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Loss of Arctic sea ice owing to climate change is predicted to reduce both
genetic diversity and gene flow in ice-dependent species, with potentially
negative consequences for their long-term viability. Here, we tested for the
population-genetic impacts of reduced sea ice cover on the polar bear
(Ursus maritimus) sampled across two decades (1995-2016) from the
Svalbard Archipelago, Norway, an area that is affected by rapid sea ice
loss in the Arctic Barents Sea. We analysed genetic variation at 22 micro-
satellite loci for 626 polar bears from four sampling areas within the
archipelago. Our results revealed a 3-10% loss of genetic diversity across
the study period, accompanied by a near 200% increase in genetic differen-
tiation across regions. These effects may best be explained by a decrease in
gene flow caused by habitat fragmentation owing to the loss of sea ice cover-
age, resulting in increased inbreeding of local polar bears within the focal
sampling areas in the Svalbard Archipelago. This study illustrates the impor-
tance of genetic monitoring for developing adaptive management strategies
for polar bears and other ice-dependent species.

1. Introduction

Climate change is rapidly altering the structure, dynamics and functioning of eco-
systems, leading to large-scale changes in the distribution, demography and
phenology of species [1]. The current warming trend is fastest in the Arctic, caus-
ing a reduction of the extent, thickness, multiyear persistence and seasonal
duration of sea ice cover [2]. Species relying on ice-habitats for foraging, repro-
duction and movement are therefore particularly vulnerable [3-6]. Population
declines as well as contraction and fragmentation of geographical ranges have
indeed been documented in ice-dependent species such as the Adélie penguin
(Pygoscelis adeline) and chinstrap penguin (Pygoscelis antarcticus, [7,8]), Baltic
ringed seal (Pusa hispida botnica, [9]) and polar bears (Ursus maritimus, [10-13]).
Detrimental ecological and demographic effects of reductions in sea ice cover
may ultimately reduce the standing genetic variation of species [14-17]. Loss of
genetic diversity over time (genetic erosion) could introduce an additional level
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of adversity for affected species, by diminishing the adaptive
potential enabling species to respond to anthropogenic press-
ures, pathogen outbreaks and environmental change [15,18].
Documenting changes in genetic diversity, spatial population
structure and exchange in response to long-term climatic
trends is therefore crucial for predicting the future fates of
species [15,18]. Nevertheless, direct assessments of climate-
induced temporal changes of intraspecific genetic diversity
and population connectivity of species affected by reductions
in sea ice cover remain scarce. This is largely owing to a lack
of coordinated long-term ecological sampling and monitoring
efforts [18,19]. In addition, it is unknown if spatial climate
gradients, which are often used as proxies to predict responses
to environmental change, fully capture the underlying
population-genetic processes [18].

Our analysis focused on the polar bears inhabiting the Sval-
bard Archipelago in the northwest Barents Sea, because there is
long-term genetic monitoring data available for this subpopu-
lation going back until 1995. Moreover, the reduction of sea ice
cover for the area inhabited by the Barents Sea polar bear sub-
population is an ongoing process. This includes both an
estimated increase of ice-free days by 41 per decade between
1979 and 2014 [20] and a documented northward shift in the
distribution of optimal habitat for polar bears in all seasons
[21]. Coinciding with this period of sea ice loss, studies in Sval-
bard have revealed both reduced numbers of pregnant females
reaching traditional denning areas than before [22,23] and that
polar bears spent less time at glacier fronts hunting seals and
more time on land and near bird colonies, eating birds and
bird eggs, than they did in earlier years [24-26].

Most polar bears in the Barents Sea subpopulation, which
was estimated to be approximately 2650 (95% confidence inter-
val (CI) 1900-3600) individuals in August 2004 [27], hunt on
pack ice (marginal ice zone) and have been termed ‘pelagic’
[28]. In summer and autumn, when there is no continuous
sea ice cover surrounding Svalbard, roughly 10% of the sub-
population (approx. 250 individuals) occur in the Svalbard
Archipelago, and ‘local’ polar bears that stay in this area
year-round predominate [27,29]. In winter and in spring, how-
ever, pelagic bears also occur in this area. Thus, depending on
the presence of sea ice, there is marked seasonal variation in
both the density of bears and the proportion of bears with
different movement strategies across the Svalbard Archipelago.
Consequently, sea ice reduction is predicted to reduce both the
magnitude and duration of the seasonal influx of pelagic bears
[30,31]. Importantly, the loss of sea ice habitat in Svalbard in
spring, during the mating season of the local polar bears [32],
has been more profound than in the remaining Barents Sea
areas occupied by the subpopulation, and the loss here has con-
tinued in recent years [21]. This increase in ice-free days could
reduce mating opportunities and long-range breeding disper-
sal among regions connected by sea ice and lead to a higher
proportion of local mating owing to population fragmentation.

