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Abstract

Age is a well-established risk factor for chronic diseases. However, the cellular and molecular 

changes associated with aging processes that are related to chronic disease initiation and 

progression are not well-understood. Thus, there is an increased need to identify new markers of 

cellular and molecular changes that occur during aging processes. In this study, we use genome-

wide DNA methylation from 26,428 CpG sites in 13,877 genes to investigate the relationship 

between age and epigenetic variation in the peripheral blood cells of 972 African American adults 

from the Genetic Epidemiology Network of Arteriopathy (GENOA) study (mean age=66.3 years, 

range=39–95). Age was significantly associated with 7,601 (28.8%) CpG sites after Bonferroni 

correction for α=0.05 (p<1.89×10−6). Due to the extraordinarily strong associations between age 

and many of the CpG sites (>7,000 sites with p-values ranging from 10−6 to 10−43), we 

investigated how well the DNA methylation markers predict age. We found that 2,095 (7.9%) 

CpG sites were significant predictors of age after Bonferroni correction. The top five principal 

components of the 2,095 age-associated CpG sites accounted for 69.3% of the variability in these 

CpG sites, and they explained 26.8% of the variation in age. The associations between methylation 

markers and adult age are so ubiquitous and strong that we hypothesize that DNA methylation 

patterns may be an important measure of cellular aging processes. Given the highly correlated 

nature of the age-associated epigenome (as evidenced by the principal components analysis), 

whole pathways may be regulated as a consequence of aging.
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Introduction

Age is a well-established risk factor for chronic diseases [1,2]. However, the cellular and 

molecular changes associated with aging processes that are related to chronic disease 

initiation and progression are not well-understood. As the United States transitions into an 

unprecedented increase in the number of aging adults over the next few decades [3], there is 

an increased need to identify new markers of cellular and molecular changes that occur 

during aging processes. These new markers may lead to earlier identification and more 

effective treatments for chronic disease.

Genetic biomarkers of age include telomere length, gene expression, and DNA methylation 

patterns. Telomere length decreases with age, and a recent review of 124 cross-sectional 

studies estimated a mean telomere loss of 24.7 base pairs per year in leukocytes [4]. Some 

[5,6], but not all [7], cross-sectional and longitudinal studies of telomere length in 

leukocytes have shown that African Americans have longer telomere lengths than European 

Americans, after adjusting for age. Telomere loss has also been shown to happen faster in 

African Americans [5,7]. Since telomere length has also been shown to be associated with 

chronic disease status, particularly cardiovascular disease [8] and mortality [9], it may serve 

as an important biomarker for human aging. Gene expression patterns have also recently 

shown promise as a physical marker of aging in humans. A study by Harries, et al. found 

that approximately 2% of transcripts genome-wide are robustly associated with age, and that 

six gene expression probes could be used to build an efficient model to distinguish between 

younger (<65 years) and older (≥75 years) subjects [10]. To date, little work has been 

conducted on gene expression patterns and their association with age in African American 

populations.

Recently, differential DNA methylation patterns that affect gene expression have been 

shown to be associated with aging [11]. More specifically, age has been found to be 

associated with methylation status in pathways related to liver development and metabolism 

[5,12], inflammation, endothelial function, oxidation [13,14], and tumor suppression 

[15,16]. Since DNA methylation and other epigenetic mechanisms provide a potentially 

modifiable link between a gene’s expression and a resulting phenotype [17–20], unraveling 

the relationship between epigenetic mechanisms and cellular aging processes is crucial to 

understanding the origins of chronic diseases and target organ damage that accompanies 

aging.

