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Abstract. We construct a new family of Cayley automatic representa-
tions of semidirect products Z

n
�A Z for which none of the projections

of the normal subgroup Z
n onto each of its cyclic components is finite

automaton recognizable. For n = 2 we describe a family of matrices from
GL(2,Z) corresponding to these representations. We are motivated by a
problem of characterization of all possible Cayley automatic representa-
tions of these groups.
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1 Introduction and Preliminaries

Thurston and Epstein showed that a fundamental group of a closed 3–manifold
is automatic if and only if none of its prime factors is a closed manifold modelled
on nilgeometry or solvgeometry [9, Chapter 12]. A fundamental group of a closed
manifold modelled on nilgeometry or solvgeometry has a finite index subgroup iso-
morphic to Z

2
�A Z, where A is unipotent or Anosov, respectively. These groups

are not automatic due to [9, Theorems 8.2.8 and 8.1.3]. To include all fundamen-
tal groups of closed 3–manifolds, the class of automatic groups had been extended
by Bridson and Gilman [5], Baumslag, Shapiro and Short [1]; see also autostack-
able groups proposed by Brittenham, Hermiller and Holt [7]. In this paper we use
the concept of Cayley automatic groups, extending the class of automatic groups,
proposed by Kharlampovich, Khoussainov and Miasnikov [11].

All semidirect products of the form Z
n

�AZ are Cayley automatic [11, Propo-
sition 13.5]. These groups are the fundamental groups of torus bundles over the
circle and they play important role in group theory. Bridson and Gersten studied
the Dehn function for this family groups [6]. In this paper we construct a new
family of Cayley automatic representations for semidirect products Z

n
�A Z.
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These representations demonstrate unforeseen behaviour violating a basic prop-
erty, to be explained below in this section, known for representations described
in [11, Proposition 10.5]. They also reveal an unexpected connection with Pell’s
equation. The results of this paper are based on the original construction of
FA–presentation for

(
Z
2,+

)
found by Nies and Semukhin [13].

In general, we are interested in the following question: Given a Cayley auto-
matic group, is there any way to characterize all of its Cayley automatic represen-
tations in terms of some numerical characteristics or by any other means? Despite
the generality of the notion of Cayley automatic groups which retains only com-
putational mechanism of automatic groups, it is possible to partly answer this
question for some Cayley automatic groups in terms of a certain numerical char-
acteristic which is intimately related to the Dehn function. We discuss it in more
details in the end of this section. In the following few paragraphs we briefly recall
the notion of Cayley automatic groups and representations, and a standard way
to construct such representations for semidirect products Z

n
�A Z.

Let Σ be a finite alphabet. We denote by Σ� the alpahbet Σ ∪ {�}, where
� /∈ Σ is called a padding symbol. The convolution w1 ⊗ · · · ⊗ wm ∈ Σm

� of
strings w1, . . . , wm ∈ Σ∗ is the string of length max{|w1|, . . . , |wm|} obtained
by placing w1, . . . , wm one under another and adding the padding symbol � at
the end of each string to make their lengths equal. More formally, the kth symbol
of w1 ⊗· · ·⊗wm is (σ1, . . . , σm)�, where σi, i = 1, . . . ,m is the kth symbol of wi

if k � |wi| and � otherwise. The convolution ⊗R of a m–ary relation R ⊆ Σ∗m

is defined as ⊗R = {w1 ⊗ · · · ⊗ wm | (w1, . . . , wm) ∈ R}. The relation R is called
FA–recognizable if ⊗R is recognized by a finite automaton.

Let A = (A;Rm1
1 , . . . , Rm�

� , fk1
1 , . . . , fkr

r ) be a structure, where A is the
domain, Rmi

i ⊆ Ami , i = 1, . . . , � is a mi–ary relation over A and f
kj

j : Akj → A,
j = 1, . . . , r is a kj–ary operation on A. Assume that there exist a regu-
lar language L ⊆ Σ∗ and a bijection ψ : L → A such that all relations
ψ−1(Rmi

i ) = {(w1, . . . , wmi
) ∈ Σ∗mi | (ψ(w1), . . . , ψ(wmi

)) ∈ Rmi
i }, i = 1, . . . , �

and ψ−1(Graph(fj)) = {(w1, . . . , wkj
, wkj+1) ∈ Σ∗(kj+1) | fj(ψ(w1), . . . , ψ(wkj

))
= ψ(wkj+1)}, j = 1, . . . , r are FA–recognizable. In this case the structure A is
called FA–presentable and the bijection ψ : L → A is called FA–presentation of
A [12]. For a recent survey of the theory of FA–presentable structures we refer
the reader to [16]. A finitely generated group G is called Cayley automatic if the
labelled directed Cayley graph Γ (G,S) is a FA–presentable structure for some
generating set S ⊆ G [11]. Cayley automatic groups form a special class of FA–
presentable structures and they naturally generalize automatic groups retaining
its basic algorithmic properties. We call a FA–presentation ψ : L → G of Γ (G,S)
a Cayley automatic representation of the group G.