The Svalbard Archipelago has undergone over two decades
of rapid sea ice loss [20]. To assess whether and how the declin-
ing yearly sea ice season in the Svalbard Archipelago impacts
population-genetic parameters of polar bears, we applied an
extensive temporal and spatial sampling design to estimate
the direction and rate of change of genetic diversity and differen-
tiation in Svalbard polar bears over two decades (1995-2016).
Given that the generation time of polar bears is approximately
12 years (International Union for Conservation of Nature/
Species Survival Commission Polar Bear Specialist Group

2015), the study covers at least two generations, in particular if
one takes into account that the individuals sampled in the
early years of the interval were born up to 20 years earlier
(year of birth ranged from 1975 to 2015). Temporally, as both
sea ice habitat and connectivity among areas used by pelagic
and local bears are in a decline, our hypothesis was that ‘local’
bears would become increasingly isolated, and that this would
be reflected as increasing differentiation among and decreasing
genetic diversity within areas. Spatially, because the extent of ice
loss is uneven across Svalbard, with the west coast of Spitsber-
gen (the most western island) showing the highest loss [25],
we expected to observe the strongest effects in northwestern
Svalbard, where the great majority of bears are ‘local’ [29].

2. Material and methods

(a) Study area, sample collection and genetic methods
Polar bears from the Barents Sea were captured throughout the
Svalbard Archipelago from 1995 to 2016 by the Norwegian Polar
Institute, Tromse, Norway, following standard immobilization,
sampling and handling procedures [33] (figure 1). We extracted
total genomic DNA from collected tissue samples using the
DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s
protocol. For genetic typing, we used 22 published nuclear micro-
satellite loci with polymerase chain reaction protocols optimized
for seven multiplex assays (electronic supplementary material,
appendix S1, tables S1-S3). The overall microsatellite data con-
sisted of 626 unique polar bear genotypes, including 206 bears
that were previously genotyped following a similar protocol (see
the electronic supplementary material, appendix S1). Based on
sampling location, we allocated the genotyped bears to four geo-
graphical areas: north-western Svalbard (NWS, n=123),
northeastern Svalbard (NES, n=110), southwestern Svalbard
(SWS, n=241) and southeastern Svalbard (SES, n =152) (see the
electronic supplementary material, appendix S1). For each of the
four areas, we divided the 22-year sampling period into five tem-
poral groups: T1: 1995-1999; T2: 2000-2004; T3: 2005-2009; T4:
2010-2014; T5: 20152016, but excluded periods with fewer than
10 individuals (electronic supplementary material, appendix S1,
table S1-1). Thus, our final dataset comprised 16 spatio-temporal
groups and 622 individuals, although to explore our results we
also evaluated other plausible temporal divisions (electronic
supplementary material, appendix S1, table 51-2).

(b) Spatio-temporal patterns of genetic diversity,
inbreeding and differentiation

To facilitate tests of whether population-genetic changes in polar
bears coincide with declining sea ice coverage in the Svalbard
Archipelago, we estimated several standard parameters of genetic
diversity (number of alleles per locus, Ay; observed heterozygosity,
Ho; unbiased expected heterozygosity, Hg; allelic richness, Ag;
and private allelic richness, Ap), inbreeding (mean inbreeding
coefficient, Fjs) and relatedness (mean relatedness coefficient, r).
Moreover, to allow tests of a potential negative association between
habitat fragmentation owing to loss of sea ice cover and genetic
exchange among Svalbard polar bears, we estimated pairwise gen-
etic differentiation indices (pairwise fixation, G’S'T ; and allelic
differentiation, Dgsy) per sampling site and period (for a detailed
description of parameters, see the electronic supplementary
material, appendix S1).