Many prior preliminary studies that have investigated the relationship between DNA 

methylation and aging processes have either focused on specific genomic regions, such as 

genes in a single biological pathway [13,14], or have investigated average whole-genome 

DNA methylation [11,21]. Studies of whole-genome methylation have consistently shown 

an overall decrease in methylation with increased age. Methylome-wide studies conducted 

in a variety of tissue types and across a wide range of age groups are now emerging [22–27]. 
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These studies have shown significant age-associated changes in DNA methylation at many 

loci throughout the genome in pediatric (N=398 [23]; N=15 [24]) and adult populations 

(N=68 [22]; N=63 [23]; N=93 [26]). A few of the age-associated methylation sites have 

been shown to have a significant overlap between pediatric and adult populations [23,24]; 

however, the rate of change of DNA methylation with age is estimated to be three- to four-

fold faster in pediatric populations [23]. In accordance with the whole-genome methylation 

studies, the comparison of a newborn and a centenarian genome showed more 

hypomethylated DNA in the centenarian genome across promoters, exonic, intronic, and 

intergenic regions, though a greater level of methylation was observed in CpG island 

promoter regions [27]. Methylome-wide and gene-specific studies have also focused on 

developing predictive models for age [22,28]. For example, Bocklandt et al. showed that the 

methylation of three CpG sites is linear with age in adults 18 to 70 years of age, and can 

predict age with high accuracy (an average of 5.2 years) [22].

Despite the benefits of preliminary studies discussed above, the majority of methylome-wide 

studies have been conducted in European American samples and/or have consisted of 

relatively small sample sizes (N<400). In this study, we use genome-wide DNA methylation 

information from 26,428 individual CpG sites in 13,877 genes to investigate the relationship 

between age and epigenetic variation in the peripheral blood cells of 972 African American 

adults from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. We also 

compare our findings across 4 studies that used the same method for measuring DNA 

methylation (Illumina Infinium HumanMethylation27 BeadChip) to identify those sites that 

replicate across studies. Building off of other studies, this work can help to begin identifying 

the chromosomal regions and pathways involved in the epigenetics of aging.

Methods

Sample

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a community-based 

study of hypertensive sibships that was designed to investigate the genetics of hypertension 

and target organ damage in African Americans from Jackson, MS [29]. In the initial phase 

of the GENOA study (Phase I: 1996–2001), all members of sibships containing ≥2 

individuals with essential hypertension clinically diagnosed before age 60 were invited to 

participate, including both hypertensive and normotensive siblings (N=1,854). In the second 

phase of the GENOA study (Phase II: 2000–2004), 1,482 participants were successfully re-

recruited for a second examination. DNA methylation was measured on 1,008 African 

American participants using stored blood samples collected during the second (Phase II) 

examination. The Phase I and II examinations included questionnaires to assess health 

status, health behaviors, and medical history; physical examination for blood pressure, 

height, and weight; and fasting blood samples for creatinine, cholesterol, glucose, insulin, 

and other biochemical measures [30].

Measurement of DNA methylation

Sample preparation and methylation assay—DNA was isolated from peripheral 

blood leukocytes obtained from stored blood samples, and was bisulfite-converted with the 
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EZ DNA Methylation Gold Kit (Zymo Research, Orange CA). Bisulfite-converted DNA 

samples were whole-genome amplified, enzymatically fragmented, and purified, then 

hybridized to Illumina Infinium HumanMethylation27BeadChips, which contain locus-

specific DNA oligomers and a set of 56 control probes. The array was then fluorescently 

stained, scanned using the Illumina BeadXpress reader, and assessed for fluorescence 

intensities across the methylated and unmethylated bead types at 27,578 CpG sites [31–33]. 

This work was performed at the Genotyping Core in the Mayo Clinic Advanced Genomics 

Technology Center (Rochester, MN).

Data processing and methylation quantification—At each CpG site, fluorescent 

signals were measured from the site-specific M (methlyated) and U (unmethylated) bead 

types. The raw fluorescence data was processed using Illumina BeadStudio. To reduce batch 

and chip effects, the correlation structure among all 56 control probes was evaluated within 

channel to identify the most parsimonious subset of probes that explained the maximum 

amount of batch and chip variation across samples (5 probes in the red channel and 8 probes 

in the green channel). We adjusted for batch and chip effects by linearly regressing the 13 

selected probes onto the intensity signals from the methylated and unmethylated bead types 

separately across each CpG site.

Before statistical analysis, samples were checked for data quality. Seven samples were 

excluded from analysis due to poor bisulfite conversion efficiency (intensity <4,000), and an 

additional 29 samples were excluded due to extreme control probe values (i.e., at least one 

control probe greater than four standard deviations from its mean value). This resulted in a 

total sample size of 972.

