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A B S T R A C T   

The COVID-19 pandemic has placed unprecedented strain on the healthcare system, particularly hospital bed 
capacity in the setting of large variations in patient length of stay (LOS). Using electronic health record data from 
966 COVID-19 patients at a large academic medical center, we developed three machine learning algorithms to 
predict the likelihood of prolonged LOS, defined as >8 days. The models included 353 variables and were trained 
on 80% of the cohort, with 20% used for model validation. The three models were created on hospital days 1, 2 
and 3, each including information available at or before that point in time. The models’ predictive capabilities 
improved sequentially over time, reaching an accuracy of 0.765, with an AUC of 0.819 by day 3. These models, 
developed using readily available data, may help hospital systems prepare for bed capacity needs, and help 
clinicians counsel patients on their likelihood of prolonged hospitalization.   

Introduction 

The rapid development of a global pandemic following the emer-
gence of SARS-CoV-2 has placed unprecedented strain on the healthcare 
system. As of April 2021, an estimated 30 million Americans had been 
infected, with over a million requiring hospitalization and more than 
500,000 dying from the resultant illness known as Coronavirus Disease 
2019 (COVID-19) [1,2]. Unfortunately, despite public health efforts, the 
rate of infection has remained high, leaving hospitals struggling to meet 
the surging demand for beds. This crisis is primed to be compounded by 
influenza season, which has traditionally strained the healthcare system 
on its own, as well as the potential for new SARS-CoV-2 variants. The 
confluence of both of these viral pathogens leaves healthcare providers, 
administrators, and systems in need of a method to predict the avail-
ability of hospital beds so as to appropriately plan for expected capacity. 

COVID-19 severity of illness varies greatly, with many patients 
experiencing few to no symptoms, some needing only short hospitali-
zations, and others spending weeks to months in the hospital. This 
variability in length of stay (LOS) makes predicting hospital bed avail-
ability difficult. Further, the novel nature of COVID-19 leaves clinicians 

often ill-equipped to predict which patients will have long lengths of 
stay and which will be able to quickly return home. We sought to 
leverage clinically generated data in the electronic health record (EHR) 
of a large academic medical center to develop a machine learning al-
gorithm to predict prolonged LOS, defined as >8 days, for patients 
admitted with COVID-19. 

Methods 

Study population 

We examined all patients admitted to Cedars-Sinai Medical Center 
between April 1st, 2020 and September 6th, 2020 with a diagnosis of 
COVID-19, based on RT-PCR testing. Cedars-Sinai is a large academic 
hospital located in Los Angeles, California serving a diverse patient 
population. Patients who died within 8 days of being admitted to the 
hospital were excluded from the cohort, as they were not eligible to meet 
the primary endpoint of prolonged LOS. Eight days was selected as the 
threshold of prolonged length of stay based on magnitude of deviation 
from mean and median length of stays during the same time period. 
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Model structure 

LOS prediction models were created using high-dimensional, patient 
level EHR data. Models were validated on three similar tasks: prediction 
of LOS with i) data from only day 1, ii) data from the first 2 days of 
hospitalization, and iii) data from the first 3 days of hospitalization. 
Automated machine learning through iterative selection of model pa-
rameters and model architecture was performed using a structured 
environment, with selection based on area under the curve (AUC) on a 
held-out validation cohort. Models evaluated include variations on 
Elastic-net, gradient boosted trees, random forest, support vector ma-
chines, logistic regression, a Eureqa classifier, generalized additive 
models, a Vowpal Wabbit classifier, K-nearest neighbors classifiers, re-
sidual neural network, a Rulefit classifier, and ensemble models, which 
were a combination of other models listed above, to avoid overfitting of 
single models on their own. Models were developed using DataRobot 
(Boston, MA), an automated machine learning method that facilitates 
parallel algorithms while also supporting ensemble models; the Data-
Robot method chooses models appropriate to a given data set and pre-
diction target, training those models at different hyperparameter 
tunings with different groups of features and constraints and then 
ranking them based on a selected evaluation metric. Models varied in 
the features that they used for prediction, some using all data fields, 
while others search over only features that were most highly correlated 
with the target value. 

