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Abstract

Background

The pathogenesis of albuminuria in SCD remains incompletely understood. We evaluated

the association of albuminuria with measures of endothelial function, and explored associa-

tions of both albuminuria and measures of endothelial function with selected biological vari-

ables (vascular endothelial growth factor [VEGF], endothelin-1 [ET-1], soluble fms-like

tyrosine kinase-1 [sFLT-1], soluble vascular cell adhesion molecule-1 [soluble VCAM-1]

and plasma hemoglobin).

Methods

Spot urine measurements for albumin-creatinine ratio (UACR) and 24-hour urine protein

were obtained. Endothelial function was assessed using brachial artery ultrasound with

measurements of flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NTMD)

and hyperemic velocity.

Results

Twenty three subjects with varying degrees of albuminuria were evaluated. UACR was sig-

nificantly correlated with FMD (ρ = -0.45, p = 0.031). In univariate analysis, UACR was cor-

related with VEGF (ρ = -0.49; 95% CI: -0.75 –-0.1, p = 0.015), plasma hemoglobin (ρ =

0.50; 95% CI: 0.11–0.75, p = 0.013) and ET-1 (ρ = 0.40; 95% CI: -0.03–0.69, p = 0.06). Mul-

tivariable analysis showed significant associations of ET-1 (estimate: 455.1 [SE: 198.3],

p = 0.02), VEGF (estimate: -1.1 [SE: 0.53], p = 0.04) and sFLT-1 (estimate: -1.14 [SE:

0.49], p = 0.02) with UACR. Only ET-1 (estimate: -8.03 [SE: 3.87], p = 0.04) was signifi-

cantly associated with FMD in multivariable analyses. Finally, UACR was correlated with
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both 24-hour urine protein (ρ = 0.90, p < 0.0001) and urine aliquots for albumin-creatinine

ratio obtained from the 24-hour urine collection (ρ = 0.97, p < 0.0001).

Conclusion

This study provides more definitive evidence for the association of albuminuria with endo-

thelial dysfunction in SCD. Elevated circulating levels of ET-1 may contribute to SCD-

related glomerulopathy by mediating endothelial dysfunction.

Introduction

The survival of patients with sickle cell disease (SCD) into adulthood is associated with an
increased incidence of organ dysfunction. It is well recognized that SCD is characterized by a
vasculopathy which is thought to result in multiple clinical complications including ischemic
stroke, pulmonary hypertension, autosplenectomy, priapism, and chronic kidney disease [1]
2009;9:271–292.
The term “sickle vasculopathy” has been used to describe a generalized form of endothelial

dysfunction [2]. Similar to patients with coronary artery disease, atherosclerosis and its risk
factors, patients with SCD exhibit impaired endothelium-dependent vascular reactivity, mea-
sured as flow-mediated dilation (FMD) of the brachial artery [3–5] or as the increase in flow
induced by infusion of acetylcholine [6]. Multiple studies show associations of both albumin-
uria and elevated serum creatinine levels with echocardiography-derived tricuspid regurgitant
jet velocity (TRV) and other vasculopathic complications in SCD [7–10] suggesting a shared
pathophysiology. Despite the compelling evidence of endothelial dysfunction in SCD, its role
in the pathophysiology of SCD-related complications remains poorly defined.
Our primary hypothesis is that endothelial dysfunction is an important contributor to the

pathophysiology of albuminuria in SCD. The present study evaluates the association of mea-
sures of endothelial function, assessed non-invasively by ultrasound imaging of the brachial
artery, with albuminuria in patients with SCD. In addition, we explored the association of mul-
tiple biological variables with albuminuria, as well as the association of these variables with
measures of endothelial function.