In this study, we analyzed only autosomal CpG sites. Since our modeling strategy assumes 

that the error terms for the regression on CpG sites are normally distributed [34], we 

removed 58 CpG sites from the analysis because they were found to be multimodal based on 

the Dip Test of unimodality proposed by Hartigan and Hartigan [35] using a cut-off of 

p<0.001 on the signal intensities of the methylated and/or unmethylated bead types. This 

resulted in 26,428 CpG sites included in our analysis. We next identified the 2,984 CpG 

sites with non-specific binding probes and 908 CpG sites with polymorphic probes that 

overlap with single nucleotide polymorphisms (SNPs) reported by Chen et al. [36]. 

Although these sites were not removed from the analysis, we have interpreted the results 

from these sites with caution. That is, we acknowledge that the relationship between DNA 

methylation and age at these sites may be in part influenced by probe characteristics.

Finally, an M-value for each individual i at a single CpG site, k, was calculated as: M-

valueik=log2[(max(Mik,0)+1) / (max(Uik,0)+1)] [37]. Relatively unmethylated M-values 

were considered to be <−2, methylated M-values were >2, and semi-methylated M-values 

were between −2 and 2. These M-value cut-offs correspond to β values of 0.2 and 0.8 [37], 

where β is the ratio of the signal from the methylated probe to the sum of the methylated and 

unmethylated probes, as follows: βik=max(Mik,0) / (max(Mik,0)+ max(Uik,0)+100). M-

values greater than four standard deviations from the mean of each CpG site were removed 

because these values are discontinuous with the distribution and extend beyond the point 

where 99.9% of the values are predicted to lie, according to the Empirical Rule [38]. A total 
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of 28,278 outliers were removed from the 26,428 CpG sites included in the analysis. The 

number of outliers removed ranged from 0 to 34 across all sites (mean=1.07, sd=1.74).

Statistical analyses

Linear mixed effects modeling—We used a linear mixed effects modeling approach to 

evaluate the cross-sectional associations between DNA methylation and age while 

accounting for the familial relationships among study participants using the nlme package in 

R [39]. In order to examine the effects of age on DNA methylation, we considered each of 

the 26,428 individual CpG sites separately as outcomes, with participant age as a covariate 

in the following model: Eijk=β0 + β1Ageij + Wjk + εijk, for participant i in sibship j at CpG 

site k. Ageij represents participant age at Phase II exam, Eijk is the M-value of CpG site k, 

and Wjk is the random effect for each sibship. Thus, in each model, sibship was modeled as a 

random intercept, and the rest of the effects were modeled as fixed effects. In performing 

this modeling, four CpG sites exhibited convergence issues and were subsequently removed 

from the analysis. The Bonferroni method was used to assess experiment-wise statistical 

significance of the p-values (Bonferroni-corrected p-value=1.89×10−6 for a significance 

level of α =0.05).

Due to the extraordinarily strong associations between age and many of the CpG sites 

(>7,000 sites with p-values ranging from 10−6 to 10−43), we wanted to assess the joint 

effects of CpG sites with age. We first used a set of models to evaluate how well each of the 

DNA methylation markers predicted age. In these models, age was the outcome and each of 

the 26,428 CpG sites were predictors, individually, in a linear mixed model: Ageijk=β0 + 

β1Eijk + Wjk + εijk for participant i in sibship j at the kth CpG site. We again used the 

Bonferroni method to assess experiment-wise statistical significance (Bonferroni-corrected 

p-value=1.89×10−6).

In order to better understand the joint effects and correlation structure of the large number of 

CpG sites associated with age, we performed principal component (PC) analysis. We 

calculated PCs using all 2,095 CpG sites that were significantly associated with age at 

1.89×10−6. From the scree plot of the PCs, we identified elbow points at 1 PC, 5 PCs, and 

10 PCs. Next, we evaluated the bivariate association between age and each of the top five 

PCs in separate mixed models such that Ageij=β0 + β1PCij + Wj + εij. Finally, we evaluated 

the association between age and the top five PCs combined in a multivariable mixed model 

such that Ageij=β0 + β1 PC1ij + β2 PC2ij + β3 PC3ij + β4 PC4ij + β5 PC5ij + Wj + εij, for 

participant i in sibship j. We also constructed a multivariable mixed model using the top 10 

PCs. R2 values based on likelihood ratio models (R2
LR) were calculated for each model 

using the R package lmmfit [40].