Data acquisition and preprocessing 

All patient information was harvested from the EHR. In order to 
make predictions at the individual patient level, data sets that contained 
multiple values for a patient were aggregated. For repeated measures, 
separate features stored the first value during the applicable time period, 
the last value during the applicable time period and, if the variable was 
numeric, the difference between the two. A total of 353 features were 
used to make the predictions (Supplemental Table 1). Race and ethnicity 
were explored as potential model features but showed no difference in 
modeling accuracy and were thus excluded to reduce the risk of model 
bias. Breakdown of racial and ethnicity data is shown in descriptive 
tables for completeness (Entire population: 36.7% Non-Hispanic White, 
29.2% Hispanic, 17.9% Non-Hispanic Black, 5.1% Asian and 11.1% 
Other/Unknown) (Supplemental Figure 1). To generate comorbidity 
related features, we used Charlson and Elixhauser Scores [3], calculated 
from ICD-10 codes. Additionally, patient day to day location was 
included to classify patients into intensive care unit (ICU) and non-ICU 
rooms and also to count the number of days a patient had spent in the 
ICU. Date of admission was included as a feature. Missing values were 
imputed to the median if the column exceeded a given model’s mini-
mum threshold for number of existing values. If a given model’s mini-
mum threshold was not met, the missing values were set to null. 

Model validation 

Models were evaluated based on the AUC for predicting short LOS, 
when applied to a set of holdout data, selected based on random strat-
ification of eligible patients. For each model, 80% of the patient data was 
used for training and 20% was set aside in the holdout portion for model 
evaluation. Because elements of previous models were being passed 
forward, the holdout cohort of patients was maintained throughout all 3 
versions of the model to reduce the possibility of target leakage between 
models. The train and test methodology was selected over k-fold cross 
validation given concerns over target leakage given use of stacked 
models. All protocols were approved by the Cedars-Sinai Institutional 
Review Board and the manuscript prepared in accordance with the 
TRIPOD guidelines [4]. 

Methodologic process 

In summary, models were created to predict short LOS on days 1, 2 
and 3 of hospitalization. A total of 42 models were trained on data from 
80% of patient population, with all models representing variations on 
the 12 base models listed above, with ensemble models developed as 
meta-algorithms of other models. Following training, all models were 
then tested on the remaining 20% of the population and ranked based on 
AUC for predicting short LOS. Training and testing were performed for 
each model on each of the first 3 days of hospitalization. The models 
with the highest AUC for predicting short LOS using the test data on each 
of these days were selected as the best model at each timepoint. 

Results 

A total of 966 patients were included in this study: 525 of whom had 
a LOS of ≤8 days, while 441 patients had an LOS of >8 days. The 
characteristics of those patients are shown in Fig. 1. 

A total of 42 separate models were trained on the data and ranked 
based on their performance on the AUC metric for predicting short LOS 
(Supplemental Table 2). For all 3 prediction tasks, ensemble-based 
models performed best (ENET Blender for days 1 and 2 models and 
Advanced AVG Blender for day 3 model). Model performance improved 
with increasing data, with the models trained on culminative day 3 data 
demonstrated the highest sensitivity (0.93), accuracy (0.765) and AUC 
(0.819). The sensitivity, specificity and accuracy for the DataRobot 
ensemble model for each of the first 3 days of hospitalization are shown 
in Table 1 and AUC for each plotted in Fig. 2. Fig. 3 shows the com-
parison of the 2 X 2 confusion matrix for each of these models on the 
validation data set (n = 200). Model performance was similar on both 
training and validation data sets for the majority of models, indicating 
that the model did not overfit to the training data set. Calibration was 
similar for the top performing model at each time point. In all cases, 
accuracy was best when the model was predicting values between 0.0 
and 0.015 (predicting a long stay for a given patient) (Supplemental 
Figure 2). 