Patients and Methods

Patients and Study Design

Patients with HbSS or HbSβ0 thalassemia and varying degrees of albuminuria, normal albu-
minuria (formerly called normoalbuminuria [urine albumin-creatinine ratio {UACR} < 30
mg/g]), moderately increased albuminuria (formerly calledmicroalbuminuria [UACR: 30–299
mg/g]) and severely increased albuminuria (formerly calledmacroalbuminuria [UACR: � 300
mg/g]), were recruited from the Sickle Cell Clinic at the University of North Carolina (UNC)
at Chapel Hill. Spot urine samples were obtained for albumin-creatinine ratio over 2–3 visits in
a three to six month period during the non-crisis “steady state.” The UACR obtained in the
final spot urine collectionwas used to ascertain the degree of albuminuria. A 24-hour urine col-
lection to assess protein and creatinine clearance was obtained at the final visit. Study subjects
were evaluated in the non-crisis, “steady state” with no acute pain episodes requiringmedical
contact during the preceding 4 weeks; had normal baseline prothrombin and activated partial
thromboplastin times; had acceptable hematologic, hepatic, neurologic, cardiovascular and
endocrine function; were able to understand the study requirements and willing to give
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informed consent; and individuals receiving hydroxyurea or renin-angiotensin-aldosterone
system blocking agents (such as angiotensin converting enzyme inhibitors or angiotensin
receptor blockers) were required to be on stable doses for at least 3 months. Patients were
excluded if they were pregnant; had a history of poorly controlled hypertension; had a history
of diabetes mellitus; had a history of hypercholesterolemia; were on treatment with a statin;
had chronic daily use of non-steroidal anti-inflammatory drugs; were breastfeeding; were on a
chronic transfusion program; had conditions that increase the risk associated with or compli-
cate interpretation of FMD and nitroglycerin-mediateddilation (NTMD) measurements
(including known upper extremity vascular obstruction, severe aortic stenosis, hypertrophic
obstructive cardiomyopathy, systolic blood pressure< 90 mmHg, treatment with a long-acting
form of nitroglycerin, use of a phosphodiesterase-5 inhibitor, and allergy to nitroglycerin); or
had ingested any investigational drugs within the preceding 4 weeks. The study was approved
by the Institutional ReviewBoard at UNC, Chapel Hill and all subjects gave written informed
consent to participate in accordance with the Declaration of Helsinki.

Assessment of Endothelial function

Vascular endothelial functionwas assessed by measuring endothelium-dependent (flow-medi-
ated) and endothelium-independent (nitroglycerin-mediated)dilation of the brachial artery as
describedpreviously [11,12]. In addition, hyperemic velocity, a reflection of small vessel reac-
tivity, was measured. Briefly, subjects reported to the research ultrasound laboratory in the
morning after fasting (patients were allowed to drink water) and after having abstained from
vigorous exercise, tobacco, and caffeine for at least 6 hours. Vasoactive medications were held
for at least 4 half-lives prior to imaging. Ultrasound images of the right brachial artery were
acquired proximal to the antecubital fossa, using a Philips Epiq 7 with a 12 MHz linear-array
transducer (Koninklijke Philips N.V., Amsterdam, Netherlands). The first set of baseline
images were obtained after 10 minutes of supine rest. Reactive hyperemia was induced by
inflating a pneumatic occlusion cuff placed around the upper forearm to a suprasystolic pres-
sure (~ 200 mmHg) for 5 minutes, and then deflating the cuff. Pulsed wave Doppler tracings
representing arterial flow were acquired immediately after cuff release. Images of the artery
were then recorded for two minutes. After 10 minutes of rest, a second set of baseline images
were acquired. Sublingual nitroglycerin (0.4 mg) was then administered with acquisition of
ultrasound images for the subsequent 5 minutes. Measurements were performed using Vascu-
lar Tools (Medical Imaging Applications, Coralville, IA). Arterial diameter was measured from
the lumen-intimal interfaces of the proximal and distal arterial walls. Data from at least ten
end-diastolic frames were averaged for each baselinemeasurement and from at least three
frames at maximum dilation during reactive hyperemia and following administration of nitro-
glycerin. FMDwas calculated as the % change in arterial diameter in response to reactive
hyperemia, and NTMDwas quantified as the % diameter change following administration of
nitroglycerin. The hyperemic velocity was calculated as the planimetered time-velocity integral
of the first complete velocity envelope obtained after cuff release.

Laboratory Analysis

Blood samples were obtained via venipuncture and drawn into citrate- and heparin-containing
tubes. The plasma samples were aliquoted and frozen immediately at -80°C for subsequent
analysis. Quantification of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1),
soluble fms-like tyrosine kinase-1 (sFLT-1, also referred to as soluble vascular endothelial
growth factor receptor-1 [VEGFR-1]) and human soluble vascular cell adhesionmolecule-1
(soluble VCAM-1) were accomplished using commercially available ELISA kits (R&D systems,
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Minneapolis, MN [human Quantiglo catalog number QET00B for ET-1 analysis]). Samples
were assayed in duplicate and according to manufacturer's instructions. The quantification of
free plasma hemoglobin was accomplished using a laboratory developed test (LDT, Core Labo-
ratory, McLendon Clinical Laboratories, UNC, Chapel Hill) adapted to the Vitros 5600 chem-
istry platform (Ortho Clinical Diagnostics, Raritan NJ). The absorbance at 600 nm was
subtracted from the absorbance at 575 nm and multiplied by a fixed calibration factor that
took into account any performed dilutions. Routine laboratory studies, including complete
blood counts, chemistries to assess renal function, liver function and measures of hemolysis,
spot urine for albumin-creatinine ratio and 24-hour urine for protein were performed by the
McClendon Clinical Laboratory at UNCHospitals. Glomerular filtration rate (GFR) was esti-
mated by an equation developed by the Chronic Kidney Disease Epidemiology (CKD-EPI)
Collaboration [13]. Hemoglobin analysis was performed by high performance liquid chroma-
tography to confirm the SCD diagnosis and ascertain fetal hemoglobin levels.

