus controls (Figures 3C and 3D). The lipid profile of T1D db/+ STZ mice was broadly 

similar to db/+ controls, except they exhibited higher cholesterol levels, without differences 

in triglycerides, non-esterified fatty acids (NEFAs), and phospholipids (Figure 4). 

Minocycline did not affect body weight (Figure 2C), terminal %HbA1c (Figure 3D), or lipid 

profiles (Figure 4) in T1D db/+ STZ mice, although terminal FBG was marginally, though 

significantly, higher versus controls (Figure 3C). Minocycline also had no effect on control 

db/+ mice. In contrast, insulin partially restored terminal body weight (Figure 2C), FBG, and 

%HbA1c (Figures 3C and 3D) in T1D db/+ STZ mice relative to controls. It also 

significantly reduced triglycerides and NEFAs, but not cholesterol or phospholipids levels in 

T1D db/+ STZ mice versus controls (Figure 4).

During the experimental period, T2D db/db mice exhibited significant weight gain (Figures 

2B and 2C) and raised FBG (Figures 3B and 3C) relative to control db/+ animals. At study 

conclusion, the higher FBG was paralleled by an elevated %HbA1c in T2D db/db mice 

versus controls (Figures 3C and 3D). T2D db/db mice had profound dyslipidemia, with 

increased cholesterol, NEFAs, and phospholipids, but unaltered triglycerides in comparison 

to controls (Figure 4). Minocycline slightly reduced terminal body weight (Figure 2C) but 

did not improve terminal glycemic control in T2D db/db mice (Figures 3C and 3D). It also 
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slightly but not significantly perturbed NEFAs in T2D db/db mice (Figure 4C). Otherwise, 

minocycline was without effect on the metabolic profile in T2D db/db animals. On the other 

hand, pioglitazone exerted a greater influence on T2D db/db mice, markedly raising their 

weight (Figures 2B and 2C) but lowering their terminal FBG and %HbA1c to db/+ levels 

(Figures 3C and 3D). Pioglitazone also ameliorated NEFAs in T2D db/db mice but did not 

impact cholesterol or phospholipids (Figure 4). Overall, minocycline only marginally 

affected metabolic phenotypes in diabetic mice, whereas insulin and pioglitazone 

significantly improved multiple metabolic criteria in T1D and T2D mice, respectively.

Minocycline does not improve DPN phenotypes in T1D and T2D mice

STZ-induced T1D db/+ mice display microvascular complications, including DPN, DR, and 

DKD [14,22,23]. As anticipated, T1D db/+ STZ mice had significantly decreased large-fiber 

sensory and motor NCVs relative to control db/+ animals, although their small-fiber IENFD 

only trended towards lower values (P = 0.052; Figures 5A–5C). Minocycline had no effect 

on any of these DPN metrics, in either T1D db/+ STZ or control db/+ mice. In contrast, 

insulin normalized large-fiber conduction and increased IENFD in T1D STZ db/+ mice 

relative to controls (Figures 5A–5C). We have previously reported that obese, leptin 

signaling-deficient T2D db/db mouse develops DPN [3,20]. As predicted, T2D db/db 

animals in this study displayed pronounced neuropathy in both large- and small-fiber 

measures versus controls (Figures 5A–5C). Minocycline did not affect the DPN phenotype 

in these T2D animals. However, pioglitazone did exert a significant effect on large-fiber 

NCVs. In summary, minocycline does not appear to improve DPN in diabetic mice, while 

insulin and pioglitazone significantly improved DPN phenotypes in T1D and T2D mice, 

respectively.

Minocycline improves DR in T1D and DKD in T2D mice

Retinal apoptosis is a surrogate for DR progression, when quantified relative to wet retinal 

tissue weight. As anticipated, retinal apoptosis was increased in T1D db/+ STZ mice in 

relation to controls (Figure 5D). Minocycline lowered retinal apoptosis significantly in T1D 

db/+ STZ mice, as did insulin administration. Increased apoptosis was also observed in the 

retina of the T2D db/db mice (Figure 5D), which was ameliorated by pioglitazone but not by 

minocycline treatment. Thus, minocycline improved DR phenotype in the T1D but not the 

T2D mouse model.