We recall that every element of a group Z
n

�A Z, where A ∈ GL(n, Z), is
given as a pair (b, h), where b ∈ Z and h ∈ Z

n. The group multiplication is given
by (b1, h1) · (b2, h2) = (b1 + b2, A

b2h1 + h2). The maps b �→ (b,0) and h �→ (0, h)
give the natural embeddings of Z and Z

n into Z
n

�A Z, respectively, where 0 and
0 denote the identities of the groups Z and Z

n, respectively. Let g0 = (1,0) and
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gi = (0, ei), where ei = (0, . . . , 0, 1
i
, 0, . . . , 0)t ∈ Z

n. The elements g0, g1, . . . , gn

generate the group Z
n

�A Z. The right multiplication by gi, i = 0, 1, . . . , n is as
follows: for a given g = (b, h) ∈ Z

n
�A Z, gg0 = (b + 1, Ah) and ggi = (b, h + ei).

Let ψ1 : L1 → Z be a Cayley automatic representation of Z and ψ2 : L2 → Z
n

be a Cayley automatic representations of Z
n such that the automorphism of Z

n

given by the matrix A is FA–recognizable. Then, due to [11, Theorem 10.3], one
gets a Cayley automatic representation ψ : L → Z

n
�A Z as follows: L = L1L2

(we may assume that L1 ⊂ Σ1, L2 ⊂ Σ2 and Σ1 ∩ Σ2 = ∅) and for given
u ∈ L1 and v ∈ L2, ψ(uv) = (ψ1(u), ψ2(v)). A standard way to construct
ψ2 : L2 → Z

n is to take a FA–presentation ϕ : L0 → Z of the structure (Z,+),
for example a binary representation, and define L2 as L2 = {w1 ⊗· · ·⊗wn |wi ∈
L0, i = 1, . . . , n} and ψ2 as ψ2(w1 ⊗ · · · ⊗ wn) = (ϕ(w1), . . . , ϕ(wn)) for every
w1, . . . , wn ∈ L0. Clearly, for such a representation ψ2 every automorphism of
Z

n is FA–recognizable. Therefore, ψ1 and ϕ as above give a Cayley automatic
representation of Z

n
�A Z. We call such a representation standard. Every stan-

dard Cayley automatic representation ψ : L → Z
n

�A Z satisfies the following
basic properties:

(a) The language LZn = ψ−1(Zn) of the strings representing elements in the
subgroup Z

n � Z
n

�A Z is regular and the relation RA = {(u, v) ∈ LZn ×
LZn |Aψ(u) = ψ(v)} is FA–recognizable.

(b) For each projection pi : Z
n → Z

n, i = 1, . . . , n, on the ith component
given by pi((z1, . . . , zn)) = (0, . . . , 0, zi, 0, . . . , 0) the relation Pi = {(u, v) ∈
LZn × LZn | piψ(u) = ψ(v)} is FA–recognizable.

In this paper we construct Cayley automatic representations of groups Z
n

�AZ

for which the property (a) holds but the property (b) does not hold – in other
words, these representations are nonstandard.Namely, in Sect. 2we constructCay-
ley automatic representations of Z

n for which every projection pi : Z
n → Z

n,
i = 1, . . . , n is not FA–recognizable while some nontrivial automorphisms A ∈
GL(n, Z) are FA–recognizable. A family of these automorphisms for the case n = 2
is described in Sect. 3. Taking such a representation as ψ2 and an arbitrary Cayley
automatic representation ψ1 : L1 → Z one obtains a Cayley automatic represen-
tation of Z

n
�A Z as described above. Clearly, for this representation the property

(a) holds while the property (b) does not hold. In this paper we primarily focus on
the case n = 2 briefly discussing the case n > 2. Section 4 concludes the paper.

Apart from the importance of semidirect products Z
n

�A Z, let us explain
another reason motivated us to study Cayley automatic representations of this
family of groups violating at least one of the properties (a) or (b). We first briefly
recall some notation and results. For a given f.g. groupG with some finite set of gen-
erators A ⊆ G, we denote by A−1 the set of inverses of the elements of A in G and by
dA the word metric in G with respect to A. We denote by π :

(
A ∪ A−1

)∗ → G the
canonical map sending a word w ∈ (A∪A−1)∗ to the corresponding group element
π(w). For the rest of the section we assume that L ⊆ (A∪A−1)∗. We denote by L�n

the language L�n = {w ∈ L | |w| � n}. For a Cayley automatic representation
ψ : L → G we denote by h the function: h(n) = max{dA(ψ(w), π(w))|w ∈ L�n}.
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The function h had been introduced in [3] as a measure of deviation of Cayley
automatic representation ψ from π, i.e., from being automatic in the classical
sense of Thurston. For two nondecreasing functions h : [Q1,+∞) → R

+ and
f : [Q2,+∞) → R

+, where [Q1,+∞), [Q2,+∞) ⊆ N, we say that h � f
if there exist positive integer constants K,M and N such that for all n � N :
h(n) � Kf(Mn). A f.g. group is said to be in Bf if there exists a Cayley auto-
matic representation ψ for which the function h � f . It was shown that the iden-
tity function i(n) = n is the sharp lower bound of the function h (in the sense
of �) for all Cayley automatic representations of the Baumslag–Solitar groups
BS(p, q), 1 � p < q [3, Theorem 11] and the wreath products GH, if H is virtually
cyclic and G is in the class Bi [2].

