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Lung Cancer Screening Based on 
Type-different Sensor Arrays
Wang Li1,2, Hongying Liu1,3, Dandan Xie1, Zichun He4 & Xititan Pi1,5

In recent years, electronic nose (e-nose) systems have become a focus method for diagnosing 
pulmonary diseases such as lung cancer. However, principles and patterns of sensor responses in 
traditional e-nose systems are relatively homogeneous. Less study has been focused on type-different 
sensor arrays. In this paper, we designed a miniature e-nose system using 14 gas sensors of four types 
and its subsequent analysis of 52 breath samples. To investigate the performance of this system in 
identifying and distinguishing lung cancer from other respiratory diseases and healthy controls, five 
feature extraction algorithms and two classifiers were adopted. Lastly, the influence of type-different 
sensors on the identification ability of e-nose systems was analyzed. Results indicate that when using 
the LDA fuzzy 5-NN classification method, the sensitivity, specificity and accuracy of discriminating 
lung cancer patients from healthy controls with e-nose systems are 91.58%, 91.72% and 91.59%, 
respectively. Our findings also suggest that type-different sensors could significantly increase the 
diagnostic accuracy of e-nose systems. These results showed e-nose system proposed in this study 
was potentially practicable in lung cancer screening with a favorable performance. In addition, it is 
important for type-different sensors to be considered when developing e-nose systems.

In recent years, breath analysis has become a research focus in the field of respiratory disease diagnosis due to its 
noninvasiveness, convenience and real-time analysis1. The principal component in breath is water vapor, and the 
remaining parts include volatile organic compounds (VOCs) and nonvolatile matters dissolved in water or con-
tained in exhaled aerosol particles2. To date, over 3000 different VOCs have been detected in human breath3, with 
some successfully used in the detection of diseases including lung cancer. VOCs in breath and their applications 
are shown in Table 1.

At present, a Tedlar® bag is often used in sampling VOCs in breath34. Collected VOCs could be tested by 
multiple spectrometric techniques such as gas chromatography, ion transfer reaction, ion flow tube, ion mobility 
and so on35, 36. These analytical techniques are sensitive and accurate, but they also have many restrictions, such 
as high cost, requiring professional operation and requiring pre-concentration of the breath37. In recent years, 
inexpensive and portable e-nose systems have been proposed and designed for respiratory disease detection, the 
measurement reproducibility of the e-nose system was also validated to be acceptable38. The common methodol-
ogy and application of e-nose systems were described in detail elsewhere39, 40. For lung cancer detection, Mazzone 
et al. reported an e-nose based on colorimetric sensor arrays could show a good performance41, 42; Haick’s team 
from the Israel Institute of Technology developed an e-nose system with gold nanoparticle sensors for the detec-
tion of lung cancers as well. Simulations revealed the accuracy for lung cancer detection to be over 86%, and 
subsequent experiments proved that this e-nose system could identify many types of cancers20, 43; Blatt et al. used 
metal oxide semiconductor sensor arrays for lung cancer diagnosis with accuracy, sensitivity and specificity all 
of over 90%44. However, these electronic noses are often based on sensor arrays with similar response principles. 
These sensors are very similar in terms of sensitivity and response patterns. Less research has been performed on 
type-different sensors for the diagnosis of lung cancers. Different feature extractions and classifiers could signifi-
cantly affect recognition effects of sensor arrays, but little has been reported in this area.

In the current study, we used 14 gas sensors and 2 temperature/humidity sensors to develop a small-sized 
e-nose system. Samples from 52 volunteers were tested using the system. A software based on C# was also 
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programmed to control detection process and generate the “breath pattern”. Five algorithms for extracting fea-
tures from the “breath pattern” were compared. Finally, a 10 fold cross validation method was used to investigate 
the classification performance of the e-nose system with two classifiers. Lastly, whether type-different sensor 
arrays could improve the recognition ability of e-nose systems was also studied.

Materials and Methods
Selection of type-different sensors.  According to the major components and their concentration ranges 
in human breath especially from lung cancer patients (Table 1), we selected 14 gas sensors which could be classi-
fied into 4 types: metal oxide semiconductor (MOS), hot wire gas, catalytic combustion gas, and electrochemical 
gas sensors.

