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How do enveloped viruses bud from their host cells? To
understand how this process is achieved, several fundamental
steps must be considered. First, viral structural components
must be transported to the appropriate site, typically just
under a cell membrane, and there assembled (Figure 1a) [1].
Second, the plasma membrane must be distorted to make a
succession of curved budding structures (Figure 1b,c); this
requires overcoming the mechanical bending resistance of the
plasma membrane [2]. Third, following the formation of the
bud, the virus has to pinch off and escape from the cell
(Figure 1d,e) [3]. This involves machinery that constricts the
neck of the bud, resulting in fusion between the membranes
on either side of the neck and the release of the virus from the
plasma membrane. Studies with a number of virus types,
most prominently retroviruses, have now revealed that cellu-
lar proteins that are intimately involved in intracellular mem-
brane trafficking and receptor re-localization play key roles in
facilitating these processes. 

For a long time, it has been known that the only retroviral
component required for assembly and budding is the Gag
polyprotein, which ultimately forms the viral core [1]. Gag
is cleaved into a variety of smaller components as the virus
matures. These include, from amino terminus to carboxyl

terminus, the matrix (MA), capsid (CA) and nucleocapsid
(NC). Depending on the virus analyzed, a variety of other
protein products are seen after cleavage of Gag. For
example, in human immunodeficiency virus-1 (HIV-1) a
short peptide called p6 is cleaved from the carboxy-terminal
end of NC, whereas in murine leukemia virus (MuLV) a p12
peptide is cleaved from between MA and CA. 

Three types of functional domain of Gag can be identified: M,
sequences required for transport to and binding of mem-
branes; I, involved in Gag-Gag interactions; and L, late
sequences [1,3]. The L domains are short peptide motifs
located in different regions of Gag in different viruses; mut-
ation in these sequences results in failure to release budded
viruses [4,5]. Many L domains are interchangeable between
viruses, suggesting that their role in the late stages of budding
is to act as docking sites for cellular proteins [5-7]. A key step
in understanding the late budding process came with the
demonstration that the L domain of HIV-1 Gag interacted
with a component of the cellular machinery responsible for
sorting cargo into multivesicular bodies (MVBs) [8-10].

MVBs are formed from early endosomes when their mem-
branes invaginate into the endosomal lumen, resulting in
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the release of vesicles into the luminal space [11,12]. Mono-
ubiquitination acts as a signal for directing proteins into
MVBs, although it might not be the only signal, given that
membrane proteins that are not ubiquitinated can also be
transported to the MVBs. The formation of MVBs requires
three protein complexes, which were first characterized in
yeast and are collectively known as the endosomal sorting
complexes required for transport (ESCRTs) [13-15]. ESCRTI
and ESCRTII each contain one subunit that binds ubiquitin.
ESCRTII is believed to function downstream of ESCRTI, as
overexpression of the former can compensate for the loss of
the latter, but the opposite is not the case. ESCRTII func-
tions to recruit ESCRTIII to the membrane. Recent studies
have confirmed the interaction between proteins of ESCRTs
I and II and between those of ESCRTs II and III [16,17]. The
full ESCRT complex is dissociated by the AAA (ATPase asso-
ciated with diverse cellular activities) protein, Vps4 [18,19].

HIV-1 interacts with the Tsg101 component of ESCRTI via a
late domain within the p6 domain of Gag that contains the
sequence P(S/T)AP (in the single-letter amino-acid code).
Depletion of Tsg101 results in production of a late-domain
phenotype, similar to the stage shown in Figure 1d [8]. Arti-
ficially recruiting Tsg101 into another late-domain mutant
rescues budding activity [9]. These findings suggest that the
ESCRT complexes might facilitate scission of the nascent
virion from the cell. Very recent studies have shown that
release of HIV-1 can be blocked at a late stage by mutation
or deletion of at least eight cellular proteins that are

involved in the biogenesis of MVBs [17]. Other retroviruses
containing different L domains, such as MuLV (character-
ized by a PPXY motif, where X is any amino acid) and
equine infectious anemia virus (EIAV, characterized by a
YPXL motif), do not interact directly with Tsg101 [3].
Budding of these viruses is arrested by dominant-negative
mutants of various components of the MVB pathway, again
implicating at least some portions of the endosomal sorting
machinery in virus release [20-22]. In addition, some retro-
viruses appear to contain two L domains that can contribute
to virus release [23,24]. L domains are also found in the
matrix proteins of rhabdoviruses [25], filoviruses [9] and
orthomyxoviruses [26], suggesting that involvement of the
MVB pathway may be a common theme in virus budding.