We recall that the Heisenberg group H3(Z) is isomorphic to Z
2

�T Z for
some lower triangular matrix T , see Remark 12. The result of [4, Theorem 5.1]
shows that if a Cayley automatic representation of the Heisenberg group ψ :
L → H3(Z) satisfies certain conditions, then the function h is bounded from
below by the exponential function e(n) = exp(n). In particular, for every Cayley
automatic representation ψ : L → H3(Z) satisfying the properties (a) and (b)
the function h has the exponential lower bound: e � h. The lower bounds for
all possible Cayley automatic representations of the Heisenberg group and the
groups Z

2
�A Z, if A ∈ GL(2, Z) is a matrix with two real eigenvalues not

equal to ±1, known to us are given by the functions 3
√

n and i, respectively, see
[4, Corollary 2.4]. However, it is not known whether or not these lower bounds are
sharp. These observations motivated us to seek nonstandard Cayley automatic
representations for a whole family of groups Z

n
�A Z, A ∈ GL(n, Z). While we

construct nonstandard representations for a large family of groups Z
n

�A Z, see
Theorem 8 for the case n = 2, it does not contain nilpotent groups including
the Heisenberg group H3(Z). This leads us to think that the case of nilpotent
groups is special.

2 Nies–Semukhin FA–Presentations of (Zn,+)

Nies and Semukhin constructed a FA–presentation of
(
Z
2,+

)
for which no non-

trivial cyclic subgroup is FA–recognizable [13, § 6]. Let us briefly recall their con-
struction. The group Z

2 is identified with the additive group of the quotient ring
Z[x]/〈p3〉, where p3(x) = x2+x−31. A polynomial anxn+· · ·+a0 ∈ Z[x] is called
reduced if |ai| � 2 for all i = 0, . . . , n. For given f, g ∈ Z[x], it is said that f ∼ g if
p3 divides f −g. In [13, Proposition 6.2] it is then shown that every f(x) ∈ Z[x] is
equivalent to a reduced polynomial f̃(x). Let Σ = {−2,−1, 0, 1, 2}. Each reduced
polynomial anxn + · · · + a0 is represented by a string a0 . . . an over the alphabet
Σ. Two strings u = a0 . . . an and v = b0 . . . bm from Σ∗ are said to be equivalent
(u ∼ v) if anxn+· · ·+a0 ∼ bmxm+· · ·+b0. It is then shown that this equivalence
relation defined on Σ∗ is FA–recognizable. Let llex be the length–lexicographical

1 In [13, Remark 6.1] it is said that one can use a polynomial x2 + x− q for a prime
q � 3.
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order on Σ∗ with respect to the ordering −2 < −1 < 0 < 1 < 2. A regular domain
for a presentation of Z

2 is defined as Dom = {w ∈ Σ∗ : (∀u <llex w)u �∼ w}.
Then a FA–recognizable relation R(x1, x2, x3) ⊂ Σ∗3 is defined such that for
every pair x1, x2 ∈ Σ∗ there exists a unique x3 ∈ Σ∗ for which (x1, x2, x3) ∈ R
and if (x1, x2, x3) ∈ R, then for the corresponding polynomials f1, f2 and f3:
f1 + f2 ∼ f3. It enables to define a FA–recognizable relation Add(x, y, z) on
Dom as follows: Add = {(x, y, z) : x, y, z ∈ Dom ∧ ∃w(R(x, y, w) ∧ (w ∼ z))}.
Clearly, the structure (Dom,Add) is isomorphic to (Z2,+).

Now we notice that the Nies–Semukhin construction can be generalized for
a given polynomial t(x) = x2 + px − q ∈ Z[x] for which 1 + |p| < |q|. Again, we
identify Z

2 with the additive group of the quotient ring Z[x]/〈t〉. The inequality
1+ |p| < |q| implies that |q| � 2. We say that a polynomial anxn + · · ·+a0 ∈ Z[x]
is reduced if |ai| < |q| for all i = 0, . . . , n and two polynomials f, g ∈ Z[x] are
equivalent f ∼ g if t divides f −g. For a given real r we denote by [r] the integral
part of r: [r] = max{m ∈ Z |m � r} if r � 0 and [r] = min{m ∈ Z |m � r} if
r < 0.

Proposition 1. Every polynomial f(x) ∈ Z[x] is equivalent to a reduced poly-
nomial f̃(x).

Proof. Let f(x) = anxn + · · · + a0 and k0 =
[

a0
q

]
. Since x2 + px ∼ q, f(x) ∼

f1(x) = bnxn + · · · + b0, where b0 = a0 − k0q, b1 = a1 + k0p, b2 = a2 + k0
and bi = ai for i > 2. If |a0| < |q|, then f1(x) = f0(x). Otherwise, we get that
∑n

i=0 |ai| >
∑n

i=0 |bi|. Let k1 =
[

b1
q

]
. Since x3 + px2 ∼ qx, f1(x) ∼ f2(x) =

cnxn + · · · + c0, where c0 = b0, c1 = b1 − k1q, c2 = b2 + k1p, c3 = b3 + k1
and ci = bi for i > 3. If |b1| < |q|, then f2(x) = f1(x). Otherwise, we get that∑n

i=0 |bi| >
∑n

i=0 |ci|. We have: |c0| = |b0| < |q| and |c1| < |q|. If we continue in
this way, the process will terminate after a finite number of iterations producing
a reduced polynomial f̃(x) at the last iteration. ��
Remark 2. It can be seen that if the inequality 1+ |p| < |q| is not satisfied, then
the procedure described in Proposition 1 fails to produce a reduced polynomial
for some input polynomials f(x). For example, let t(x) = x2 + 2x − 3 and
f(x) = 2x + 6. Applying the procedure from Proposition 1 one gets an infinite
sequence of polynomials fi(x) = 2xi+1 + 6xi which never terminates.

