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Abstract

L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for 

many biological processes. Distinct ascorbate biosynthetic pathways have been established for 

animals and plants, but little is known about the presence or synthesis of this molecule in 

invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis 

elegans, where this molecule would be expected to play roles in oxidative stress resistance and as 

cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid 

chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is 

present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg 

stage containing the highest concentrations. Incubating C. elegans with precursor molecules 

necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. 

Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant 

or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate 

when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results 

support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel 

pathway and lay the foundation for a broader understanding of its biological role.
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3. INTRODUCTION

L-ascorbate (vitamin C) is a widely used metabolite in plants and animals that functions as a 

cofactor and as an antioxidant by undergoing two successive one-electron oxidation 
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reactions to yield monodehydroascorbate radical and dehydroascorbate (1,2). These 

reactions can participate in biosynthetic reactions, neutralize reactive oxygen species that 

lead to DNA, lipid, and protein damage, and regulate processes involved in development 

and stress resistance (3–10). Evidence has been presented that administering increased 

amounts of ascorbate to humans can boost the immune system (11), reduce the risk of 

chronic diseases (12,13), and improve the recovery of critically ill patients (14,15). In 

humans and other vertebrates, ascorbate prevents the disease scurvy by ensuring that the 

iron cofactors in the prolyl 3-, prolyl 4-, and lysyl hydroxylases, enzymes responsible for the 

formation and stability of the collagen triple helix structure, are in the enzymatically active, 

reduced ferrous state (16,17). Other iron- and copper-dependent monooxygenases also rely 

on ascorbate as a reductant, including the enzymes involved in the formation of 

neurotransmitters derived from tyrosine (17) and in carnitine biosynthesis (18,19), as well as 

the hypoxia-inducible factor 1 (HIF-1) that regulates metabolism in response to molecular 

oxygen levels (20).

The presence of ascorbate has been well documented in plants and vertebrates. All 

photosynthetic organisms studied to date synthesize ascorbate (21), including higher plants, 

which can contain up to 19% of their total soluble leaf carbon content as ascorbate (22,23), 

bryophytes (24), green algae (25), photosynthetic protists (22), and cyanobacteria (26,27). In 

these organisms, the amount of ascorbate varies depending on the tissue analyzed, age of the 

organism, time of day, altitude, and light intensity (22,28–30). Although ascorbate is present 

in cartilaginous, actinopterigian, and non-teleost fish (31,32), amphibians, and reptiles 

(33,34), it is not synthesized in all bat and bird species due to the inactivation of ascorbate 

biosynthesis genes (35). Furthermore, humans, anthropoid primates, guinea pigs, and teleost 

fish cannot synthesize ascorbate and require it in the diet (35).

In contrast to plants and animals, little is known about the presence or the possible 

biosynthesis of ascorbate in invertebrates. Ascorbate was reported to be present in various 

marine invertebrates (36–38) and in Drosophila melanogaster (39). In Drosophila, ascorbate 

was detected in flies raised on an apparent ascorbate-free diet, but no evidence for 

endogenous biosynthesis of the molecule was shown (39). Because no studies have recently 

explored the presence or possible biosynthesis of ascorbate in invertebrates, several authors 

have concluded that invertebrates are incapable of synthesizing this molecule (33,40,41). 

Based on the important roles of ascorbate in metabolism and in resistance to reactive oxygen 

species, we felt that it was important to establish in an invertebrate species both the levels of 

ascorbate and how it may be biosynthesized.

Three distinct ascorbate biosynthetic pathways have now been described for plants, 

vertebrates, and protist species. In plants, the Smirnoff-Wheeler pathway involves ten 

enzymes that participate in the conversion of D-glucose to L-ascorbate via GDP-D-mannose 

and L-galactose (3). VTC2, which catalyzes the conversion of GDP-L-galactose to L-

galactose-1-phosphate, regulates the first committed step in this pathway (42). In animals, 

ascorbate biosynthesis can be initiated with the conversion of UDP-glucuronate to D-

glucuronate (43). After a reduction reaction that results in an inversion of configuration to 

give L-gulonate and a lactonization reaction, ascorbate is formed by the L-gulono-1,4-

lactone oxidase (43). The absence of the gene encoding this oxidase in teleost fish, or its 
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mutation in humans, anthropoid primates, guinea pigs, and other species, results in the loss 