Results

Description of data

After exclusions, this study used phenotype and methylation data from 972 African 

Americans in 296 sibships across 26,428 CpG sites. The sample was predominantly female 

(70.7%) and hypertensive (82.5%), with mean age of 66.3 years and mean body mass index 
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(BMI) of 31.2 kg/m2. Additional descriptive statistics are presented in Table 1. The mean 

M-value for each of the 2,428 CpG sites ranged from −5.37 to 5.07 with an average mean 

M-value across all sites of −1.58 (Figure 1). The majority of the sites (15,221 sites, 57.6%) 

were unmethylated, with a mean M-value of <−2.

Associations between age and CpG sites

In modeling age as a predictor of M-value, age was significantly associated with 7,601 

(28.8%) CpG sites after Bonferroni correction for α=0.05. Of the sites with statistically 

significant associations, 671 (8.8%) contained nonspecific binding probes, 159 (2.1%) 

contained polymorphic probes, and nine sites (0.12%) had both non-specific binding and 

polymorphic probes as defined by Chen et al. [36]. Adding sex as a covariate into the model 

did not substantially change the associations between age and the CpG sites (7,410 of the 

7,601 associations were still significant after accounting for sex). Table 2 shows the 30 CpG 

sites that were most strongly predicted by age. A striking finding of this analysis is that age 

had an inverse association with all but two of the top 30 CpG sites, indicating that increased 

age is strongly associated with decreased methylation at the majority of the most strongly 

associated sites.

The tendency for age to be inversely associated with CpG site methylation was also 

observed in the 7,601 CpG site M-values that were significantly predicted by age. Figure 2 

shows the relationship between the mean M-value at each of the 26,428 sites and the t-

statistic corresponding to the regression coefficient for age. The t-statistic on the y-axis 

provides two types of information: a) the magnitude of the association with age, and b) the 

direction of the association with age. For example, a t-statistic of −5.0 represents a p-

value=5×10−7 and indicates that increasing age is associated with decreasing methylation. 

Of the 7,601 sites statistically significantly associated with age, 7,292 (95.9%) had negative 

t-statistics, while only 309 (4.1%) had positive t-statistics. Of the 7,292 CpG sites with 

negative t-statistics, 5,589 sites (76.6%) were unmethylated, 1,675 (23.0%) were semi-

methylated, and 28 (0.4%) were methylated. The increased density of negative t-statistics for 

unmethylated markers (M-values < −2) indicates that they are increasingly less methylated 

with older age. In contrast, of the 309 sites with positive t-statistics, 34 (11.0%) were 

unmethylated, 106 (34.3%) were semi-methylated, and 169 (54.7%) were methylated. The 

increased density of positive t-statistics for methylated markers (M-values >+2) indicates 

that these methylated markers are increasingly more methylated with older age. A final 

feature of the genome-wide results displayed in Figure 2 is that it appears that vast majority 

of the most significant associations with age (p<10−10) were in markers that are 

semimethylated (M-values between −2 and +2).

Given the very large number of highly significant age associations with DNA methylation at 

CpG sites, we investigated how well the DNA methylation markers could predict age. We 

examined linear mixed models of CpG site M-values as predictors of age and found 2,095 

(7.9%) sites that were significant predictors of age after Bonferroni correction with 

experiment-wise α=0.05. Supplemental Table 1 shows the 30 CpG sites that had the 

strongest association with age. Nearly all (2,086, 99.6%) of these sites were also significant 
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in the previously evaluated regression of M-values on age, and had the same direction of 

effect.