Let Σq = {−(|q|−1), . . . , |q|−1}. We represent a reduced polynomial anxn +
· · · + a0 by a string a0 . . . an over the alphabet Σq. Similarly, we say that two
strings a0 . . . an and b0 . . . bm over Σq are equivalent if the polynomials anxn +
· · · + a0 and bmxm + · · · + b0 are equivalent. An algorithm checking whether two
given reduced polynomials f(x) = anxn + · · · + a0 and g(x) = bmxm + · · · + b0
are equivalent is the same, up to minor changes, as it is described by Nies and
Semukhin for the case t(x) = x2 + x − 3, see [13, § 6]. We first check if q divides
a0 − b0; if not, f �∼ g. We remember two carries r0 = pa0−b0

q and r1 = a0−b0
q ,

and then verify whether q divides r0 + a1 − b1; if not, f �∼ g. Otherwise, we
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update the carries: r0 → r1 + p r0+a1−b1
q and r1 → r0+a1−b1

q , and then verify
whether q divides r0 + a2 − b2. Proceeding in this way we check if f ∼ g or not.
Initially, |r1| � 1 � |q| − 1 and |r0| � |p| < (|q| − 1)2. Since q divides r0 + ai − bi

at every step of our process unless f �∼ g, we can change the formulas for
updating carries as follows: r0 → r1 +p

[
r0+ai−bi

q

]
and r1 →

[
r0+ai−bi

q

]
. Now, if

|r1| � |q|−1 and |r0| � (|q|−1)2, then
∣
∣
∣
[

r0+ai−bi

q

]∣∣
∣ �

[
(|q|−1)2+2(|q|−1)

|q|
]

= |q|−1

and
∣
∣
∣r1 + p

[
r0+ai−bi

q

]∣∣
∣ � (|q|−1)+|p|

∣
∣
∣
[

r0+ai−bi

q

]∣∣
∣ � (|q|−1)+(|q|−2)(|q|−1) =

(|q|−1)2. This shows that |r1| and |r0| are always bounded by |q|−1 and (|q|−1)2.
This algorithm requires only a finite amount of memory, so the equivalence
relation ∼ is FA–recognizable.

Similarly, one can construct a FA–recognizable relation R(u, v, w) ⊂ Σ∗
q such

that for every pair (u, v) ∈ Σ∗
q there exists a unique w ∈ Σ∗

q for which (u, v, w) ∈
R and if (u, v, w) ∈ R then for the corresponding polynomials fu, fv and fw:
fu+fv ∼ fw. Again, the construction of such a relation R is the same, up to minor
changes, as it is described by Nies and Semukhin for the case t(x) = x2 + x − 3.
Let u = a0 . . . an and v = b0 . . . bm. Then a string w = c0 . . . ck for which
(u, v, w) ∈ R is obtained as follows. Let c0 be an integer such that |c0| < |q| − 1,
c0 has the same sign as a0 + b0 and c0 ≡ a0 + b0 (mod q). We remember two
carries r0 = p

[
a0+b0

q

]
and r1 =

[
a0+b0

q

]
. We put c1 to be an integer such that

|c1| � |q| − 1, c1 has the same sign as r0 + a1 + b1 and c1 ≡ r0 + a1 + b1 (mod q),
and update the carries as r0 → r1 + p

[
r0+a1+b1

q

]
and r1 →

[
r0+a1+b1

q

]
. This

process is continued until the string w is generated. The formulas for updating
carries are r0 → r1 + p

[
r0+ai+bi

q

]
and r1 →

[
r0+ai+bi

q

]
. The proof that |r1| and

|r0| are bounded by (|q| − 1) and (|q| − 1)2, respectively, is the same as in the
paragraph above, so the relation R is FA–recognizable.

Fixing the ordering −(|q|−1) < · · · < (|q|−1) on Σq, the domain Dom and the
relation Add are then defined in exactly the same way as by Nies and Semuhkhin,
see the first paragraph of this section. So, for every pair of integers p and q, for
which 1 + |p| < |q|, we obtain a regular domain Domp,q and a FA–recognizable
relation Addp,q for which (Domp,q,Addp,q) is isomorphic to (Z2,+). For given p
and q satisfying the inequality 1+ |p| < |q|, we denote by ψp,q : Domp,q → Z

2 the
representation of (Z2,+) described above. Let g ∈ Z[x] be some fixed polynomial.
Clearly, if f1 ∼ f2, then f1g ∼ f2g. Therefore, multiplication by g induces
a map from Z[x]/〈t〉 to Z[x]/〈t〉 which sends an equivalence class [f ]∼ to the
equivalence class [fg]∼ . So, by Proposition 1, multiplication by g induces a map
ϕg : Domp,q → Domp,q.