Feature importance 

For all models developed as part of this study, feature importance 
was calculated based on scaled (0–1) model accuracy degradation after 
permutation of feature values (Supplemental Table 3). The top 5 fea-
tures for the day 1 model were: age at time of admission (feature 
importance of 1.0), Interleukin 6 values (0.35), the patient’s most recent 
blood urea nitrogen level (0.31), the patient’s first temperature mea-
surement (0.31), and whether or not the patient indicated alcohol use 
(0.24). For the day 2 models, the top 5 features were prediction from the 
patient’s first day of stay (1.0), age at time of admission (0.65), differ-
ence in oxygen flow rate from beginning to end of measurement period 
(0.41), the date of admission (0.32) and the most recent blood urea 
nitrogen level (0.25). Finally, for the day 3 model, the top 5 features 
were prediction from the patient’s second day of stay (1.0), age at time 
of admission (0.59), average respiratory rate over the last 12 h (0.28), 
most recent oxygen flow rate measurement (0.27), and difference in 
oxygen flow rate from beginning to end of measurement period (0.26). 

Discussion 

Our results demonstrate that machine learning algorithms, particu-
larly ensemble algorithms, may be useful new tools in predicting hos-
pital LOS, even for novel disease states, such as COVID-19. Physicians 
have been attempting to predict hospital LOS for over 50 years [5], with 
varying levels of success. Understandably, LOS is often easier to predict, 
both clinically and using machine learning algorithms, for well-defined 
conditions and scheduled admissions such as orthopedic surgeries [6]. 
As a novel viral pathogen with unknown disease course, COVID-19 
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represents a unique challenge, leaving clinicians without the experien-
tial knowledge upon which to base their LOS estimations. We present the 
development of 3 machine learning models (ENET Blender for days 1 
and 2 models and Advanced AVG Blender for day 3 model) capable of 
identifying prolonged LOS among patients admitted with COVID-19, 
offering physicians and healthcare systems a new tool for predicting 
outcomes and to plan for hospital capacity needs during the ongoing 
global pandemic. Model accuracy increased steadily with additional 
hospitalization data, reaching an AUC of 0.819 by day 3 of 
hospitalization. 

The global focus on battling COVID-19 has provided some insights 
into important clinical variables that may predict more severe illness. A 
systematic review demonstrated that, with the exception of China, 
COVID-19 patients experienced a median hospital LOS of 5 days, but this 

Fig. 1. Initial patient characteristics for short stay and long stay patients with COVID-19.  

Table 1 
Model statistics comparison.  

Model AUC Sensitivity Specificity Accuracy Precision F1 

1 day of 
stay 
model 

0.803 0.82 0.68 0.745 0.68 0.74 

2 days of 
stay 
model 

0.807 0.86 0.64 0.735 0.66 0.74 

3 days of 
stay 
model 

0.819 0.93 0.63 0.765 0.67 0.78  

Fig. 2. Area under the curve comparison for COVID LOS models created on different of a patient’s LOS  
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time period frequently exceeded 3 weeks [7]. In fact, studies in the US 
indicate that among hospitalized COVID-19 patients, over 41% spent 
greater than 9 days in the hospital [8]. Patient age [9], presenting 
temperature [10] and inflammatory marker levels, such as IL-6 [11], 
have been previously shown to be markers of severity of illness. As ex-
pected, our results were also consistent with age as a feature associated 
with COVID-19 illness severity. Importantly, clinical experience has not 
yet elucidated what levels of these variables will aid in differentiation 
between patients who are likely to suffer a prolonged hospital stay and 
those who will not. Our data indicate that even small perturbations in 
these factors, for example a presenting temperature difference of only 
0.3◦ Fahrenheit, which may be ignored clinically, may prove important 
in identifying patients with prolonged LOS. 