Both T1D db/+ STZ and T2D db/db mice exhibited elevated ACR compared to db/+ controls 

(Figures 6A and 6B), as well as increased glomerular area and mesangial index (Figures 6A 

and 6B). Minocycline had no effect on any of these parameters in T1D db/+ STZ mice but 

partially prevented glomerular hypertrophy and increased mesangial index in the T2D db/db 

animals. Minocycline did not affect ACR in the T2D db/db mice, while pioglitazone 

treatment prevented all aspects of DKD in the T2D model.

Discussion

Multiple studies identify inflammation, oxidative stress, apoptosis, and dysregulated 

immunity and energy metabolism as consistent features in nerve, retinal, and kidney tissue in 
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both mouse models and patients with T1D and T2D [3–6,24–32]. We and others [8–13,33–

36] have consequently investigated minocycline, with its anti-inflammatory, anti-apoptotic, 

and anti-oxidant effects [7], as a possible therapeutic agent in DPN, DR, and DKD. Despite 

several reports showing that minocycline improved aspects of each individual complication 

[8,10–13,34–36], the current study represents the first time the simultaneous effects of 

minocycline on DPN, DR, and DKD were compared in a STZ-induced T1D model and a 

leptin signaling-deficient T2D model on a BKS background. We also contrasted the 

therapeutic efficacy of minocycline to insulin and pioglitazone in T1D db/+ STZ and T2D 

db/db mice, respectively.

By ten weeks into the study, T1D and T2D animals exhibited severe diabetes, including 

elevation in terminal FBG and %HbA1c (Figure 3), and perturbations in serum lipid profiles, 

particularly in the T2D animals (Figure 4). Minocycline did not affect body weight and FBG 

in our experimental T1D and T2D cohorts and had little effect on blood lipids which is 

consistent with previous reports in T1D rat [9,11,34,36,37] and T2D mouse [13] models and 

in humans [38]. Although we did not anticipate that minocycline would impact metabolic 

parameters, we predicted that it would prevent diabetic complications due to its anti-

inflammatory, anti-apoptotic, and anti-oxidant effects [7]. Minocycline also possesses 

favorable pharmacokinetic (PK) properties, including good nervous system penetration and 

long serum half-life in humans [39]. However, the protective effects of minocycline on 

diabetic microvascular complications were modest, at best, and varied between diabetic 

models.

In our study, a 10-week regimen of minocycline (55 mg/kg in chow) had no effect on NCVs 

or IENFD, large- and small-fiber measures of DPN respectively in T1D db/+ STZ and T2D 

db/db animals (Figures 5A–5C). In agreement with our findings, 25 mg/kg minocycline 

daily for 8 weeks yielded no effects on NCV or IENFD deficits in STZ-induced T1D rats 

[37]. In contrast, minocycline improved sural NCVs and pain related behaviors at a dose of 

40 mg/kg for 3 days [8]. Similar reports of minocycline efficacy on pain are reported after 

short treatment trials [9,33,40], albeit intrathecal minocycline (10 nmol) did not ameliorate 

mechanical allodynia, as assessed by Frey monofilament in 10-week-old mice [41]. While 

data are limited, a 6-week trial of minocycline (100 mg, twice daily versus placebo) in 50 

T2D subjects with DPN resulted in improved vibratory sensation and decreased pain 

perception in both minocycline treated and placebo subjects, although the improvement was 

greater in the minocycline arm [38]. A caveat of this trial is that quantitative NCVs and 

IENFD were not assessed, a requirement for demonstrating drug efficacy in clinical trials of 

DPN according to the Toronto Expert Panel on DPN [42]. The variation in the mouse 

studies, and the results of this sole clinical trial, suggest a possible short-lived salutary effect 

of minocycline. Clearly, further studies in both mice and man are needed to definitively 

determine any long-term benefit of minocycline treatment. In contrast, insulin completely 

normalized small- and large-fiber DPN metrics in T1D db/+ STZ mice (Figures 5A–5C), as 

anticipated [2]. Surprisingly, however, pioglitazone improved large-fiber NCVs but not 

small-fiber IENFDs in T2D db/+ animals (Figures 5A–5C), an effect opposite to our 

previous observations in the same T2D model [26]. We anticipate this discrepancy between 

studies is related to a variation in gut microbiota that can affect the metabolic phenotype [43] 

and hence DPN, a possibility we are currently examining.
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In the current study, minocycline decreased DNA fragmentation, a surrogate marker of DR, 