(c) Statistical regression modelling

To test the prediction that genetic variation and exchange in
polar bears decreased along with declining sea ice coverage in
the Svalbard Archipelago, we built linear mixed models for
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Figure 1. (a) Distribution of polar bears sampled in the present study across four geographical areas of the Svalbard Archipelago with sample sizes indicated.
(b) Global surface-air temperature trends since 1979 (linear trends in °C decade™ for December—February). Data source: http:/data.qiss.nasa.gov/gistemp. (c)
Sea ice extent trends in the Barents Sea for April (typical month with the highest prevalence of ice in the region) from 1979 to 2018. Data source: http:/
www.mosj.no. The period of the present study is shaded in grey (c). (Online version in colour.)

each genetic diversity parameter (Ho, Hg, Ag and r,,) and for Additionally, we used the four sampling areas (or, in the case
pairwise genetic differentiation G”sr using the R package of between area Gy, the six possible pairs of sampling areas)
glmmTMB v. 1.0.2.1 [34]. This was done using either sampling as random intercepts to account for temporal pseudoreplication
area or pair of sampling areas, period (highly correlated with resulting from estimating effects within and between the same
the decline in mean sea ice extent per study period; R*=0.916, areas (or pairs of areas) at different time points. For response

p=0.0106), and their interaction as explanatory variables. variables that assume values between 0 and 1 (Ho, Hg and
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Gir), we used beta mixed regression analysis to fit models. For
Ag and r,, we fitted models using linear mixed regression analysis.
Owing to the properties of our dataset (samples size=16), we
selected the optimal model based on Akaike’s information criterion
corrected for small sample size (AICc) and Akaike weights (w;) [35]
(electronic supplementary material, appendix S1).

(d) Spatio-temporal patterns of genetic clustering

To track potential changes in the composition and number of gen-
etic subpopulations or clusters (K) of polar bears along with
declining sea ice cover in the Svalbard Archipelago, we ran
STRUCTURE v. 2.3.4 [36] for (i) all sampling areas and periods,
(ii) per sampling area across periods (temporal component) and
(iii) per period across sampling areas (spatial component). This
was done both with and without the Locrrior model, which uses
additional sample-specific data, such as sampling location or
time, to increase the power to detect subtle genetic changes and
genetic structure. We also included runs accounting for kin struc-
ture following the recommendations by Waples & Anderson [37].
This was done to assess if the presence of family groups and cubs
captured together with their mother in our data potentially
affected the patterns observed. We applied the approach of
Puechmaille ef al. [38] to infer the optimal K (electronic supplemen-
tary material, appendix S1).

(e) Forward-in-time simulations and genetic
bottlenecks analysis

To explore the potential long-term effects of sea ice loss on genetic
diversity (An, Ho and Hg) and global genetic differentiation (Gsr;
Nei & Chesser [39]) in the four polar bear sampling areas in
Svalbard, we first conducted individual-based forward-in-time
simulations in NEMO-AGE v. 0.29.0 [40] (electronic supplementary
material, appendix S1). We implemented a simplified demo-
graphic model of polar bears to account for generation time,
number of adults and offspring, and the 3-year reproductive
cycle of females [41] (figure 5a; detailed in the electronic sup-
plementary material, appendix S1). Under fixed parameters, we
compared six alternative scenarios: (1) no effect of sea ice loss on
population connectivity, (2) a moderate effect of loss in sea ice on
population connectivity, (3) pronounced effect of loss in sea ice
on population connectivity, (4) pronounced effect of sea ice loss
on population connectivity (with symmetrical gene flow rates)
and size, (5) pronounced effect of sea ice loss on population con-
nectivity (with asymmetrical gene flow rates between northern
and southern areas at generation 0 to complete isolation by gener-
ation 10) and size, and (6) empirical genotypic data from the four
capture areas at the last sampling period (T4 or T5) (figure 5;
electronic supplementary material, appendix S1).

Finally, to test for recent bottlenecks, which would have resulted
from a range contraction owing to ongoing climate change, we
employed the heterozygosity excess and M-ratio tests implemented
in INesT v. 2.2 [42] (electronic supplementary material, appendix S1).
Lastly, we inferred historic bottlenecks (up to 100 generations back)
using coalescent analysis as implemented in the R-package
DIYABCskylineplot v. 1.0.1 [43/44] (electronic supplementary
material, appendix S1).

3. Results

(a) Temporal variation in genetic diversity, inbreeding
and differentiation

Our results are consistent with the predicted erosion of
genetic diversity locally during a time of sea ice loss. Model
selection based on AICc invariably identified time (.e.

sampling period) as the main predictor variable needed to [ 4 |

explain the observed variation in genetic diversity parameters.
Over time, Ag decreased by —0.145 (97.5% CI: —0.211 to —0.079)
and Hg by —0.041 (97.5% CI: —0.069 to —0.013; on the logit
scale) per 5-year period, corresponding to approximately 3%
and 9% loss through the whole study period, respectively.
Furthermore, r,, increased by 0.030 (97.5% CI: 0.014-0.044)
per 5-year period (figure 2; electronic supplementary material,
tables 52-1-52-3). Moreover, when we used other plausible
temporal divisions, we found that the pattern did not change
(results not shown).