Proposition 3. For every representation ψp,q the function ϕg : Domp,q →
Domp,q is FA–recognizable.

Proof. Since the equivalence relation ∼ and Add are FA–recognizable, it is
enough only to show that multiplication by a monomial x is FA–recognizable.
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It is true because for a string u = a0 . . . an ∈ Domp,q the string ϕx(u) is equiv-
alent to the shifted string 0a0 . . . an. Clearly, such shifting of strings is FA–
recognizable. ��

Nies and Semukhin showed that every nontrivial cyclic subgroup 〈z〉 of Z
2 is

not FA–recognizable for the representation ψ1,3 [13, § 6]. We will show that each
of the two cyclic components of Z

2 is not FA–recognizable for every representa-
tion ψp,q, if gcd(p, q) = 1. Let ξ = [1]∼ , where 1 is the polynomial f(x) = 1; also,
ξ corresponds to the single–letter string 1 ∈ Domp,q: ψp,q(1) = ξ. Let us show
that the cyclic subgroup generated by ξ is not FA–recognizable with respect to
ψp,q, if gcd(p, q) = 1. We will use arguments analogous to the ones in [13, § 6]
with relevant modifications. It is straightforward that [13, Lemma 6.3] claiming
that for given two equivalent reduced polynomials f(x) and g(x), xk|f implies
xk|g, holds valid. It is said that f(x) ∈ Z[x] starts with k zeros in reduced form if
there exists a reduced polynomial g(x) for which f ∼ g and xk|g(x): in this case
the string representing g(x) starts with k zeros. For a given k > 0, the polynomial
qk starts with at least k zeros in reduced form because qk ∼ xk(x + p)k.

Assume now that Lξ = ψ−1
p,q(〈ξ〉) is regular and recognized by a finite automa-

ton with k0 states. The string ψ−1
p,q([q

k0 ]∼) ∈ Lξ starts with at least k0 zeros, i.e.,
ψ−1

p,q([q
k0 ]∼) = 0ku for k � k0 and some u ∈ Σ∗

q , which does not have 0 as the
first symbol. By pumping lemma, there exist k1, k2 and 0 < d � k0, for which
k1 + d + k2 = k, such that si = 0k1+di+k2u ∈ Lξ for all i � 0. Since si ∈ Lξ,
we have a sequence of integers ni, i � 0 for which ψp,q(si) = [ni]∼ , so ni starts
with k1 + di + k2 zeros in reduced form. For a given integer n, if it starts with
at least one zero in reduced form, then q |n: it is because n = q� + r for some �
and r ∈ {0, . . . , |q| − 1}, so if r �= 0 then n ∼ x(x + p)� + r starts with no zeros
in reduced form.

Proposition 4. Assume that gcd(p, q) = 1. If n = q� starts with m > 0 zeros
in reduced form, then � starts with m − 1 zeros in reduced form.

Proof. Let f(x) = xi(bjx
j−i + · · · + bi) be a reduced polynomial equivalent to �,

where bi �= 0. We have n = q� ∼ xi+1(x+p)(bjx
j−i+ · · ·+bi). Since gcd(p, q) = 1

and |bi| < |q|, q � | pbi. Therefore, n starts with i + 1 zeros in reduced form, so
i = m − 1. Therefore, � starts with m − 1 zeros in reduced form. ��

Thus, if gcd(p, q) = 1, by Proposition 4, we obtain that qk1+di+k2 |ni, so
ni = qk1+di+k2mi for some nonzero integer mi. Let α and β be the roots of the
polynomial t(x) = x2+px−q. We have αβ = −q, so |αβ| = |q|. Therefore, either
|α| or |β| must be less or equal than

√|q|. So, let us assume that |α| �
√|q|.

For every two equivalent polynomials f ∼ g: f(α) = g(α). Let fi be the reduced
polynomials corresponding to the strings si. If |α| > 1, then |fi(α)| is bounded
from above by (|q| − 1)|u||α||si|−1, where |si| = k1 + di + k2 + |u| is the length
of the string si; it is because there are only at most |u| nonzero coefficients of
the polynomial fi and the absolute value of each of which is less than or equal



122 D. Berdinsky and P. Kruengthomya

to |q| − 1. Therefore, |fi(α)| � C1|α|di, where C1 = (|q| − 1)|u||α|k1+k2+|u|−1. If
|α| � 1, then |fi(α)| � C2, where C2 = (|q| − 1)|u|. In both cases we obtain that

|fi(α)| � C
√|q|di

for some constant C. On the other hand, since fi ∼ ni, fi(α) =
ni = qk1+di+k2mi. Therefore, |fi(α)| = |q|k1+di+k2 |mi| � |q|di. Thus, we obtain

that |q|di � C
√|q|di

for all i � 0, which apparently leads to a contradiction
since |q| > 1. Thus, Lξ is not regular.