None of the four classes of sensors are gas specific sensors; they are all cross response sensors, i.e. different 
gas sensors responding differently to the same gas mixture and the responses of the same sensor to different gas 
mixtures are also different. According to this response pattern, sensor arrays could form characteristic “breath 
fingerprints” by exhalation components, and could diagnose diseases through pattern recognition of a “breath 
fingerprint”. All sensors used in this study are commercial sensors, considering they are robust and stable. These 
sensors could be easily obtained to carry out repetitive tests. Details of gas sensors used in this study are listed in 
Table 2.

E-nose system design.  We designed the miniature e-nose system using the above mentioned sensors. The 
system’s gas reaction chamber is a rectangular enclosure made from aluminum alloy, with a volume of about 
220 ml. All sensor probes are embedded into the gas reaction chamber. Sampling frequency of the whole sys-
tem was designed to be 10 Hz. When the gas to be tested passes through the gas chamber, the sensor arrays 
will respond and form voltage (or current) signals. After initial processing (such as filtering, amplification, etc.), 
signals are sent to the main control chip (STM32F10) for analog digital conversion and temperature/humidity 
compensation calculations. Finally the signals are sent to the computer through a universal serial bus (USB) for 
display and storage. The compensation method of temperature/humidity involves taking the means of the two 
groups of temperature/humidity sensors (Model:HTG3515CH, Humirel Inc., France) placed at the air inlet and 
air outlet for linear compensation. The electronic nose system designed for this study is shown in Fig. 1.

Sample Potential application References

Carbon monoxide Marker of neonatal jaundice 4

Hydrogen and 
methane Gastrointestinal diagnoses 5, 6

Nitric oxide Monitoring asthma therapy 
and COPD 7, 8

Ethanol
Potential indicator of 
nonalcoholic steatohepatitis, 
drunk driving test (law 
enforcement)

1, 9

Pentane
Marker of acute asthma, lung 
cancer, Rheumatoid arthritis, 
Pneumonia, alcoholic 
hepatitis, etc.

10–13

Acetone
Monitoring pneumonia and 
diagnosing Ketosis, diabetes, 
lung cancer, etc.

14–18

Hydrogen sulfide Periodontal disease 19

Decane, 4-methy-
octane, undecane, 
aldehydes, benzene 
and its derivatives, 
1-butanol

Markers of Lung cancer 20–23

Methyl-mercaptan Markers of Hepatic coma 24

Naphthalene, 
1-methyl- and 
cyclohexane, 
1,4-dimethyl-

Markers of pulmonary 
tuberculosis 25

Isoprene
Markers of advanced fibrosis 
in chronic liver disease and 
cholesterologenesis

26, 27

Carbonyl sulfide
Biomarkers of human liver 
disease and lung transplant 
recipients with acute rejection

28, 29

Carbon disulfide, 
pentane

Potential Markers of 
schizophrenia 30

Ammonia
Diagnosing chronic kidney 
disease, renal failure, hepatic 
encephalopathy, etc.

31–33

Table 1.  VOCs in human breath.
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In addition, in the current study, we programmed upper computer software based on C#. This software con-
trolled detection modalities of the electronic nose system, as well as the display, storage of test data, and sample 
information management. The database used by this software was mySQL (Oracle®, CA, USA).

Lastly, all breath samples in this study were collected by the 2 L Tedlar® bag (E-switch®, China), and pumped 
into the designed e-nose system by a gas sampling pump. The detection platform is shown in Fig. 2.

Source of test samples.  Breath samples in this study included 24 cases from lung cancer patients, 5 cases 
from patients with other respiratory diseases (4 with COPD and 1 with Silicosis), 10 cases from healthy smokers 