Are these proteins the only cellular factors to play a role in
virus budding? The article by Wang and colleagues in this
issue of Journal of Biology [27] suggests otherwise. It brings
several other participants in the field of cell-membrane
movement into play, with intriguing possibilities. Wang et
al. describe the interaction between the Gag protein of the
Moloney MuLV and components of the cellular endocytic
machinery, the endophilins. The interaction was initially
detected in a yeast two-hybrid protein-protein interaction
screen using as its ‘bait’ the Gag protein from the MuLV-
related murine acquired immunodeficiency syndrome
(MAIDS) virus. Subsequently, endophilin 2 was found to
interact with the Gag proteins of MuLV and Rous sarcoma
virus (RSV) but not of HIV-1, Mason Pfizer monkey virus
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Figure 1
A schematic representation of retrovirus budding. (a) Gag proteins move to the plasma membrane and begin to associate with one another.
(b) Formation of electron-dense aggregates under a deforming plasma membrane follows. (c) Bud curvature steadily increases. (d) Membrane fusion
leads to pinching-off of the virion; (e) proteolytic processing of Gag leads to virion maturation and formation of an electron dense core. L-domain
mutants of most retroviruses arrest at a stage equivalent to (d) but with an extended stalk [3,4]; in other viruses, such as human T-lymphotropic
virus 1 (HTLV-1), arrest occurs at a stage roughly equivalent to (b) [38]. MA, matrix; CA, capsid; NC, nucleocapsid; Env, envelope proteins.
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(MPMV) or simian immunodeficiency virus (SIV). MuLV
Gag could also interact with rat endophilin 1, another
member of the endophilin family [27]. 

The interaction between endophilin 2 and MuLV Gag was
confirmed using a fusion protein made up of glutathione-S-
transferase (GST) and endophilin 2, attaching this to beads
and using them to pull down Gag from MuLV-infected cells.
Significantly, 0.7% of the endophilin 2 present in MuLV-
producing cells became incorporated into the virions. Inter-
estingly, �-adaptin and clathrin, two other components of
the clathrin-mediated endocytic machinery [28], were also
found to be incorporated into MuLV virions. The region
required for binding to endophilin 2 was mapped to the
MA domain of the Gag protein. An intact endophilin 2
protein was required for Gag interaction, as determined in
the yeast two-hybrid system, but various fragments of
endophilin 2 could be incorporated into MuLV virions even
though they did not interact with Gag in this assay.

Overexpression of full-length endophilin 2 in MuLV-pro-
ducing cells resulted in a dose-dependent reduction in
virion production. Fragments of endophilin 2 were also
inhibitory, but to a somewhat lesser degree. In contrast, an
excess of endophilin 2 did not affect production of HIV-1
from cells, ruling out the idea that the effects on MuLV are
due to direct toxicity. This suggested that the specific
binding of endophilin 2 to MuLV Gag plays an important
role in MuLV production. It will be of considerable interest
to determine where virus production is arrested in over-
expressing cells. Inhibiting endophilin 2 levels by 80%
using a small interfering (si) RNA, however, did not seem to
affect viral production. This was attributed to the potentially
low levels of endophilin 2 required for virion production,
or the presence of other members of the endophilin family
that could make up for the reduction in endophilin 2.
Although perfectly plausible, these explanations do not
completely dispel the uncertainty introduced by the nega-
tive siRNA experiments. Hence, the conclusion that
endophilins are absolutely required for MuLV budding
remains to be confirmed by further experimentation.

Relatively little is known directly about the function of
endophilin 2, but endophilin 1 is a 40 kDa cytoplasmic
protein containing an amphipathic domain at the amino
terminus as well as a Src homology 3 (SH3) domain near
the carboxyl terminus [29]. It is a multifunctional protein
that is believed to participate in both early and late stages of
endocytosis [28], has lipid transferase activity [30] and is
considered capable of affecting membrane curvature [31] as
well as binding and deforming liposomes into tubules [32].
It can bind to proline-rich domains in multiple cellular pro-
teins, including dynamin and synaptojanin [33]. The closely

related endophilins 2 and 3, though less well characterized,
seem likely to possess similar properties [29].

Given the membrane-bending properties of endophilins, a
role for this family of proteins in virus budding seems, at
least superficially, an attractive hypothesis. But compared to
endocytosis, MVB formation and virus budding are topolog-
ically different processes, with endocytosis involving invagi-
nation into the cytoplasm whereas MVB formation and
virus budding involve evagination, away from the cyto-
plasm. It seems likely that much of the protein machinery
mediating these processes is fundamentally different (for
example, involving components of clathrin-coated pits
versus the ESCRT complex). It seems quite feasible,
however, that some proteins might be involved in both
processes, particularly those with the ability to bend and
fuse membranes. Certainly there is evidence for some cross-
talk, as shown by the interaction between endophilins and
ALIX, a key player in formation of ESCRT complexes and
virus release [17,34,35].

Although significant steps have been taken towards under-
standing virus budding during the past couple of years,
there are still a number of important issues that remain to
be addressed. How is the initial bud formed? It may be that
energetic requirements for membrane distortion can be met
simply by the I-domain-mediated assembly of Gag mole-
cules, resulting in movement of associated membrane lipid
molecules [36]. But what happens in the case of viruses like
MPMV that assemble in the cytoplasm? Is there a need for
cellular enzymes such as endophilin to introduce negative
curvature (bending towards the outside of the cell) by mod-
ifying the lipid composition of the membrane? How does
membrane pinching-off take place? The ESCRT complex is
intimately involved, but is the whole complex required and
what is the role of other factors such as the ubiquitin ligase,
Nedd4, that are clearly involved in the budding of certain
viruses [23,24]? How is the plasma membrane targeted for
budding? In macrophages HIV-1 can bud into vacuoles
[37], but what targets Gag and associated ESCRT complexes
to the cell surface in HIV-infected T cells? Given the pace of
progress in this area, driven in part by the urgency of devel-
oping novel antiretroviral drugs, we can be optimistic that
these and related questions will soon be answered, bringing
closer a detailed understanding of the mechanisms of virus
budding and membrane remodeling. 
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