in the retina of T1D db/+ STZ but not of T2D db/db animals (Figure 5D). Our results agree 

with the positive effects of minocycline treatment on DR in a T1D STZ rat model dosed 

twice daily with minocycline (22.5 mg/kg) for 10 days [34], as well as T1D STZ rats treated 

with 2.5 or 5 mg/kg minocycline daily for 4 or 8 weeks [10,11], or 50 mg/kg daily for 4 

weeks [35]. There was no effect of minocycline on T2D db/db mice (Figure 5D), and to our 

knowledge, there are no reports of minocycline treatment in T2D mouse models for 

comparison. We did observe that both insulin and pioglitazone lowered retinal apoptosis in 

T2D db/db group and T1D db/+ STZ animals, respectively, a result that was anticipated for 

the T1D model [44] (Figure 5D). We speculate the efficacy of minocycline in our T1D but 

not T2D cohorts is intrinsic to the type of diabetes. As with DPN, further studies are needed 

to confirm our single report on the lack of minocycline efficacy on DR in T2D and explore 

its differential effects in T1D and T2D.

In our study, the effect of minocycline on DKD progression was distinct in each model 

(Figure 6), with improvement in some aspects of DKD in T2D db/db mice, but without 

effect in T1D db/+ STZ animals. In agreement with our results, STZ-induced T1D rats 

receiving daily minocycline (50 mg/kg) for 4 weeks had no improvement in renal 

histological markers, as assessed by renal hypertrophy and tubulointerstitial fibrosis index 

[36]. In contrast, another study in T1D STZ rats that received 20 mg/kg minocycline daily 

for 4 or 16 weeks found a reduction in proteinuria [12], with lowering of renal apoptosis and 

glomerulosclerosis, although no change in glomerular area was noted. In contrast to our 

results in T1D, treatment of T2D db/db mice with minocycline partly prevented glomerular 

hypertrophy and mesangial expansion but did not affect ACR (Figures 6A and 6B). Our data 

agree with a parallel study on the T2D db/db model, where a 12-week regimen of daily 

minocycline (5 mg/kg) in mice aged 8 to 20 weeks improved renal histology (apoptosis by 

TUNEL, fractional mesangial area) [13]. Our data also agree with two human clinical trials, 

where minocycline treatment had no effect on ACR [38]. Thus, the clinical trials and our 

study suggest that minocycline has an effect on glomerular growth and mesangial matrix 

expansion but no effect on albuminuria. Specifically, minocycline may have a specific 

therapeutic effect in T2D on glomerular mesangial cells and/or glomerular macrophages that 

play a direct role in mesangial expansion, but little or no effect on podocyte alterations in 

early diabetes, changes that are generally manifested by albuminuria.

Conclusion

In summary, the literature is inconsistent on the potential effects of minocycline on diabetic 

microvascular complications. Differences could arise from variation in rodent models (rat 

versus mouse), drug dose and therapy duration, disease duration and age of animals at 

treatment commencement, as well as type of diabetes. Our study determined the efficacy of 

minocycline in a side-by-side comparison in T1D and T2D mice on the same genetic 

background. We found that minocycline has some potential for ameliorating microvascular 

complications in T1D and T2D, with improvement in DR in the T1D mice and DKD in the 

T2D mice, with no discernible effect on DPN in either model. While glycemic control via 

insulin or pioglitazone in T1D and T2D cohorts, respectively, rescued microvascular 

complications to a greater extent than minocycline, there remains the possibility patients 
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could receive potential benefit from adjunctive minocycline therapy, i.e., it is possible that 

minocycline could exert a greater effect over and above good glycemic/metabolic control. 