Statistical analyses

Descriptive statistics were computed for the primary outcome variables and other covariates.
Medians and the corresponding interquartile ranges are presented. Albuminuria was analyzed
as both continuous and categorical variables for testing the primary hypothesis. For the pri-
mary hypothesis, the correlations between FMD, NTMD or hyperemic velocity and albumin-
uria were examined using Spearman’s rank correlation coefficient.The correlations between
endothelial functionmeasures and biological variables were also examined using Spearman’s
rank correlation coefficient.Univariate and multivariable regression analyses were conducted
to investigate the association of selected biological variables with albuminuria and FMD.
Because the distribution of albuminuria and FMDwere skewed, the bootstrapmethod was
used with 10,000 replications to obtain the p value and 95% confidence interval [14]. A back-
ward selection procedure was used for variable selection. The deletion criterion was based on a
p-value> 0.05 and the variable with the largest p value was deleted first at each step. The final
model included only those variables which were statistically significant at 0.05 level. Reported
p-values are for individual tests, unadjusted for multiple comparisons because of the explor-
atory nature of this study. All analyses were performed using SAS statistical software v9.4 (SAS
Institute, Cary, NC).

Results

Demographic and Laboratory Characteristics

Twenty three patients with HbSS (female: 13), and with a median age of 42 years (range:
25–67 years), were enrolled. Normal albuminuria was present in 7 subjects,moderately increased
albuminuria in 9 subjects, and severely increased albuminuria in 7 subjects. Consistent with their
definitions, patients with severely increased albuminuria had highermedianUACR than those
withmoderately increased albuminuria and normal albuminuria. Patients with severely increased
albuminuria appeared to be older, and had significantly higher systolic and diastolic blood pres-
sures than those patients with moderately increased or normal albuminuria (Table 1). In addi-
tion, patients with severely increased albuminuria and moderately increased albuminuria had
higher levels of serum creatinine than those with normal albuminuria.

Urine Albumin-Creatinine Ratio is Associated with Flow Mediated Dilation

UACR was negatively correlated with FMD (ρ = -0.45; 95% confidence interval [CI]: -0.72 –-
0.04, p = 0.031) (Fig 1). In addition, a linear regression model showed that for every 1%
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increase in FMD, UACR decreased by 28.7 mcg/mg (p = 0.0076). Although FMD appeared to
be lowest in patients with severely increased albuminuria, no significant difference was
observedwhen FMDwas evaluated in the 3 albuminuria categories (p = 0.16) (Fig 2). In a mul-
tinomial logistic regression model, the odds of severely increased albuminuria appeared to be
reduced by 24% (odds ratio [OR]: 0.76; 95% CI: 0.57–1.01) for every 1% increase in FMD,
while the odds of moderate albuminuria appeared to be reduced by 9% (OR: 0.91; 95% CI:
0.72–1.45). There was a trend towards an association between FMD and UACR after control-
ling for the baseline arterial diameter, although this was not statistically significant (p = 0.1).
No significant correlations were observedbetweenUACR and NTMD (ρ = -0.32 95% CI:
-0.67–0.14, p = 0.15) or betweenUACR and hyperemic velocity (ρ = 0.08; 95% CI: -0.37–0.51,
p = 0.73). In addition, neither NTMD nor hyperemic velocity was significantly associated with
albuminuria when it was assessed as a categorical variable. The values of the measures of endo-
thelial function based on albuminuria categories are shown in Table 2.

Association of Urine Albumin-Creatinine Ratio with Biological Variables

The levels of evaluated biological variables based on the albuminuria categories are shown in
Table 3. UACR was significantly correlated with VEGF (ρ = -0.49; 95% CI: -0.75 –-0.1,
p = 0.015) and free plasma hemoglobin (ρ = 0.50; 95% CI: 0.10–0.75, p = 0.013), with a trend
towards a significant correlation with plasma ET-1 (ρ = 0.40; 95% CI: -0.03–0.69, p = 0.06)
(Table 4). However, no significant correlations were observedbetweenUACR and sFLT-1 (ρ =

Table 1. Baseline Demographic and Laboratory data.