Although less supported by AICc, models including
both study area and time as predictor variables provided
additional insight. Specifically, they showed considerably
lower genetic diversity and higher relatedness among polar
bears from NWS, where sea ice loss has been particularly
severe, compared to bears from the rest of the Svalbard
Archipelago (figure 2; electronic supplementary material,
tables S2-54). Likewise, models using sampling period as a
categorical rather than continuous variable resulted in lower
support by AICc (electronic supplementary material, tables
52-55). Still, they provided evidence of the above-described
temporal changes, while simultaneously pinpointing some
potential deviations from the straight-line relationship of the
model preferred by AICc.

Our results are also consistent with the predicted decline
in genetic exchange locally following loss of sea ice coverage.
Notably, pairwise G¢; between sampling areas increased
by 0.512 (97.5% CI: 0.251-0.773) on the logit scale over
time, and this increase was strongest in the last period and
for the northern sampling areas (NWS and NES) (figure 3).
A similar but non-significant pattern was observed when
modelling temporal samples per area (0.311, 97.5% CI:
—0.279-0.901). As observed for the genetic diversity indices,
models of G¢; including also (pairwise) sampling area as pre-
dictor variable (or period as a factorial variable) were less
supported by AICc but provided additional predictive
power by identifying significantly elevated genetic differen-
tiation among the polar bears in the northern areas of
Svalbard (figure 3). A sign test rejected the hypothesis of
random fluctuations of genetic differentiation with p =0.022
(increase in differentiation in 11 of 13 time steps).

(b) Spatio-temporal patterns of genetic clustering
Our results provided evidence of increasing genetic structure
coinciding with the loss of sea ice habitat. On average, across
the whole dataset, the STRUCTURE results consistently identified
K =3 genetic clusters as the most likely model of spatial popu-
lation structure (electronic supplementary material, figures S2—-
S4), suggesting a split among polar bear bears from NWS, SWS
and eastern Svalbard (NES and SES) (figure 4). However, it was
evident that the degree of admixture was initially high, declined
over time and, eventually, sampling areas became unique genetic
clusters, a pattern detected in NWS and SWS, and to some extent
in SES. While STRUCTURE runs within each sampling area showed
no clear separation between temporal samples (results not
shown), STRUCTURE runs within each sampling period showed a
pattern of increasing genetic heterogeneity over time (electronic
supplementary material, figures S2-S5).

In alternative models of spatial genetic structure (figure 4),
K=2 showed a strong split between NWS and the rest of
the sampling areas. At K=4, a fourth cluster appeared in
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Figure 2. (a—c) Assodiations between period (correlated with sea ice loss) and mean observed (Ho) and unbiased expected heterozygosity (H) allelic richness (Ag)
and coefficient of relatedness (r,,) in the four Svalbard polar bear sampling areas: (a) area x time interaction plot, (b) temporal effects as a factor where error bars
represent + s.e., and (c) temporal effects as continuous variable where the solid line depicts the overall regression trend for each response variable and shaded area
around line depicts the 95% Cl. (d) Within-area genetic diversity summary statistics (+s.e.) depicting area effects. (Online version in colour.)
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Figure 3. Within- and between-area trends of genetic differentiation (fixation index Gg’,). (a) pair x period (correlated with sea ice loss) interaction plot. (b) Association
between period and Gy, between pairs of sampling areas for polar bears in Svalbard. The solid line depicts the overall regression trend for each response variable and
shaded areas around the regression line depicts the 95% Cl. (c) Area and among area effects of sea ice loss on G¢;. (d) Within-area genetic diversity summary statistics

(£s.e.) depicting area effects. (Online version in colour.)

southern Svalbard (SWS and SES), which was dominated by
polar bears in SES and varied across periods. Likewise, a fifth
cluster emerged at K =5 in southern Svalbard, that was domi-
nated by polar bears in SWS and was also temporally
variable. When we accounted for kin structure by randomly
purging closely related individuals, we obtained a similar
clustering pattern (results not shown). As expected, STRUCTURE
runs without LocPrior gave fairly flat distributions of mem-
bership probabilities of individuals, which were resolved
when using the LocPrior model (riocprior = 2.99).