No. Model Type
Range 
(ppm) Detectable gases Manufacturer

1 TGS2620 Metal oxide 
semiconductor 50–5000 Ethanol, hydrogen, 

butane, etc. FIGARO

2 TGS2602 Metal oxide 
semiconductor 1–30 Toluene, hydrogen 

sulfide, ethanol, etc. FIGARO

3 TGS2600 Metal oxide 
semiconductor 1–30 Hydrogen, ethanol, 

butane, etc. FIGARO

4 TGS826 Metal oxide 
semiconductor 30–300 Ethanol, ammonia, 

hydrogen, etc. FIGARO

5 TGS822 Metal oxide 
semiconductor 50–5000 Acetone, ethanol, 

benzene, etc. FIGARO

6 TGS2444 Metal oxide 
semiconductor 10–300 Ammonia, hydrogen 

sulfide, ethanol, etc. FIGARO

7 TGS8669 Metal oxide 
semiconductor 1–500 Acetone, benzene, 

toluene, etc. FIGARO

8 WSP2110 Metal oxide 
semiconductor 1–50 Benzene, toluene, 

ethanol, etc. Winsen

9 NAP-55A catalytic combustion 
type gas sensor 500–5000 Combustible gases NEMOTO

10 MR516 Hot-wire Gas Sensor 0–500 Formaldehyde and other 
VOCs Winsen

11 ME3-C7H8 Electrochemical gas 
sensor 0–500 Toluene, xylene, 

Hydrogen sulfide, etc. Winsen

12 ME4-C6H6 Electrochemical gas 
sensor 0–100 Benzene, xylene, toluene, 

etc. Winsen

13 ME4-H2S Electrochemical gas 
sensor 0–100

Hydrogen sulfide, 
hydrogen phosphide, 
formaldehyde, etc.

Winsen

14 CO-B4 Electrochemical gas 
sensor 0–50 Carbon monoxide Alphasense

Table 2.  Sensors used in this study.

Figure 1.  The photo of the designed E-nose system.
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and 13 healthy non-smokers. Among them, lung cancer patients were from the in-patient department of respi-
ration at the Second Affiliated Hospital of Chongqing Medical University; patients with other respiratory dis-
eases were from People’s Hospital of Jiangbei District and the Second Affiliated Hospital of Chongqing Medical 
University; healthy control volunteers (smokers and non-smokers) were recruited from Chongqing University. 
All volunteers singed informed consent after a detailed introduction of the purpose and plan of this study. 
Protocols including any relevant details of this study were carried out in accordance with the relevant guidelines 
and approved by Medical Ethics Committee of Chongqing University. Details of all volunteers for this study are 
listed in Table S1.

Test process.  All volunteers involved in this study fasted overnight prior to sampling. Meanwhile, smokers 
were asked to stop smoking two hours prior to sampling. All Tedlar® bags were washed with nitrogen three times 
prior to sampling. The process for collection VOCs in breath is as follows:

	(1)	 All volunteers rested for 3–5 minutes and rinsed their mouths with clear water 3–5 times.
	(2)	 All volunteers put on nose clips and breathed in deeply with their mouths, exhaling into sampling bags via 

a disposable mouth piece until the bags were filled.
	(3)	 Sampling bags were then tightened and marked.

All samplings experiments were carried out in a well-ventilated room to avoid interference of other scents. All 
breath samples were tested within 8 hours after sampling; otherwise samples would be re-collected.

The breath detection process is as follows:

	(1)	 Opening the gas sampling pump to pump ambient air into the gas chamber at a rate of 6 L/min. Sensor 
response gradually stabilized near baseline, which normally took 30–80 s. This process can be termed a 
“preparation phase”.

	(2)	 Breath samples were collected and pumped into the gas chamber, and the sensors started to respond. This 

Figure 2.  Overview of the breath sampling and analysis system. (a) Tedlar® bag for breath sampling. (b) 
Photograph of the E-nose system and software interface. (c) Block diagram of the system.

http://S1
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process took 10 s and can be termed the “ventilation phase”.
	(3)	 Disconnecting the gas sampling pump resulted in sensor responses gradually stabilizing. This process took 

50 s and can be called the “response phase”.
	(4)	 Opening the gas sampling pump to inlet ambient air. Sensor response gradually returned to baseline. This 

process took 30 s and can be called “deflation phase”.

The effective detection period of each sample in this study includes a “ventilation phase”, a “response phase” 
and a “deflation phase”, altogether totaling 90 s. Each stage of the detection process was precisely controlled by a 
timing relay and electromagnetic valve. A high efficiency air filter was used when ambient air was pumped into 
the chamber during the “preparation phase” to dispose of solid debris that might exist in the air, avoiding sensor 
damage and ensuring baseline stability. All sample detections were carried out at the same place with good indoor 
ventilation.