of the ability to make ascorbate in these animals (35,44). Interestingly, although some bat 

and bird species are unable to synthesize ascorbate as previously mentioned due to the 

inactivation of this oxidase gene by mutation, other species have incurred further mutations 

that have reactivated the oxidase gene and restored ascorbate synthesis (35). A third 

biosynthetic pathway using D-galacturonate has been reported in some protist and green 

plant species (21,45–47). Finally, it has been determined that fungi do not synthesize 

ascorbate, but rather produce D-erythroascorbate, a molecule with similar antioxidant 

properties (48–51). The pathway by which this molecule is made has not been fully 

elucidated, but it is believed that the formation of D-erythroascorbate proceeds through D-

arabinose (43,48).

Although there has been abundant research on the functions of ascorbate, it was not until 

recently that the plant, animal, and protist biosynthesis pathways were clarified (3,21,43). 

Nevertheless, modifications to these pathways are still being made to accommodate new 

intermediates and interactions between the pathways (28,52), opening the possibility that 

other ascorbate biosynthesis pathways may exist in other organisms.

In the present work, we focused on ascorbate in the invertebrate nematode worm 

Caenorhabditis elegans. It was previously discovered by serendipity that the C10F3.4 

(mcp-1) gene is a homolog to the plant VTC2 gene that encodes the enzyme catalyzing the 

rate-limiting step in the plant ascorbate biosynthetic pathway (42,53). This observation 

prompted the question of whether or not ascorbate is present in C. elegans. Although the 

mcp-1 gene has a function in C. elegans distinct from ascorbate biosynthesis (53), ascorbate 

was suggested to be present in worm extracts (42,53,54). In the present work, we expand 

upon these findings using high-performance liquid chromatography and gas 

chromatography-mass spectrometry approaches to quantitate ascorbate in C. elegans. We 

now show that ascorbate is present and synthesized by C. elegans, thereby providing 

evidence that invertebrate organisms are capable of synthesizing this important molecule.

4. MATERIALS AND METHODS

4.1. C. elegans husbandry

Bristol N2 C. elegans were used in this study and obtained from the Caenorhabditis Genetics 

Center (University of Minnesota, Saint Paul, MN). C10F3.4 (mcp-1) mutant strain tm2679 

animals were obtained from the C. elegans Core Facility at Tokyo Women’s Medical 

University. The strains were maintained at 20 or 25 °C on 10 cm × 1.5 cm petri dish plates 

containing nematode growth medium (NGM, 20 g/l bacto agar (BD Biosciences, catalog # 

214030), 2.5 g/l bacto peptone (BD Biosciences, catalog # 211820), 3 g/l NaCl, 1 ml of 1 M 

CaCl2 per liter, 1 ml of 1 M MgSO4 per liter, 25 ml of 1 M potassium phosphate, pH 6, per 

liter, and 1 ml of 5 mg/ml cholesterol (prepared in ethanol) per liter). Each plate contained a 

spot of about 150 µl of streptomycin-resistant E. coli OP50-1 (approximately 5 × 1010 

cells/ml) grown in Luria Broth (LB, BD Biosciences, catalog # 244610) supplemented with 

50 µg/ml streptomycin (Sigma, catalog # S6501). The worms on these plates were fed every 

3–4 days with OP50-1 and maintained for 2–3 weeks.
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4.2. Egg harvesting by bleach treatment

Mixed populations of N2 animals were transferred from maintenance plates to 

approximately 100 fresh NGM plates containing OP50 E. coli and were incubated at 25 °C 

for 3 days to obtain gravid adults. The plates were washed with ice-cold M9 minimal 

medium (22 mM KH2PO4, 42 mM Na2HPO4, 86 mM NaCl, and 1 mM MgSO4) and the 

animals were transferred to 15 ml polypropylene conical tubes. The worms were centrifuged 

at 600 × g for 2 min at 4 °C (Beckman Coulter, Allegra X-15R) and the supernatant was 

aspirated. The animals were resuspended in 10 ml of ice-cold 30% sucrose and centrifuged 

at 2,095 × g for 5 min at 4 °C. The floated animals were transferred to a 15 ml conical tube 

with ice-cold M9 medium, pelleted at 2,000 × g for 2 min, and the supernatant was 

aspirated. The worms were subsequently washed approximately 5 times with ice-cold M9 

medium and by centrifuging at 600 × g for 2 min. After the final wash, the worm pellet was 

resuspended in 5 ml of fresh bleaching solution (12.5 ml Clorox bleach (6.2 percent sodium 

hypochlorite), 6 ml 5 M NaOH, 31.5 ml water) and pelleted in a clinical centrifuge at setting 