Variable **Normal Albuminuria

(N = 7)

**Moderately Increased

Albuminuria (N = 9)

**Severely Increased

Albuminuria (N = 7)

P Value

Age (years) 37 (31–46) 40 (34–48) 50 (40–57) 0.24

Gender (F) 6 (85.7) 4 (44.4) 3 (42.9) 0.23

Weight (kg) 62.3 (58.7–95.8) 66.1 (60.1–68.3) 76.7 (70.8–78.2) 0.28

Height (cm) 166.1 (163.5–172.5) 171.4 (166.1–176.8) 168.0 (163.5–172.0) 0.42

Systolic Blood Pressure (mm Hg) 113 (95–121) 120 (117–145) 138 (117–151) 0.045

Diastolic Blood Pressure (mm Hg) 58 (52–66) 63 (56–67) 81 (63–83) 0.035

On Hydroxyurea (yes) 5 (71.4) 7 (77.8) 6 (85.7) 1.00

On renin-angiotensin-aldosterone system

blocking agent (yes)

0 (0) 2 (22.2) 2 (28.6) 0.5

White Blood Cell count (×109/L) 6.3 (5.0–8.6) 7.0 (5.8–10.6) 8.1 (4.8–11.2) 0.7

Hemoglobin (g/dL) 9.4 (8.7–10.4) 8.8 (7.5–9.2) 8.8 (6.8–15.2) 0.57

Platelet Count (×109/L) 339.0 (302.0–637.0) 288.0 (224.0–374.0) 356.0 (253.0–445.0) 0.33

Reticulocyte Count (%) 5.1 (2.5–8.9) 9.9 (5.0–11.8) 6.0 (3.4–9.2) 0.11

Fetal Hemoglobin (%) 13.5 (2.5–24.0) 6.3 (5.4–16.1) 13.0 (8.0–9.5) 0.64

Creatinine (mg/dL) 0.56 (0.53–0.58) 0.69 (0.64–1.10) 0.7 (0.52–1.27) 0.044

*Estimated Glomerular Filtrate Rate (mL/

min/1.73_m2)

129.8 (120.0–152.6) 113.1 (68.8–147.0) 127.4 (67.8–137.5) 0.19

Lactate Dehydrogenase (U/L) 733.0 (573.0–1093.0) 1067.5 (770.5–1389.0) 907.0 (759.0–998.0) 0.18

Total Bilirubin (mg/dL) 1.3 (0.9–6.3) 2.5 (1.75–3.5) 2.6 (2.1–4.2) 0.71

Direct Bilirubin (mg/dL) 0.09 (0.09–0.20) 0.35 (0.1–0.6) 0.3 (0.2–0.5) 0.069

Indirect Bilirubin (mg/dL) 1.21 (0.60–6.21) 2.40 (1.15–3.1) 2.3 (1.6–4.1) 0.87

Urine Albumin-Creatinine Ratio (mcg/mg) 9.42 (3.80–11.5) 95.8 (48.6–142.7) 518.9 (398.6–706.7) <
0.0001

* Glomerular filtration rate estimate by CKD-EPI equation

** Medians (with Interquartile ranges) or Numbers (%)

doi:10.1371/journal.pone.0162652.t001
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0.02; 95% CI: -0.40–0.43, p = 0.94) or soluble VCAM-1 (ρ = 0.08; 95% CI: -0.36–0.48, p = 0.73)
in univariate analyses. No significant correlations were observedbetweenUACR and hemoglo-
bin, fetal hemoglobin, lactate dehydrogenase or indirect bilirubin.

Association of Biological Variables with Flow Mediated Dilation

There were modest correlations between FMD and ET-1 (ρ = -0.39; 95% CI: -0.69–0.04,
p = 0.07), FMD and VEGF (ρ = 0.35; 95% CI: -0.072–0.67, p = 0.09), and FMD and soluble
VCAM-1 (ρ = -0.32; 95% CI: -0.66–0.11, p = 0.13), although these were not statistically signifi-
cant. No significant correlations were observedbetween FMD and either sFLT-1 (ρ = 0.09;
95% CI: -0.34–0.48, p = 0.69), or plasma hemoglobin (ρ = -0.11; 95% CI: -0.50–0.32, p = 0.62)
in univariate analyses. In addition, there were no significant correlations between FMD and
hemoglobin, fetal hemoglobin, lactate dehydrogenase, indirect bilirubin, triglyceride, LDL-cho-
lesterol, HDL-cholesterol or non-HDL-cholesterol (Table 5).