() Forward-in-time simulations and genetic

bottlenecks
Our forward-in-time simulations indicated that the observed
genetic erosion is a trend that will probably continue for
future generations of the Barents Sea subpopulation. Scenarios
1 and 2 with no loss in sea ice and functional connectivity
between populations was, as expected, the best for preserving

genetic diversity for the next 100 generations (figure 5). By
contrast, scenarios with restricted gene flow (scenario 3) and
diminishing gene flow over generations along with exponen-
tially declining populations (scenarios 4 and 5) revealed that
climate-induced habitat fragmentation owing to sea ice loss
over the next 100 generations would result in further genetic
erosion and increase in genetic differentiation (figure 5). More-
over, the simulations with the empirical genetic data (scenario
6) of patches already experiencing intensified genetic drift
showed a sharper decline in genetic diversity and connectivity
over the next 100 generations.

There was no support for recent genetic bottlenecks based
on heterozygosity-excess or M-ratio tests, regardless of the
parameter combination used (p>0.05). The M-ratio values
ranged from 0.726 to 0.891 across sampling areas per period
(electronic supplementary material, tables S2-S7), while
Me-ratio values of less than 0.7 are generally considered as
indicative of a bottleneck. The coalescent analysis indicated a

rather constant historical effective population size,
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corroborating the findings of the heterozygosity-excess and M-
ratio tests (electronic supplementary material, figures S2-56).

4, Discussion

(a) Climate-induced loss of genetic diversity

The disappearance of Arctic sea ice is accelerating and
rapidly changing the habitat configuration and dispersal pat-
terns of ice-dependent species, which, in turn, escalates
conservation challenges in populations of threatened species
across the Arctic [30,45]. The present study on polar bears of
the Svalbard Archipelago reports the local loss of genetic
diversity and exchange across four sampling areas over
roughly 20 years that were characterized by substantial loss
of sea ice coverage coinciding with major demographic
changes [22,23]. Over time, such erosion of genetic diversity
may reduce the fitness of individuals and cause an elevated
risk of extinction [19,46]. The magnitude and rate of loss of
genetic diversity and gene flow that we observed is alarming
considering that polar bears have historically shown rela-
tively little genetic differentiation even on a global scale
[47-49], but now are facing increasingly strong climatic selec-
tive pressure. The results of simulations suggested that
further loss of sea ice will lead to the continued erosion of
local genetic diversity in polar bears of the Svalbard Archipe-
lago and to increased isolation between local areas, especially
if there is a concurrent decrease in the number of bears.

(b) Rapid genetic differentiation correlates with

sea ice loss
For polar bears, sea ice is the intervening habitat matrix that
either promotes or restricts functional connectivity among
habitats and subpopulations [17,50]. In the polar basin,

global ecoregions are defined by the presence or absence of
sea ice, and gene flow between polar bear subpopulations
is shaped by glacial and open water barriers to dispersal.
Migration between subpopulations and local genetic diver-
sity are expected to decrease as open water barriers to
dispersal are present for increasingly long seasons. Accord-
ingly, genetic responses to sea ice loss are likely to be
subpopulation-specific and variable in time and space
[17,47,51,52].

Our null hypothesis of panmixia of polar bears across the
Svalbard Archipelago was rejected owing to major temporal
changes in genetic composition during the course of the focal
time period. Initially, the four assigned sampling areas
showed a high degree of admixture, which decreased over
time and covaried with documented reductions in sea ice cov-
erage [20]. At the end of the study period, the four assigned
sampling areas were genetically differentiated because of
intensified genetic drift and probably also elevated site fidelity
owing to the decreasing number of pelagic bears. Studies have
shown that female bears in the Svalbard Archipelago and in the
Beaufort Sea are highly philopatric [33,53,54]. In fact, philopa-
try to summering areas is common in bears that experience
reductions in summer ice cover [55-59]. These behavioural
traits (site fidelity and sex-biased philopatry) also act as bio-
logical drivers of genetic differentiation among areas in bears
[51,60-62]. The genetic signature of behavioural traits could
be masked by high gene flow (homogenizing force), which
counteracts the effects of genetic drift (diversifying force).
Indeed, during periods with extensive sea ice, migration and
gene flow through predominantly male ‘pelagic’ polar bears
over a larger geographical scale in Svalbard is likely [63]. Our
findings suggested that gene flow mediated by ‘pelagic’
polar bears, which connect the various areas of Svalbard
during the mating season, has been gradually declining
owing to the loss of sea ice.