Let η = [x]∼, where x is the polynomial f(x) = x; also, η corresponds
to the string 01 ∈ Domp,q: ψp,q(01) = η. Clearly, Z

2 is the direct sum of
its cyclic subgroups 〈ξ〉 and 〈η〉. Let Lη = ψ−1

p,q(〈η〉). We notice that Lξ =
{w ∈ Domp,q |ϕx(w) ∈ Lη}. The inclusion Lξ ⊆ {w ∈ Domp,q |ϕx(w) ∈ Lη}
is straightforward. For the inclusion {w ∈ Domp,q |ϕx(w) ∈ Lη} ⊆ Lξ it is
enough to notice that if ψp,q(w) = [sx + r]∼, then ϕx(w) = [x(sx + r)]∼ =
[s(−px + q) + rx]∼ = [(r − sp)x + sq]∼ which is equal to [kx]∼ for some
k ∈ Z only if sq = 0. The map ϕx : Domp,q → Domp,q is FA–recognizable, by
Proposition 3. So, the regularity of Lη implies the regularity of Lξ. Therefore, Lη

is not regular. Clearly, the fact that Lξ and Lη are not regular implies that the
projections of Z

2 onto its cyclic components 〈ξ〉 and 〈η〉 are not FA–recognizable.
Let us summarize the results we obtained in the following theorem.

Theorem 5. For every pair of integers p and q for which 1 + |p| < |q| the map
ψp,q : Domp,q → Z

2 gives a FA–presentation of (Z2,+). Moreover, if gcd(p, q) =
1, then none of the two cyclic components of Z

2 and the projections onto theses
components is FA–recognizable with respect to ψp,q.

Remark 6. In order to guarantee that all nontrivial cyclic subgroups of Z
2 are

not FA–recognizable with respect to ψp,q, one should additionally require that
the polynomial t(x) = x2 + px − q is irreducible in Z[x]. Let γ = [g]∼ for some
g ∈ Z[x], g �∼ 0, and Lγ = ψ−1

p,q(〈γ〉). We have: Lξ = {w ∈ Domp,q |ϕg(w) ∈ Lγ}.
To prove the inclusion {w ∈ Domp,q |ϕg(w) ∈ Lγ} ⊆ Lξ we notice that if
ψp,q(w) = [sx + r]∼, then ϕg(w) = [g(sx + r)]∼ which is equal to [gk]∼ for some
k ∈ Z iff the polynomial t divides g(sx + r − k). Since t is irreducible and t does
not divide g, then s = 0 and r = k. Therefore, by Proposition 3, if Lγ is regular,
then Lξ is regular. So, Lγ is not regular. Also, if t is irreducible, every nonzero
endomorphism of Z

2 with nontrivial kernel is not FA–recognizable.

Now, let n > 2 and t(x) = xn + pn−1x + · · · + p1x − q be a polynomial
with integers coefficients for which 1 + |pn−1| + · · · + |p1| < |q|. We identify
the group Z

n with the additive group of the ring Z[x]/〈t〉. We denote by p a
tuple p = 〈p1, . . . , pn−1〉. Clearly, one gets a representation ψp,q : Domp,q → Z

n,
in exactly the same way as it is described for the case n = 2. It can be seen
that all arguments presented in this section hold valid up to the following
minor modifications. For an algorithm recognizing the equivalence ∼, one should
use n carries r0, r1, . . . , rn−1 updated as follows: r0 → r1 + p1[ r0+ai−bi

q ], r1 →
r2 + p2[ r0+ai−bi

q ], ..., rn−2 → rn−1 + pn−1[ r0+ai−bi

q ], rn−1 → [ r0+ai−bi

q ]. It can
be directly verified that r0 � (|q| − 1)2, r1 � (|q| − 1)(1 + |pn−1| + |pn−2| +
· · · + |p2|), . . . , |rn−2| � (|q| − 1)(1 + |pn−1|) and |rn−1| � |q| − 1. So, the algo-
rithm requires only a finite amount of memory. The same remains true for an
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algorithm recognizing the addition. In Proposition 4 one should change p to p1.
Also, clearly, there is a root α of polynomial t(x) for which |α| � n

√|q|. We call
all presentations ψp,q satisfying the conditions 1 + |pn−1| + · · · + |p1| < |q| and
gcd(p1, q) = 1 Nies–Semukhin FA–presentations. The following theorem gener-
alizes Theorem 5 for the case n > 2.

Theorem 7. For every tuple p = 〈p1, . . . , pn−1〉 and an integer q for which
1+ |pn−1|+ · · ·+ |p1| < |q| the map ψp,q : Domp,q → Z

n gives a FA–presentation
of (Zn,+). If gcd(p1, q) = 1, then none of the cyclic components of Z

n and the
projections onto these components is FA–recognizable with respect to ψp,q.

3 FA–Recognizable Automorphisms of Z
n

In this section until the last paragraph we discuss the case n = 2. By Proposition 3,
for a polynomial g ∈ Z[x], multiplication by g induces a FA–recognizable map
ϕg : Domp,q → Domp,q. Clearly, if f ∼ g, then ϕg = ϕf . Therefore, since every
polynomial from Z[x] is equivalent to a polynomial of degree at most one, we may
assume that g(x) = ax + b for a, b ∈ Z. Let h(x) = h1x + h2, for h1, h2 ∈ Z.
The equivalence class [h]∼ is identified with (h1, h2) ∈ Z

2. We have: g(x)h(x) =
(ax + b)(h1x + h2) = ah1x

2 + (ah2 + bh1)x + bh2 ∼ ah1(−px + q) + (ah2 +
bh1)x + bh2 = ((b − ap)h1 + ah2)x + aqh1 + bh2. Clearly, ξ = [1]∼ and η = [x]∼,
already defined in Section 2, generate the group Z

2. We denote by H1 and H2 the
cyclic subgroups of Z

2 generated by η and ξ, respectively. Thus, multiplication by

g induces an endomorphism of Z
2 = H1 ⊕H2 given by a matrix A =

(
b − ap a

aq b

)
.