Multivariable Analyses

Multivariable analysis was conducted to investigate selected biological factors that could be
associated with UACR in the study subjects. A backward variable selection procedure was used
for variable selection. The initial model included ET-1, VEGF, sFLT-1, soluble VCAM-1, log
(plasma hemoglobin), lactate dehydrogenase, indirect bilirubin, hemoglobin, and fetal hemo-
globin. In the final model, using only significant covariates after the model selection, ET-1
(estimate: 455.1 [SE: 198.3], p = 0.02), VEGF (estimate: -1.1 [SE: 0.53], p = 0.04) and sFLT-1
(estimate: -1.14 [SE: 0.49], p = 0.02), were significantly associated with UACR. This means, for

Fig 1. Scatter Plot and Regression Line Between Flow-Mediated Dilation and Albuminuria in Sickle Cell

Anemia: Urine albumin-creatinine ratio is significantly correlated with FMD (ρ = -0.45; 95% CI: -0.72 –-0.04,

p = 0.031).

doi:10.1371/journal.pone.0162652.g001
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example, that we expect an increase in UACR by 455.1 mcg/mg for every 1 pg/mL increase in
plasma ET-1, given the same levels of VEGF and sFLT-1.
Similarly, multivariable analysis was conducted to investigate selected biological factors that

could be associatedwith FMD in the study patients. The initial model included ET-1, VEGF,
sFLT-1, soluble VCAM, log(plasma hemoglobin), lactate dehydrogenase, indirect bilirubin,
hemoglobin, fetal hemoglobin, triglyceride, LDL-cholesterol, HDL-cholesterol, and non-HDL-
cholesterol. In the final model, using only significant covariates after the model selection, only
ET-1 (estimate: -8.03 [SE: 3.87], p = 0.04) was significantly associatedwith FMD. This means that
we expect a decrease in FMD by approximately 8% for every 1 pg/mL increase in plasma ET-1.

Fig 2. Distribution of Flow-Mediated Dilation by Albuminuria Categories: FMD is lowest in patients with

severely increased albuminuria compared with those with moderately increased and normal albuminuria,

although the difference is not statistically significant (p = 0.16).

doi:10.1371/journal.pone.0162652.g002

Table 2. Values of Measures of Endothelial Function Based on Albuminuria Category.

Variable *Normal

Albuminuria

(N = 7)

*Moderately Increased

Albuminuria (ACEi/ARB

—No) (N = 7)

*Moderately Increased

Albuminuria (ACEi/ARB

—Yes) (N = 2)

*Severely Increased

Albuminuria (ACEi/ARB

—No) (N = 5)

*Severely Increased

Albuminuria (ACEi/ARB

—Yes) (N = 2)

Flow-Mediated

Dilation (%)

9.78 (7.53, 14.04) 10.65 (5.76–12.4) 4.91 (3.45–6.38) 6.61 (2.57–12.0) 1.82 (1.65–1.99)

Nitroglycerin-

mediated Dilation

(%)

30.6 (17.6, 33.8) 23.1 (20.07–32.17) 23.96 (19.8–28.1) 30.3 (17–31.8) 13.3 (11.3–15.3)

Hyperemic Index

(cm/s)

7.50 (6.0, 24.0) 89 (88–124) 11 (5–7) 15 (7–20) 46 (16–76)

* Medians and Interquartile Ranges

ACEi/ARB–Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Antagonist

doi:10.1371/journal.pone.0162652.t002
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Spot Urine Albumin-Creatinine Ratio Correlates with 24-Hour Urine

Protein

As UACR, assessed by spot urine collections, was the primary variable of interest in this study,
we evaluated the correlation between this variable and 24-hour urine protein collection, the
gold standard for assessment of proteinuria. UACR was strongly correlated with total urinary
protein assessed by 24-hour urine collection (ρ = 0.90; 95% CI: 0.75–0.95, p< 0.0001) (Fig 3).
In addition, UACR assessed by spot albumin-creatinine ratio was strongly correlated with
urine aliquots for albumin-creatinine ratio obtained from the 24-hour urine collection (ρ =
0.97; 95% CI: 0.92–0.99, p< 0.0001) (Fig 4).