Principal components of the 2,095 age-associated CpG sites were estimated in order to 

examine the features of the multivariable distribution of significant epigenetic predictors of 

age (Table 3). The top five principal components accounted for 69.3% of the variability in 

the 2,095 CpG sites, and the next five principal components accounted for an additional 

4.7% (i.e., a total of 74.0%). When each of the top five PCs was used as a predictor of age, 

each of the first four PCs was significantly associated with age. In a multivariate model, the 

top five PCs combined explained 26.8% of the variation in age. The linear mixed model 

containing the top 10 together explained an additional 9.22% (i.e., a total of 36.5%) of the 

variation in age.

Discussion

Our findings in GENOA African Americans suggest that age and DNA methylation are very 

strongly associated at many CpG sites across the genome (28.8% of the CpG sites that we 

examined). In this study, the associations between the methylation markers and adult age are 

so ubiquitous and strong that we hypothesize that DNA methylation patterns may be an 

important measure of cellular aging processes in this population. Given the highly correlated 

nature of the age-associated epigenome (as evidenced by the principal components analysis), 

whole pathways may be regulated as a consequence of aging.

Consistent with previous studies in humans and other vertebrates [41–43], we found that the 

majority of CpG sites (95.9%) tended to be less methylated with increased age (Figure 2). 

These changes in methylation may contribute to chronic diseases through a variety of 

mechanisms. For example, it has been found that loss of methylation in CpG dinucleotides 

over time may transcriptionally activate silenced retrotransposons and lead to genomic 

instability [44,45]. We also detected a minority of sites (4.1%) that were more methylated 

with increased age. Increases in methylation at CpG dinucleotides may prevent the binding 

of transcription factors and potentially suppress gene expression [46]. More investigation of 

the pathways implicated in these sets of sites may lead to important insights into aging and 

disease processes. However, replication of these sites would be an important prerequisite to 

detailed pathway analysis.

Previous research has indicated that DNA methylation is a molecular representation of the 

cellular memory of environmental experiences. We found that the joint effects of 2,095 CpG 

sites, represented in the top 10 principal components, were able to explain ~36% of the 

variation in our GENOA African American adults (mean age=66.3 years; SD=7.6). This 

indicates that epigenetic markers may be an important link to understanding the genetic and 

environmental components that contribute to inter-individual differences in the aging 

process.

Several other studies conducted in a variety of populations have examined the association 

between age and DNA methylation across the genome using the same Illumina Infinium 

HumanMethylation27 microarray platform that was used in this study [22–25]. We were 
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able to replicate many of the associations between CpG sites and age that were detected in 

other studies; however, the extent of replication in GENOA African Americans varied 

according to the age distribution of the other study population, as well as the tissue type used 

to measure methylation. Table 4 summarizes the findings from studies that have examined 

the association between age and DNA methylation and the extent of replication of these 

findings in GENOA African American adults.

Briefly, we replicated 84.4% of the age-associated CpG sites from a study of saliva samples 

from 34 monozygotic twin pairs aged 21–55 years conducted by Bocklandt et al. [22] (p-

value <0.05 in GENOA and the same direction of effect). In a study of whole blood 

methylation from 398 healthy males aged 3 through 17 years conducted by Alisch et al., we 

replicated 72.5% of the age-associated CpG sites [23]. Of the sites that we replicated from 

the Alisch et al. study, the majority (84.6%) were less methylated with increasing age. In 

order to assess methylation patterns throughout different phases of development, Numata et 

al. examined methylation in the dorsolateral frontal cortex of the brain in study groups of 

varying ages (fetal (N=30), childhood, ages 0–10 years (N=15), and beyond childhood, age 

> 10 years (N=63)) [24]. Despite using a biologically available tissue, we replicated 13%, 

49%, and 63% of the frontal cortex age-associated CpG sites in these study groups, 

respectively. Finally, we replicated 86% of the age-associated CpG sites associated from a 

study conducted by Teschendorff et al., which examined the association between age and 

DNA methylation from whole blood samples of postmenopausal women (N=113 ovarian 

cancer cases and N=148 controls) [25]. Of the sites replicated in GENOA, the majority 

(69.3%) were less methylated with increasing age.