Data analysis.  For successful identification of disease with an e-nose system, raw data should be analyzed 
and processed appropriately. All data was processed using Matlab. The data analysis procedure is as follows:

Data pre-processing.  All raw data measured by the electronic nose system should be pre-processed before anal-
ysis, which includes baseline processing and standardization.

Baseline processing was performed for drift compensation and contrast enhancement45. Assuming a total of 
NS samples were detected in this study, each sample contained ND sensor response data; the length of each sensor 
detection data was NT; and the length of the stabilized data at the “preparation phase” was NB (NB ≤ NT); then the 
response (after baseline processing) to sample S (S = 1, 2, 3, …, NS) from sensor D (D = 1, 2, 3, …, ND) at time T 
(T = 1, 2, 3, …, NT) would be:

∑= −
=

R R
N

R1
(1)S D T

B
S D T

B t

N

S D t( , , ) ( , , )
1

( , , )

B

In which, R(S, D, T) and R(S, D, t) are the actual responses to sample S from sensor D at time T and time t (t = 1, 2, 3, 
…, NB).

Data standardization is necessary in order to compensate for the numerical range and/or unit differences of 
the results measured by sensors in the gas chamber43. A standard deviation method was adopted in this study 
for data standardization, i.e. the average response of each sensor was 0 and the standard deviation was 1 after 
standardization.

Predicted results

Positive Negative

Real results
Positive TP FN

Negative FP TN

Table 3.  Confusion matrix obtained from classifier.

Figure 3.  Typical response curves of the sensor arrays. (a) Response curves of the sensor arrays before 
preprocess. (b) Response curves of the sensor arrays after preprocess.
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Feature extraction.  In this study, the sampling frequency of electronic nose system was set at 10 Hz. The data 
dimension obtained from each sensor in one sampling cycle was 10 × 90 = 900. For each sample, there were 
actually 16 sensors for detection. Therefore, the feature vector dimension consisting of sensor responses obtained 
from each sample was 900 × 16 = 14400, far greater than the total number of samples included in this study. There 
was a great amount of redundancy in these dimension data. Redundant data were not only non-conducive to the 
internal parameters of the calculation classification method, but also would lead to over-fitting46. Therefore, it is 
necessary to reduce the dimension of the obtained characteristic matrix and extract main features. In the current 
study, we searched for optimal dimension reduction mapping from five different dimension reduction methods, 
including principal component analysis (PCA), linear discriminant analysis (LDA), Laplacian Eigenmap (LE), 
local linear embedding (LLE), and t-Stochastic Neighbor Embedding (tSNE).

When applying the features for classification after PCA dimension reduction, it was necessary to determine 
the number of principal components-k. The method used in this study was: the eigenvalues of the covariance 
matrix of the original data set were arrayed from large to small as: λ1, λ2, …, λn, with the total variance percentage 
τ of the first k components occupied being:

τ
λ

λ
=

∑

∑
=

= (2)

j
k

j

j
n

j

1

1

We set τ = 99% in this study to calculate the parameter k.

Classifier selection.  In this study, we initially selected 2 classifiers, fuzzy k-NN and support vector machine 
(SVM). Optimal values of near neighbor k and proportionality coefficient m in Fuzzy k-NN were determined 
using the 10-fold cross validation method. The kernel function used in SVM was a radial basis function. Penalty 
factor C and kernel function parameter σ were determined via grid search method45.

Figure 4.  Mapping results of 5 algorithms (2D). (a) Represents the 2D mapping plot of PCA, (b) is the 2D 
mapping result of LDA with 4 classes of labels, c is the 2D mapping plot of LE, (d) is the 2D mapping plot of 
LLE, (e) is the 2D mapping result of tSNE, and (f) is the 2D mapping results of LDA with 3 classes of labels. 
Green dots represent samples from healthy non-smokers, blue dots represent samples from healthy smokers, 
red hexagrams represent samples from lung cancer patients, and light blue diamonds represent other disease 
samples.
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Error estimation.  When classifying the breath samples, 5 samples from other respiratory disease were 
excluded due to small sample size. Meanwhile, healthy smokers and healthy non-smokers were classified as the 
healthy group. The remaining 47 samples could be classified into the following two groups: lung cancer negative 
group and lung cancer positive group. The confusion matrix formed by real results and predicted results is shown 
as Table 3:

Then the accuracy rate (Acr), sensitivity (Tpr) and specificity (Tnr) are:

=
+

+ + +
Acr TP TN

TP FP TN FN (3)

=
+

Tpr TP
TP FN (4)

=
+

Tnr TN
FP TN (5)

Data Availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).