Discussion

Albuminuria, the most common clinical manifestation of glomerular damage, is highly preva-
lent in patients with SCD. The prevalence of albuminuria increases with age, with estimates of
between 4.5 and 26% in patients up to 21 years, and between 26 and 68% in older patients [15].
The pathophysiology of sickle cell glomerulopathy is incompletely understood, with possible
contributions from glomerular hypertension, hyperfiltration and increases in oxidative stress

Table 3. Levels of Biological Variables Based on Albuminuria Category.

Variable *Normal

Albuminuria

(N = 7)

*Moderately Increased

Albuminuria (ACEi/ARB—

No) (N = 7)

*Moderately Increased

Albuminuria (ACEi/ARB—

Yes) (N = 2)

*Severely Increased

Albuminuria (ACEi/ARB

—No) (N = 5)

*Severely Increased

Albuminuria (ACEi/ARB

—Yes) (N = 2)

Endothelin-1

(pg/mL)

0.44 (0.28–0.69) 0.80 (0.58–0.90) 0.65 (0.62–0.68) 0.65 (0.49–0.74) 0.84 (0.67–1.02)

VEGF (pg/mL) 100.2 (79.1–

290.8)

51.8 (38.1–138.9) 125.5 (50.7–200.3) 50.16 (47.6–59.7) 61.42 (36.5–86.4)

Log(Plasma

Hemoglobin)

1.61 (1.39–2.49) 3.37 (2.30, 3.78) 2.22 (1.79–2.64) 2.94 (2.89–3.33) 2.59 (2.40–2.77)

sFLT-1 (pg/mL) 131.2 (101.1–

181.2)

220.9 (129.6–309.3) 197.1 (183.7–210.5) 156.16 (124.8–182.6) 89.48 (65.5–113.5)

Soluble VCAM-

1 (ng/mL)

1460.3 (569.5–

1871.3)

1153.23 (829.5–2389.0) 1660.55 (1054.3–2266.9) 1428.78 (941.3–1966.4) 1427.20 (1408–1446.4)

* Medians and Interquartile Ranges

VEGF–Vascular Endothelial Growth Factor; sFLT-1 –Soluble FMS-Like Tyrosine Kinase-1; Soluble VCAM-1 –Soluble Vascular Cell Adhesion Molecule-1

doi:10.1371/journal.pone.0162652.t003

Table 4. Spearman Correlation of Urine Albumin-Creatinine Ratio with Biological Variables.

Variable ρ (95% Confidence Interval) P Value

VEGF -0.49 (-0.75 –-0.1) 0.015

Endothelin-1 0.40 (-0.03–0.69) 0.06

sFLT-1 0.02 (-0.40–0.43) 0.94

Soluble VCAM-1 0.08 (-0.36–0.48) 0.73

Log (Plasma Hemoglobin) 0.50 (0.11–0.75) 0.013

Lactate Dehydrogenase -0.19 (-0.25–0.57) 0.38

Indirect Bilirubin 0.12 (-0.32–0.51) 0.60

Fetal Hemoglobin -0.11 (-0.52–0.34) 0.60

Hemoglobin -0.16 (-0.53–0.27) 0.47

VEGF–Vascular Endothelial Growth Factor; sFLT-1 –Soluble FMS-Like Tyrosine Kinase-1; Soluble VCAM-1

–Soluble Vascular Cell Adhesion Molecule-1

doi:10.1371/journal.pone.0162652.t004
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[15]. There are conflicting data on the association of hemolysis (and consequent decreased
nitric oxide [NO] bioavailability) with albuminuria in patients with SCD [15]. We have previ-
ously suggested a contribution of endothelial dysfunction to the pathophysiology of SCD-

Table 5. Spearman Correlation of Flow Mediated Dilation with Biological Variables.

Variable ρ (95% Confidence Interval) P value

VEGF 0.35 (-0.072–0.67) 0.09

Endothelin-1 -0.39 (-0.69–0.04) 0.07

sFLT-1 0.09 (-0.34–0.48) 0.69

Soluble VCAM-1 -0.32 (-0.66–0.11) 0.13

Log (Plasma Hemoglobin) -0.11 (-0.50–0.32) 0.62

Triglyceride -0.08 (-0.47–0.35) 0.73

LDL-Cholesterol 0.02 (-0.39–0.43) 0.92

HDL-Cholesterol -0.28 (-0.62–0.15) 0.18

Non-HDL-Cholesterol 0.11 (-0.32–0.50) 0.63

Hemoglobin 0.25 (-0.18–0.60) 0.25

Lactate Dehydrogenase -0.24 (-0.60–0.21) 0.28

Indirect Bilirubin -0.20 (-0.50–0.24) 0.36

Fetal Hemoglobin 0.25 (-0.20–0.62) 0.26

VEGF–Vascular Endothelial Growth Factor; sFLT-1 –Soluble FMS-Like Tyrosine Kinase-1; Soluble VCAM-1