Ly/LLZ07 ‘88T § 0S Y 0id  qdsi/jeunol/bio buiysigndAianosiefos H



(@)

6 o‘ot
0.5 Is
3 M
3 '] =
2 | |
0 25 50 75 100
(e) 0 %
~0.05
~0.10
vy
L —0.15
~0.20{F7s
—0)
~0.25{ -0.1
0.2
-0301" 5
0 25 50 75 100

()

)

5
O

scenario
O S1
7 S2
0S3
® 54
A S5
H S6

50 75 100

0 25 50 75 100
GST
030{ 03
025{" 02
0.1
0.20{% o
0.15
0.10
0.05
0 25 50 75 100

time (generations)

Figure 5. Forward-in-time simulations of the genetic response to climate-driven sea ice reduction and possible polar bear population scenarios. (a) The simplified
life-history graph of polar bears used for the simulations illustrating a three-stage life cycle: cubs (cub-of-the-year (C0) and yearling (C1); stage 1)—subadults (stage
2)—-adults (stage 3) where survival rates are denoted by o. (b,c) temporal changes in genetic diversity (Ay Ho and Hg) over 100 generations under different
scenarios where Hy and Hg are colour coded based on Ay. (ef) temporal changes in genetic differentiation (Gs;; Nei & Chesser [39]) over 100 generations
under different scenarios. Constant population size scenario with symmetrical gene flow rate of 50% (scenario 1) 25% (scenario 2) and 0.1% (scenario 3) between
patches. Habitat fragmentation scenario with a 10-fold gene flow rate decline per 30 generations (scenario 4) and with asymmetrical gene flow rates between
northern and southern patches (scenario 5) where patches were undergoing 97.5% exponential population decline. Scenario 5 is based on the empirical dataset

(scenario 6). (Online version in colour.)

With our extensive spatio-temporal sampling regime, we
were able to disentangle the effects of sea ice loss and behav-
ioural traits. For instance, we determined that genetic drift
was more intense in NWS, which is the area with the highest
loss of sea ice and degree of philopatric bears. By contrast,
the southern areas with relatively lower levels of sea ice loss
showed relatively weaker signals of genetic differentiation,
even though there was evidence of localized genetic groups
indicative of site fidelity and/or philopatry. In turn, the local

loss of genetic diversity may be best explained by a decrease
in gene flow resulting in increased inbreeding of local polar
bears within the focal sampling areas. In addition, restricted
movements across relatively small geographical areas may
also reflect sea ice affecting prey distribution [64,65].

Indeed, we found that the levels of admixture between
individuals from the genetically differentiated sampling areas
decreased over time. The observed temporal decline in admix-
ture was especially pronounced between the northern and
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southern range extremes characterized by different distinct cli-
matic regimes in the Barents Sea [25]. Accordingly, we propose
that the loss of sea ice is the ecological driver for the declining
migration of ‘pelagic” polar bears in the Svalbard Archipelago
and a relative increase of the proportion of ‘local’ polar
bears showing site fidelity. On a broader scale, our findings
meet those of the Foxe Basin and Baffin Bay polar bear sub-
populations [17,52], where the loss of sea ice establishes open
oceanic waters as a barrier to gene flow. Moreover, in the
absence of significant signals of heterozygosity excess and
changes in population size, the observed pattern of genetic
structure of polar bears in the Svalbard Archipelago is likely
to have appeared recently because of intensified genetic drift.

(c) Conservation implications

Our study shows that tracking of temporal population-
genetic changes will become important for our understand-
ing of how polar bears and other ice-dependent species
may cope with rapid habitat fragmentation and loss in the
Arctic and Antarctic. For the Svalbard Archipelago, the
high degree of philopatry of ‘local’ female polar bears over
generations [33,63] in combination with an expected further
reduction in gene flow from the “pelagic’ part of the Barents
Sea subpopulation render a significant future loss of genetic
variation and, thus, increased population structure, likely.
Although studies have reported a low level of inbreeding
for polar bears in the Svalbard Archipelago [33]; increased
levels of isolation between populations may increase inbreed-
ing in the future, most likely with negative effects such as
inbreeding depression. The NWS area may already today
indicate future developments. The west coast of Spitsbergen
has experienced the greatest loss of sea ice in the Barents
Sea region [25] and also showed the highest rate of change
in genetic diversity in the current study. The three genetic
clusters detected in our study indicate that even on a rela-
tively small geographical scale, distinct management units
of polar bears have already evolved in the Svalbard Archipe-
lago. Furthermore, in line with the findings of Aars et al. [29],
our study suggests that northeastern Svalbard may already
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