Results and Discussion
Response curves of sensor arrays.  The typical response curve of the electronic nose system to the breath 
sample is shown in Fig. 3. It can be seen that the curve contains the three phases of one detection period, i.e.: ven-
tilation phase, response phase and deflation phase. The response curves of most sensors were similar within the 
detection period. However, the curves of some sensors appeared to be quite different, such as TGS2444, MR516 
and NAP55A. These pattern differences made the “breath fingerprint” more apparent.

Figure 5.  Optimization of Fuzzy k-NN algorithm parameters (k, m).

Figure 6.  Contour map of PCA-SVM parameter (C, σ) optimizing. The arrow is pointing at the optimal 
parameter by cross validation of the grid optimization.
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Comparison of feature extraction effects.  When performing feature extraction, some methods involved 
parameter selection, such as the near neighbor number k in LE algorithm and the Perplexity parameter in the 
tSNE algorithm. We compared the LE mapping results of k = 3, 5, 7, 9, 11, finding the best one to be when k = 7. 
Similarly, after comparison, the Perplexity parameter in tSNE was set as 5. Besides, LDA is a supervised dimen-
sion reduction algorithm, such that the mapping results of different sample labels were different. In this study, 
we examined dimension reduction results via LDA for 4 types of sample labeling (lung cancer group, other res-
piratory disease group, healthy smoking group and healthy non-smoking group) and 3 types of labeling (healthy 
smokers and healthy non-smokers were classified together as a healthy group). The 2D mapping results of differ-
ent feature extraction methods are as follows:

It can be seen in Fig. 4 (a–e) that different feature extraction methods may result in different classifications. 
However, we could also conclude from the 5 dimension reduction mapping results that:

First, in the above 5 kinds of feature extraction methods, LDA had the best classification performance for 4 
types of sample labels in this study. This was indicated by the great distances between the 4 groups and the aggre-
gation of samples in the same group as shown in Fig. 4b. In addition, there was little overlap between different 
groups. The next best classification results were from LE and PCA.

Second, no matter which dimension reduction algorithm was applied, healthy smokers and lung cancer 
patients could all be well classified, i.e. the blue dots and red hexagrams are mutually far away and have nearly no 
overlap in Fig. 4a–e. This also indicates that although many lung cancer patients in this study were also smokers 
or former smokers, their exhaled breath were significantly different from that of healthy smokers. This result was 
practically significant. Indeed, the smokers are a high risk population for lung cancer. However, the e-nose system 
used in this study could optimally distinguish lung cancer patients from healthy smokers in this high risk popu-
lation. This also suggests that the simple screening of lung cancer patients in a high risk population is practically 
feasible.

Third, if samples were classified by the 3 classes of labels (healthy smokers and healthy non-smokers were 
classified as the healthy group), then we should only consider the dots (blue and green) as one group. This way, 
it can be seen that there is some overlap between the healthy group and lung cancer patients in the 2D mapping 
results of dimension reduction by PCA, LE, tSNE and LLE. However, Fig. 4f indicates that LDA still had a good 
classification performance for the 3 classes of sample labels.

Figure 4a–e reveals that no matter which dimension reduction method was adopted, the e-nose system devel-
oped in this study was able to distinguish healthy smokers from healthy non-smokers, as shown in Fig. 4; blue and 
green dots are far away from each other with only slight overlap. This result suggests that the breath components 
of smokers and non-smokers might be quite different, consistent with the conclusions of related studies47.