–Soluble Vascular Cell Adhesion Molecule-1

doi:10.1371/journal.pone.0162652.t005

Fig 3. Scatter Plot and Regression Line Between Spot Urine Albumin-Creatinine Ratio and 24-Hour Urine

Protein: Urine albumin-creatinine ratio is strongly correlated with total urinary protein assessed by 24-hour

urine collection (ρ = 0.90; 95% confidence interval [CI]: 0.75–0.95, p < 0.0001).

doi:10.1371/journal.pone.0162652.g003
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related glomerulopathy based on elevated levels of sFLT-1 and soluble VCAM-1 in patients
with albuminuria [10]. In the present study, we find that UACR is negatively correlated with
FMD, a measure of endothelium-dependent dilation of the brachial artery. This is the first
physiologic measure to confirm the association of albuminuria with endothelial dysfunction in
SCD and provides more evidence to support the hypothesis that endothelial dysfunction con-
tributes to the pathophysiology of albuminuria in this condition. Echocardiography-derived
TRV was recently reported to be inversely correlated with FMD in patients with SCD [16],
although none of the patients obtained right heart catheterizations to confirm the presence of
pulmonary hypertension.
The significant association of plasma ET-1 with UACR in the multivariable analysis sug-

gests a role for ET-1 in the pathogenesis of albuminuria in SCD. ET-1, an endothelium-derived
peptide, is a potent vasoconstrictorwhich is released in response to hypoxia, hemin, angioten-
sin II, sheer stress, thrombin activation and inflammatory cytokines [17]. It has been impli-
cated in the pathogenesis and progression of diabetic kidney disease [18], a condition similar
to SCD-related glomerulopathy. Previous studies in patients with SCD have reported elevated
plasma levels of ET-1 [19,20], and a correlation of urinary ET-1 with albuminuria [20].

Fig 4. Scatter Plot and Regression Line Between Spot Urine Albumin-Creatinine Ratio and Urine Aliquot for Albumin-Creatinine Ratio:

Urine albumin-creatinine ratio assessed by spot albumin-creatinine ratio is strongly correlated with urine aliquots for albumin-creatinine

ratio obtained from the 24-hour urine collection (ρ = 0.97; 95% CI: 0.92–0.99, p < 0.0001).

doi:10.1371/journal.pone.0162652.g004
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Furthermore, studies in transgenic sickle mice have demonstrated a contribution of ET-1 to
progressive kidney injury via the ETA receptor [17,21]. With our finding that plasma ET-1 is
inversely associated with FMD, ET-1 may contribute to the pathogenesis of albuminuria in
SCD by causing endothelial dysfunction. ET-1 appears to mediate endothelial dysfunction by
reducing NO bioavailability both through its interference with the expression and activity of
endothelial NO synthase [22], and the formation of reactive oxygen species [23–25]. With the
possibility that ET-1 contributes to the pathogenesis of SCD glomerulopathy, antagonism of
ET-1 could represent a novel therapeutic pathway. A study of the effect of the selective ETA
receptor antagonist, ambrisentan, to evaluate its safety and effect on albuminuria in patients
with SCD is ongoing (www.clinicaltrials.gov identifier:NCT02712346).
A significant negative association was observedbetweenUACR and VEGF. This is consis-

tent with a previous report which showed that higher VEGF concentrations are associated with
decreased odds of elevated TRV in children and young adults with SCD [26]. Podocytes (epi-
thelial cells), attached to the glomerular basement membrane by discrete foot processes, both
generate and respond to several angiogenic growth factors, including vascular endothelial
growth factor A (VEGF-A). VEGF-A is important for maintaining the integrity of the glomeru-
lar filtration barrier and serves as a survival factor for the podocyte [27] by signaling through
the VEGF-Receptor-2 (VEGFR2) which is abundantly expressed in the glomerular endothe-
lium. Both excess amounts and a deficiency in the development or maturity of VEGF-A in the
podocyte cause glomerular damage [28,29]. Excess VEGF-A induces endothelial growth and
swelling (referred to as endotheliosis), while inadequate VEGF-A release causes endothelial
damage and apoptosis leading to glomerulosclerosis [30]. VEGF-A levels and signalingmust
be closely regulated to maintain healthy glomerular structure and function [31]. Glomerular
levels of VEGF-A may be elevated [32,33] or reduced [34] in diabetic kidney disease, with ele-
vated levels observed early in the disease followed by decreased levels with disease progression.
The negative association of UACR with sFLT-1 in the multivariable analysis was unexpected.
We have previously reported an association of sFLT-1 with albuminuria in patients with SCD
[10]. By antagonizing VEGF action, increased levels of sFLT-1 is reported to produce endothe-
lial dysfunction and has been linked with proteinuria in preeclampsia [35].
We observed a significant correlation betweenUACR and plasma hemoglobin in univariate