Minocycline was well-tolerated with few adverse events in both our study as well as the 

other reported rodent [8,10–13,34–36] and human studies [38,45–47], supporting its further 

study in well established, well phenotyped animal models of diabetes, as well as in man.
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Figure 1. 
Study design. The study consisted of eight groups: (i) untreated db/+ controls, (ii) 

minocycline-treated db/+ controls, (iii) untreated T1D db/+ STZ mice, (iv) minocycline-

treated T1D db/+ STZ mice, (v) insulin-treated T1D db/+ STZ mice, (vi) untreated T2D db/

db mice, (vii) minocycline-treated T2D db/db mice, and (viii) pioglitazone-treated T2D db/

db mice. Untreated cohorts just ate standard chow. Minocycline dose was 55 mg/kg/day, and 

pioglitazone dose was 15 mg/kg/day. Treatment started in mice aged 6 weeks and lasted 10 

weeks till study conclusion when mice were aged 16 weeks. Body weight and fasting blood 

glucose (FBG) levels were recorded every two weeks. At 16 weeks, metabolic, DPN, DR, 

and DKD phenotyping was performed
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Figure 2. 
Longitudinal and terminal body weight. Body weights were measured at 6, 8, 10, 12, 14, and 

16 weeks and are shown for control db/+ and db/+ MINO against: (A) T1D db/+ STZ, T1D 

db/+ STZ MINO, T1D db/+ STZ INS, and (B) T2D db/db, T2D db/db MINO, T2D db/db 
PIO. (C) Terminal body weights measured at 16 weeks. INS, insulin; MINO, minocycline; 

PIO, pioglitazone. Data are mean ± standard error of the mean (SEM). Two-way ANOVA 

with Tukey’s multiple comparisons test. ***P<0.001, versus db/+ controls; ##P<0.01, 

###P<0.001, versus T1D db/+ STZ or versus T2D db/db; n = 7–10 mice
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Figure 3. 
Longitudinal and terminal glycemic status. FBG was recorded at 6, 8, 10, 12, 14, and 16 

weeks and is shown for control db/+ and db/+ MINO against: (A) T1D db/+ STZ, T1D db/+ 

STZ MINO, T1D db/+ STZ INSULIN, and (B) T2D db/db, T2D db/db MINO, T2D db/db 
PIO. Terminal (C) body weights and (D) percent glycated hemoglobin (%HbA1c) were 

measured at 16 weeks. INS, insulin; MINO, minocycline; PIO, pioglitazone. Data are mean 

± SEM. Two-way ANOVA with Tukey’s multiple comparisons test. ***P<0.001, versus 

db/+ controls; #P<0.05, ###P<0.001, versus T1D db/+ STZ or versus T2D db/db; n = 7–10 

mice
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Figure 4. 
Terminal lipid profiles. (A) Triglycerides, (B) cholesterol, (C) non-esterified fatty acids 

(NEFAs), and (D) phospholipids were measured for all eight mouse cohorts at 16 weeks. 

INS, insulin; MINO, minocycline; PIO, pioglitazone. Data are mean ± SEM. Two-way 

ANOVA with Tukey’s multiple comparisons test. *P<0.05, **P<0.01, ***P<0.001, versus 

db/+ controls; #P<0.05, ##P<0.01, versus T1D db/+ STZ or versus T2D db/db; n = 7–10 

mice
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Figure 5. 
Terminal DPN and DR phenotyping. Terminal large-fiber nerve conduction velocities 

(NCVs) in (A) sural sensory and (B) sciatic motor nerves. (C) Terminal small-fiber 

intraepidermal nerve fiber density (IENFD). (D) Terminal apoptosis by retinal DNA 

fragmentation expressed as optical density from ELISA relative to wet retinal tissue weight. 

All metrics were measured for all eight mouse cohorts at 16 weeks. INS, insulin; MINO, 

minocycline; PIO, pioglitazone. Data are mean ± SEM. Two-way ANOVA with Tukey’s 

multiple comparisons test. **P<0.01, ***P<0.001, versus db/+ controls; #P<0.05, ##P<0.01, 

###P<0.001, versus T1D db/+ STZ or versus T2D db/db; n = 4–10 mice
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Figure 6. 
Terminal DKD phenotyping. Terminal metrics of renal function by (A) 24 h urine volume 

and (B) albumin-to-creatinine ratio. Terminal metrics of renal histopathology by (C) 

glomerular area and (D) mesangial index. All metrics were measured for all eight mouse 

cohorts at 16 weeks. INS, insulin; MINO, minocycline; PIO, pioglitazone. Data are mean ± 

SEM. Two-way ANOVA with Tukey’s multiple comparisons test. *P<0.05, **P<0.01, 

***P<0.001, versus db/+ controls; #P<0.05, ##P<0.01, ###P<0.001, versus T1D db/+ STZ 

or versus T2D db/db; n = 4–7 mice
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