A variety of factors may have contributed to the differences in findings between the present 

study and previous studies. Different tissue types display differences in methylation patterns, 

and there is also a substantial difference between the methylation patterns observed between 

tissue samples and blood samples [47]. It is not surprising that we replicated a much higher 

percentage of the age-associated sites from studies that measured methylation in peripheral 

blood than studies that used tissue samples. Population demographics of the studies may 

also have contributed to differences in findings. The GENOA population is African 

American, has an older average age than other populations studied, and is primarily 

hypertensive. The higher prevalence of hypertension, diabetes, and obesity in this population 

and/or the higher prevalence of risk factors for these chronic diseases (such as diet, stress, 

and physical activity) may have led to specific DNA methylation signatures. Since we 

assessed a cell population of peripheral blood leukocytes that consists largely of neutrophils 

(40–75%) and lymphocytes (16–48%) [48], we recognize that we may be exploring the 

aging processes of these cell types which are involved in promoting chronic inflammation, a 

common correlate of common chronic diseases. Differences in statistical techniques and 

sample sizes may also have led to differences in the significance levels of age-associated 

sites, and hence the comparability across studies. However, despite these important 

differences between studies, we can conclude that there are many CpG sites that are 

associated with age across a variety of studies, and that our study contributes to a growing 

body of knowledge that indicate groupings of CpG sites that are important indicators of age 

and developmental stage across a variety of populations.
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Our study does have several limitations. First, as discussed above, the study population is 

African American, of older age, and primarily hypertensive. Thus, findings may not be 

entirely generalizable to populations of other ethnic backgrounds, ages, or disease history 

profiles. However, the GENOA study is a community-based sample that is composed of 

both hypertensive and normotensive individuals in sibships that have demographics that are 

similar to other families in the community (age range=39–95 years) [29]. A second 

limitation is that we do not know the extent to which genetic variation influences epigenetic 

variation. If there is a substantial influence, then admixture in the African American 

community from Jackson, MS may affect the results of this study. A third limitation of this 

study is that we only have cross-sectional measures of methylation and age. Since we do not 

have longitudinal measures of methylation, we can’t assess how methylation changes with 

age in individual participants.

This study shows that in this population of GENOA African Americans, many CpG sites are 

strongly associated with age and predict a substantial amount of variation in age. Future 

research should include a closer examination of the highly significant markers to determine 

their molecular physiological role in the aging process. Another avenue of research would 

be to identify individuals with methylation profiles that are extremely different than their 

chronological age in order to understand how these markers translate into physiological 

differences. From a clinical and public health perspective, differences between 

chronological age and cellular age could be used to identify individuals at greater risk of 

premature aging and age-related chronic diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of mean M-value across 26,428 CpG sites.
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Figure 2. 
T-statistic distribution of regression of M-value on age vs. mean M-value of corresponding 

CpG site for 26,428 DNA methylation markers. Red vertical lines at −2 and 2 represent 

delineation of unmethylated and methylated levels of CpG sites, such that sites having mean 

M-value <−2 are considered unmethylated, and sites having mean M-value >2 are 

methylated.
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Table 1

Baseline characteristics of GENOA participants.

Total N Mean (SD) Range

Age, years 972 66.3 (7.6) 39–95

BMI, kg/m2 965 31.2 (6.1) 16.4–55.1

Systolic BP, mm Hg 970 140 (21) 79–221

Diastolic BP, mm Hg 972 78 (11) 45–121

Total cholesterol, mg/dL 972 203.7 (42.1) 73.5–354.5

Triglycerides, mg/dL 963 116.6 (53.8) 37–345

HDL cholesterol, mg/dL 967 57.9 (17.1) 21.7–122.3

LDL cholesterol, mg/dL 972 123.6 (39.7) 24.9–272.1

Glucose, mg/dL 951 108.6 (29.6) 49.5–245

Insulin, mU/mL 953 9.23 (8.25) 0.22–58.29

Serum creatinine, mg/dL 961 0.92 (0.25) 0.42–2.16

Total N Count Percent

Female sex 972 687 70.7%

Ever smoker 909 266 29.3%

Hypertension 972 802 82.5%

Diabetes 972 298 30.7%

Obesity 968 467 48.2%

BMI=body mass index, BP=blood pressure, HDL=high density lipoprotein, LDL=low density lipoprotein.

Obesity is defined as BMI>30 kg/m2.
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