Classifier Sensitivity[95% CI] Specificity[95% CI] Accuracy[95% CI]

LDA-Fuzzy 5-NN 91.58% [90.01%, 
93.15%]

91.72% [90.35%, 
93.09%]

91.59% [90.56%, 
92.63%]

LE-Fuzzy 5-NN 57.22% [55.7%, 58.75%] 56.14% [53.82%, 58.46%] 56.63% [55.18%, 
58.08%]

PCA-Fuzzy 5-NN 86.25% [84.71%, 87.79%] 56.76% [55.11%, 58.42%] 71.81% [70.6%, 
73.02%]

LDA-SVM 90.83% [88.99%, 92.68%] 84.20% [81.42%, 86.98%] 87.59% [86.2%, 
88.97%]

LE-SVM 64.58% [61.82%, 67.35%] 55.07% [52.57%, 57.57%] 59.93% [58.35%, 
61.51%]

PCA-SVM 57.64% [51.56%, 63.71%] 23.62% [20.39%, 26.86%] 40.99% [37.58%, 
44.41%]

Table 4.  Distinguishing results of lung cancer samples and healthy samples by different classification methods.

Group K Group T

Model Type Model Type

ME3-C7H8 Electrochemical TGS822 Metal oxide 
semiconductor

ME4-C6H6 Electrochemical TGS826 Metal oxide 
semiconductor

CO-B4 Electrochemical TGS8669 Metal oxide 
semiconductor

MR516 Hot wire TGS2600 Metal oxide 
semiconductor

TGS2444 Metal oxide 
semiconductor TGS2602 Metal oxide 

semiconductor

WSP2110 Metal oxide 
semiconductor TGS2620 Metal oxide 

semiconductor

NAP-55A Catalytic combustion WSP2110 Metal oxide 
semiconductor

Table 5.  Sensors grouping.
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Lastly, Fig. 4 also showed that samples from other respiratory diseases (light blue diamonds) were all distin-
guishable from samples of healthy smokers (Figure a-e), from samples of the healthy population (Fig. 4f), and 
from samples of lung cancer patients (Fig. 4f). However, due to the insufficient sample size of patients with other 
respiratory diseases, this conclusion should be further validated with more samples.

Estimation error analysis.  As mentioned before, to carry out this part of study, we excluded samples from 
patients with other respiratory disease, and classified the remaining 47 samples into 2 groups: a healthy group and 
a lung cancer group. Besides, according to the previous dimension reduction comparison, data for classification 
were from feature extraction results by LDA, LE and PCA. When using the mapping results by PCA, according 
to the methods introduced before, the principal component number was 21, and these components explained 
99.08% of the variance.

When using Fuzzy k-NN for classification, the near neighbor number k and the proportionality coefficient m 
should be optimized. A 10 fold cross validation method was used for optimization in this study; results are shown 
in Fig. 5. It can be seen in Fig. 5a that when k = 5, 9, 13, 17, 21, classification accuracy of Fuzzy k-NN algorithm 
remains unchanged. Therefore, k = 5 was utilized in this study. Figure 5b showed the effects of proportionality 
coefficient m on the classification accuracy of Fuzzy 5-NN. It can be seen that when m = 2, the classification accu-
racy of 3 classification method yielded relatively better results. Therefore, m was set as 2 in this study.

As described before, a grid search method was used to optimize the parameters (C, σ) of SVM48. Optimized 
results for PCA-SVM are shown in Fig. 6. When (C, σ) = (0.0625, 0.25), the classification accuracy of PCA-SVM 
is the best. Similarly, optimal (C, σ) of LDA-SVM and LE-SVM were also determined by this method.

After all parameters were optimized, 47 breath samples were classified using 2 classifiers based on the mapping 
results of 3 feature extraction methods mentioned above. Here, we also tested the classification performance by 
the 10-fold cross validation method. Each combined classification method was tested 50 times to obtain the con-
fidence intervals of classification errors (shown in Table 4). It can be seen from the table that the best classification 
performance among the 6 classification methods were the combined methods based on LDA (LDA-Fuzzy 5-NN 
and LDA-SVM). This was consistent with results observed in the dimension reduction mapping plots (Fig. 4). 
Among them, LDA Fuzzy 5-NN showed the best classification results, which produced greater than 90% of sen-
sitivity, specificity and accuracy.