Prior models have been developed to predict hospital demand across 
a geographic region via susceptible, infected, removed modeling [12]. 
Our approach, however, allows for institution-specific estimates using 
clinical data, allowing for the development of accurate and actionable 
models at the hospital level. For example, an early awareness of a high 
number of prolonged LOS COVID-19 patients would allow a hospital to 
cancel elective procedures, reduce non-urgent transfers from other fa-
cilities and expand bed capacity in advance of a potential surge in 
hospital census. Conversely, a large number of patients predicted to 
have short LOSs could provide valuable insights for planning care of 
non-COVID patients. Another benefit of the developed models includes 
the ease of access of the input variables, which are extracted directly 
from the institutional EHR. 

Machine learning models developed prior to the COVID-19 pandemic 
have demonstrated the ability to predict prolonged LOS, reaching AUCs 
as high at 0.84 [13]. Importantly, these results were obtained when 
examining patients admitted with a multitude of know medical condi-
tions, not including COVID-19. Further, among the most important 
features in this model was the primary diagnosis at the time of admis-
sion, indicating that the reason for hospitalization greatly affects the 
model’s accuracy. As such, our models’ ability to identify prolonged LOS 
with an AUC of 0.819 for a novel disease represents an early and robust 
result. 

We found a rapid decrease in feature importance following patient 

age and prior model outputs, with other features individually contrib-
uting relatively less to overall predictive power. In the context of the 
models’ robust AUC, this trend in feature importance supports the use of 
machine learning algorithms that incorporate numerous variables to 
provide the best predictive output. 

There are several limitations of our study that should be considered. 
The patient population and clinical data were drawn from a single center 
which may limit generalizability. Given its geographic location, how-
ever, the patient population of Cedars-Sinai Medical Center represents 
one of the most diverse cohorts in the country. The single-center nature 
of the study also limits the number of patients meeting inclusion criteria. 
Despite this, the developed algorithms were able to accurately differ-
entiate patients predicated LOS. Future prospective studies, particularly 
using external datasets from a different geographic location, would 
provide further validation of these findings. Further, given the rapid 
development of new therapeutic options for the treatment of COVID-19, 
such as steroid therapy and convalescent plasma, over time our algo-
rithms may be affected by the introduction of these interventions. A 
benefit of such model development, however, includes the ability to 
adapt as new factors, including treatment modalities, are captured in the 
EHR. Finally, the testing of multiple ML models raises potential limita-
tions around model tuning and multiple testing. Selection of inappro-
priate tuning parameters for a model may result in selection of a less 
effective model than may otherwise be found under other parameters. 
DataRobot addresses this issue by training the same model repeatedly 
using different standard hyperparameters and selecting the model that 
provides the highest AUC, minimizing, but not fully eliminating the risk 
of model parameter mismatch for the goal of a given model. Our results 
must be interpreted in the context of the recognized limitations of using 
clinically generated data from the EHR to develop multiple machine 
learning algorithms. Specifically, unlike in clinical trials, EHR data may 
contain unrecognized errors which may skew results. The testing of 
multiple models may compound this issue by introducing error through 
multiple testing. The decision to pursue testing of multiple models was 
borne from the lack of clinical information available on the novel SARS- 
CoV-2 pathogen and what variables may be most predictive for pro-
longed LOS. Without this prespecified clinical knowledge base, the use 
of multiple models allowed for inclusion of a greater number of pa-
rameters and model fits, with the goal of finding the highest AUC. 

In conclusion, the development of machine learning algorithms offer 
a novel approach to tackling the pressing concern of hospital capacity 
during the ongoing global pandemic. This work demonstrates that these 
algorithms are accurate and can be developed for novel disease states for 
which clinical knowledge is yet unavailable, enhancing clinicians’ 
ability to make early determinations. Such hospital-level predictions 
may provide actionable information for healthcare systems and pro-
viders in order to maximize capacity to care for a large and critically ill 
patient population. Lessons learned from these methodologies may be 
used in the future, if or when we are faced with similar crises. 
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Fig. 3. Model outcome comparison  
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