The condition that A ∈ GL(2, Z) yields the equations b2 − abp − a2q = ±1. The
latter is equivalent to (2b − ap)2 − (p2 + 4q)a2 = ±4. Let c = 2b − ap. Then we
have:

A =
(

c−ap
2 a
aq c+ap

2

)
, (1)

where p, q, a and c satisfy one of the following two equations:

c2 − (p2 + 4q)a2 = ±4. (2)

For given p and q, the trivial solutions of (1), a = 0 and c = ±2, correspond
to the matrices A = ±I. We will assume that a �= 0. Let n = p2 + 4q. Clearly,
nontrivial solutions of (2) exist only if n � −4. The following theorem can be
verified by direct calculations.

Theorem 8. For a given n � −4, the matrices A defined by (1) together with
the coefficients p and q for which p, q, a and c satisfy: 1+ |p| < |q|, gcd(p, q) = 1,
n = p2 + 4q, a �= 0 and the equation c2 − na2 = ±4 are as follows:
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– For n = −4, A = ±
( −r 1

−(r2 + 1) r

)
, p = 2r and q = −(r2 + 1), where

r ∈ (−∞,−4] ∪ [4,+∞) and r ≡ 0 (mod 2).

– For n = −3, A = ±
( −r 1

−(r2 + r + 1) (r + 1)

)
or A = ±

( −(r + 1) 1
−(r2 + r + 1) r

)
,

p = 2r + 1 and q = −(r2 + r + 1), where r ∈ (−∞,−3] ∪ [2,+∞) and either
r ≡ 0 (mod 3) or r ≡ 2 (mod 3).

– For n = 0, n = −1 and n = −2, there exist no nontrivial solutions.
– For n = m2 > 0, nontrivial solutions exist only if n = 1 or n = 4. For

n = 1, A = ±
( −(2r + 1) 2

−2(r2 + r) (2r + 1)

)
, p = 2r + 1 and q = −(r2 + r),

where r ∈ (−∞,−4] ∪ [3,+∞). For n = 4, A = ±
( −r 1

1 − r2 r

)
, p = 2r

and q = 1 − r2, where r ∈ (−∞,−4] ∪ [4,+∞) and r ≡ 0 (mod 2).
– For a positive nonsquare integer n, the equality n = p2+4q implies that either

n ≡ 0 (mod 4) or n ≡ 1 (mod 4). For these two cases we have:

• For n = 4s, A = ±
(

x − ra a
a(s − r2) x + ra

)
or A = ±

( −x − ra a
a(s − r2) −x + ra

)
,

p = 2r and q = s − r2, where x > 0 and a > 0 give a solution of Pell’s
equation or negative Pell’s equation:

x2 − sa2 = ±1,

and r either satisfies the inequality |r| <
√

s − 1 or the inequality |r| >√
s + 2 + 1. Also, it is required that gcd(r, s) = 1 and r �≡ s (mod 2).

• For n ≡ 1 (mod 4), A = ±
(

c−pa
2 a

an−p2

4
c+pa

2

)

or A = ±
( −c−pa

2 a

an−p2

4
−c+pa

2

)

,

p ≡ 1 (mod 2) and q = n−p2

4 , where c > 0 and a > 0 give a solution of
one of the following Pell–type equations:

c2 − na2 = ±4,

and p either satisfies the inequality |p| <
√

n − 2 or the inequality |p| >√
n + 8 + 2. Also, it is required that gcd(p, n) = 1.

Remark 9. We recall that for a nonsquare integer n > 0 Pell’s equation
x2−ny2 = 1 has infinitely many solutions which are recursively generated, using
Brahmagupta’s identity: (x2

1 − ny2
1)(x

2
2 − ny2

2) = (x1x2 + ny1y2)2 − n(x1y2 +
y1x2)2, from the fundamental solution – the one for which positive x and y are
minimal. The fundamental solution can be found, for example, using continued
fraction of

√
n. All solutions of negative Pell’s equation x2 − ny2 = −1 are also

generated from its fundamental solution. However, solutions of negative Pell’s
equation do not always exist. The first 54 numbers for which solutions exist are
given by the sequence A031396 in OEIS [15]. Similarly, for the Pell–type equa-
tions c2 − na2 = 4 and c2 − na2 = −4, all solutions are recursively generated
from the fundamental solutions. For the latter equation solutions exist if and
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only if they exist for the equation x2 − ny2 = −1. Furthermore, by Cayley’s
theorem, if the fundamental solution (u, v) of the equation c2 − na2 = 4 is odd
(i.e., both u and v are odd), then

(
(u2 − 3)u/2, (u2 − 1)v/2

)
gives the funda-

mental solution of the equation x2 − ny2 = 1. Similarly, the odd fundamental
solution (u, v) of the equation c2 − na2 = −4 leads to the fundamental solution(
(u2 + 3)u)/2, ((u2 + 1)v)/2

)
of the equation x2 − ny2 = −1 [14]. If the funda-

mental solution is even then it is obtained from the fundamental solution of the
corresponding Pell’s equation by multiplication by 2.