Figure 7.  Mapping results of PCA, LDA and LE using data from sensor group T and group K. (a,c,e) are 2D 
mapping plots of PCA, LDA and LE based on data obtained by sensor group K; (b,d,f) are 2D mapping plots of 
PCA, LDA, and LE based on data obtained by sensors of group T.
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Effects of type-different sensor array on lung cancer recognition.  In order to study the effects of 
type-different sensor arrays of the e-nose on lung cancer recognition performance, we classified the 14 gas sen-
sors into 2 groups: group K and group T (Table 5). Of them, group K included all 4 types of sensors, and group 
T included only MOS sensors. According to the response results (Fig. 1), the sensitivity, response patterns and 
principles of sensors in group K had a greater relative difference from each other than that of sensors in group T.

We still used the 3 dimension reduction algorithms (LDA, PCA and LE) selected earlier to extract principal 
features of the data obtained by these 2 groups of sensors. For comparison, 52 samples were still classified into 
4 groups (lung cancer group, healthy smoking group, healthy non-smoking group and other disease group). 2D 
plots of the mapping results are shown in Fig. 7. It can be seen that, no matter which group the data came from, 
the classification performance of all the 3 feature extraction methods decreased when comparing to the mapping 
results in Fig. 4. However, data from sensor group K gave better classification results (Fig. 7a,c,e) than that from 
sensor group T (Fig. 7b,d,f) when using the same feature extraction algorithm.

In order to further compare the recognition performance of sensor group K and sensor group T, we used the 
Fuzzy k-NN, which had better performance in the previous classification to classify breath samples based on map-
ping results depicted in Fig. 7. Similarly, for comparison, breath samples of other diseases were also excluded, and 
healthy smokers and non-smokers were classified as one group, i.e. 47 samples were divided into two groups: a 
healthy group and a lung cancer group. After parameter optimization, accuracy of 3 classification methods (LDA 
5-NN, PCA 5-NN and LE 5-NN) were obtained using 10-fold cross validation. We ran the validation 50 times to 
get 50 accurate readings for each classification method. Then, the recognition accuracies of sensor group K and 
sensor group T were analyzed using one way-ANOVA; results are shown in Fig. 8.

Similar conclusions could be drawn from results shown in Fig. 8 as in Fig. 7. Firstly, no matter which sensor 
group was used, the lung cancer recognition performance was not as good as the performance that all 14 gas 
sensors showed. Secondly, lung cancer detection accuracy was better when using data from sensor group K than 
that from sensor group T. When utilizing PCA 5-NN (Fig. 8b) and LE 5-NN (Fig. 8c), the recognition accuracy of 
sensor group K was significantly greater than that of sensor group T (n = 50, p < 0.01). Although the classification 
accuracy of sensor groups K and T was not significantly different (n = 50, p = 0.21) when using LDA 5-NN, the 
average and highest recognition accuracy of sensor group K was greater than that of sensor group T after 50 times 
of cross validation. In summary, type-different sensors are notably helpful for improving the lung cancer recogni-
tion ability of the e-nose system designed in this study.

Figure 8.  Accuracy of 3 classification methods based on the data from sensor group K and sensor group 
T. (a) Comparison of classification accuracy using LDA 5-NN based on data from sensor groups K and T; 
(b) Comparison of classification accuracy using PCA 5-NN based on data from sensor groups K and T; (c) 
Comparison of classification accuracy using LE 5-NN based on data from sensor groups K and T. ***indicates 
significance: p < 0.01.
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Conclusion
The e-nose system developed using 4 types of commercial sensors in this study could identify relatively specific 
“breath fingerprints” based on human breath, which could be used to recognize volunteers in different diseased 
or healthy states. LDA proved to be among the best methods for “breath fingerprint” recognition in this study. 
When this e-nose system was used in the differentiation of lung cancer patients from healthy volunteers, the clas-
sification specificity, sensitivity and accuracy as determined by LDA fuzzy 5-NN were all above 90%, indicating a 
comparable performance with traditional imaging modalities. In addition, difference in the type of sensor arrays 
are notably helpful for the improvement of the ability of the e-nose system to detect respiratory diseases.

In a word, the designed e-nose system based on optimized algorithms was low cost, noninvasive and was 
potential practicable in screening lung cancers from both healthy people and lung cancer high risk populations.
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