analysis, but not in the multivariable analysis. Although the published data on the association
of albuminuria with markers of hemolysis in patients with SCD are conflicting [15], recent
data show an association of hemoglobinuria with progression of CKD and albuminuria [36].
An association has been reported betweenAPOL1 G1/G2 with chronic kidney disease in SCD,
possibly through an increased risk of hemoglobinuria [37]. Furthermore, HMOX1 variants are
associated with CKD, possibly through reduced protection of the kidney from hemoglobin-
mediated toxicity [37]. In addition to the direct renal toxicity of free hemoglobin, chronic
depletion of NO due to scavenging by cell-free hemoglobinmay contribute to the pathogenesis
of sickle cell glomerulopathy. Hemoglobin, released following lysis of red blood cells, is a potent
NO scavenger, with even small amounts of cell-free plasma hemoglobin completely impairing
NO signaling in the endothelium [38]. The level of cell-free plasma hemoglobin in SCD has
been reported to correlate with an intrinsic resistance to NO signaling, based on impaired
blood flow responses to infusions of NO donor medications in both humans and sickle mice
[39,40]. Although, cell-free plasma hemoglobin has been recently shown to inversely correlate
with FMD in patients with SCD [16], we did not observe a significant correlation between
plasma hemoglobin and FMD, possibly due to the small size of this study.
Potential contributors to the pathobiology of the chronic vasculopathy and endothelial dys-

function of SCD include RBC sickling following hemoglobin S polymerization, systemic
inflammation, upregulation of endothelial adhesion molecules, coagulation activation,
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decreasedNO bioavailability, vascular instability with up-regulation of non-NO vasoregula-
tors, disruption of normal endothelial signaling function, increased oxidative stress, vascular
stasis and recurrent ischemia-reperfusion [1]. We now provide evidence for a contribution of
ET-1 to the modulation of endothelial function in patients with SCD.
Although the gold standard for quantitative assessment of albuminuria is a 24-hour urine

collection,many studies assessing albuminuria in SCD have been based on spot urine assess-
ments of UACR. Urine albumin-creatinine ratio has not been validated in SCD. In the present
study, we find a strong correlation betweenUACR and 24-hour urine protein collection,with
an even stronger correlation betweenUACR and urine aliquots for albumin-creatinine ratio
obtained from the 24-hour urine collection.Although proteinuria in SCD is mainly due to glo-
merular injury with subsequent albuminuria, patients are also known to have renal tubular dys-
function, with increased urinary concentrations of tubular proteins, such as beta-
2-microglobulin and retinol-binding protein [41]. The presence of tubular proteins in 24-hour
urine collections is a likely explanation for the slightly lower correlation of UACR with
24-hour urine protein in the present study. The very strong correlation observedbetween
UACR and urine aliquots for albumin-creatinine ratio obtained from the 24-hour urine collec-
tion in this study provides support for the use of spot urine collections to evaluate albuminuria
in adult patients with SCD.
Our study is limited by the small number of subjects in the albuminuria categories. As with

all cross-sectional studies, this analysis demonstrates associations, but cannot prove causation.
As most of the study subjects were on hydroxyurea, we did not evaluate the association of
hydroxyurea use with endothelial function.Hydroxyurea has been reported to reduce albumin-
uria in patients with SCD [42,43], an effect that may be due, in part, to improved endothelial
function.Hydroxyurea may improve endothelial function by decreasing hemolysis [44],
decreasing the expression of VCAM-1 [45], decreasing the level of ET-1 [46], and by acting as
an NO donor [47].
In summary, the present study, confirms the association of albuminuria with endothelial

dysfunction in SCD. We also show that elevated plasma ET-1 levels may contribute to SCD-
related glomerulopathy by mediating endothelial dysfunction. Studies to determine whether
interventions that improve endothelial function can attenuate albuminuria in SCD are
warranted.
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