Remark 10. For a fixed pair p and q, the matrices (1) with coefficients satisfying
(2) form a submonoid Sp,q in GL(2, Z). Let P be the set of all pairs (p, q) for
which 1 + |p| < |q|, gcd(p, q) = 1 and n = p2 + 4q is equal to either −4,−3, 1, 4
or a nonsquare positive integer. Then a set of all matrices given by Theorem 8 is
the union S =

⋃
(p,q)∈P Sp,q. For different pairs (p, q)(p′, q′) ∈ P we clearly have

Sp,q ∩ Sp′,q′ = {±I}. Moreover, it can be verified that each of these submonoids
Sp,q is isomorphic to one of the groups: Z4, Z6, Z2 × Z2 and Z × Z2. Namely,
from Theorem 8 we obtain the following. For n = −4, n = −3 and n = 1, 4, Sp,q

is a finite group isomorphic to Z4, Z6 and Z2 × Z2, respectively. For a positive
nonsquare integer n, Sp,q

∼= Z × Z2.

Remark 11. Let (p, q) ∈ P such that the polynomial t(x) = x2 + px − q is
irreducible in Z[x]. One can easily construct an infinite family of not FA–
recognizable automorphisms of Z

2 with respect to the representation ψp,q. Let

A =
(

a11 a12

a21 a22

)
∈ Sp,q. For a matrix A′ = A + D, where D =

(
k� kn
m� mn

)
is a

nonzero singular matrix, detA′ = det A iff m(a11n + a12�) + k(a21n + a22�) = 0.
The latter equation admits infinitely many solutions for k, l,m and n. Since A is
FA–recognizable with respect to ψp,q, assuming that A′ is FA–recognizable with
respect to ψp,q, we get that D = A′ −A must be FA–recognizable with respect to
ψp,q. But D is not FA–recognizable (see Remark 6), so A′ is not FA–recognizable.

Remark 12. There exist automorphisms of Z
2 which are not FA–recognizable

with respect to every representation ψp,q, (p, q) ∈ P. For example, all automor-

phisms of Z
2 given by the matrices Tn =

(
1 0
n 1

)
for nonzero integer n are not

FA–recognizable. This follows from the fact that I is FA–recognizable but the
endomorphisms Tn − I for n �= 0 are not FA–recognizable. In particular, none of
the representations ψp,q, (p, q) ∈ P can be used to construct a Cayley automatic
representation for the Heisenberg group H3(Z) ∼= Z

2
�T1 Z.

Remark 13. We note that for two conjugate matrices A and B = TAT−1

in GL(2, Z) the groups Z
2

�A Z and Z
2

�B Z are isomorphic. An algorithm
for solving conjugacy problem in GL(2, Z) is described in [8]; see also an
algorithm for solving conjugacy problem in SL(2, Z) using continued fractions
[10, § 7.2]. It can be verified that for the cases n = −4,−3, 1, 4 each of the matri-
ces from Theorem 8 is conjugate to one of the following matrices in GL(2, Z):
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(
0 −1
1 0

)
,

(
1 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
1 0
0 −1

)
and

(
0 1
1 0

)
. If n is a positive non-

square integer, every matrix from Theorem 8, which is in SL(2, Z), is Anosov.
Moreover, in this case, for a pair (p, q) ∈ P satisfying n = p2 + 4q the matri-
ces from Sp,q generate infinitely many conjugacy classes in GL(2, Z). The latter
immediately follows from the observation that for different values of c, which is
the trace of the matrix (1), we have different conjugacy classes.

Similarly to the case n = 2, one gets a family of FA–recognizable automor-
phisms A ∈ GL(n, Z) with respect to the Nies–Semukhin FA–presentations ψp,q

of Z
n. We postpone a careful analysis of this family for future work.

4 Conclusion and Open Questions

In this paper we generalize the Nies–Semukhin FA–presentation of
(
Z
2,+

)
, orig-

inally constructed for the polynomial x2 + x − 3, to a polynomial x2 + px − q
such that 1 + |p| < |q| and gcd(p, q) = 1. We also show how this construction
is generalized for (Zn,+) , n > 2. Based on this, we construct a new family
of Cayley automatic representations of groups Z

n
�A Z, A ∈ GL(n, Z) that

violate the basic property known for standard representations – projections
pi : Z

n → Z
n, i = 1, . . . , n are FA–recognizable, i.e., the property (b) in Sect. 1.

For n = 2 we describe the set of matrices S ⊆ GL(2, Z) corresponding to this
family of nonstandard representations and show its connection with Pell’s equa-
tion. Let us pose the following questions that are apparent from the results of
this paper.

– Is there a nonstandard representation, e.g., preserving the property (a) and
violating the property (b), for the Heisenberg group H3(Z)?

– What is the set of conjugacy classes of the set of matrices S in GL(2, Z)?
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