5 (~796 × g) for 30 s (International Clinical Centrifuge, model CL). The supernatant was 

aspirated and the pellet resuspended in 10 ml of bleaching solution. The worms were 

fragmented by alternating between 30 s of vortexing at setting 10 and 15 s on ice, and the 

release of eggs from gravid adults was monitored by microscopy. After no more than 6 min, 

the samples were centrifuged in a clinical centrifuge at setting 5 for 30 s and the eggs in the 

pellet were washed with ice-cold M9 medium 5 times to remove residual bleaching solution. 

C. elegans eggs were analyzed directly for ascorbate content or used to generate L1 larvae 

as described below.

4.3. Sample preparation for high-performance liquid chromatography (HPLC) ascorbate 
analysis

Mixed animal populations were washed from 2–80 NGM plates with ice-cold M9 medium 

into a 15 ml conical tube and centrifuged at 600 × g for 2 min. The supernatant was 

aspirated and the animals were washed an additional time with M9 medium. The pellet was 

transferred to a microcentrifuge tube, weighed, and resuspended in 150 µl of ascorbate 

extraction buffer consisting of 5% meta-phosphoric acid (Sigma, catalog # M6288), 2 mM 

disodium EDTA, and 2 mM tris(2-carboxyethyl) phosphine hydrochloride (Sigma, catalog # 

C4706). This reagent reduces dehydroascorbate to ascorbate; our assays then reflect the 

amount of both of these molecules. Approximately 50–100 µl of washed sea sand (Fisher 

Scientific, catalog # S25) was added and the samples were ground on ice with a disposable 

pestle (Fisher Scientific, catalog # 12-141-364) for 100 revolutions by hand or using a lab 

stirrer for 1 min set to 100 rpm (Fisher Scientific, LR400A). The sand was removed and the 

samples were centrifuged at 20,000 × g for 10 min at 4 °C (Eppendorf, Model 5417R). The 

supernatant was transferred to a new microcentrifuge tube and stored for no more than 24 h 

at −80 °C until analysis to minimize sample degradation. Ascorbate levels in eggs were 

determined from approximately 80 NGM plates by performing the bleach treatment and 

lysis procedure described above. Eggs were allowed to hatch in 70 ml of M9 medium at 20 

°C and 160 rpm for at least 24 h to determine the presence of ascorbate in L1 larvae.

In general, 60 µl of extract or L-ascorbate standard (Fluka, catalog # 95209) dissolved in 

ascorbate extraction buffer were adjusted to a final pH of ~5 by adding 9 µl of 1 M sodium 
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citrate, ~pH 8 (final concentration of 130 mM), and separated on a HP 1090 II liquid 

chromatograph with a Phenomenex C18 reversed-phase column (Catalog # 00G-4252-E0, 5 

µm, 4.6-mm inner diameter, 250-mm length). Analyses were performed at room temperature 

with an injection volume of 30–55 µl and a flow rate of 1 ml/min. Buffer A consisted of 20 

mM triethylammonium acetate in water, pH 6, and buffer B was 20 mM triethylammonium 

acetate in 40% acetonitrile, pH 6. The HPLC gradient was as follows: isocratic for 7 min at 

100% A, a 1 min linear gradient from 100% A to 0% A, 5 min at 0% A, a 1 min linear 

gradient from 0% A to 100% A, and isocratic for 15 min at 100% A. Ascorbate was detected 

at a wavelength of 265 nm and eluted between 3.6–4 min depending on the column 

condition. The presence of ascorbate was verified by noting the loss of the peak after 60 µl 

of sample was incubated with 2 units of ascorbate oxidase (AAO, Fisher Scientific, catalog 

# 50–230–3657, dissolved in 100 mM sodium phosphate and 0.5 mM EDTA, pH 5.6) and 9 

µl of 1 M sodium citrate, pH 8, for 30–120 min and chromatographed. The amount of 

ascorbate was calculated based on the area of the ascorbate peak at 265 nm using an 

extinction coefficient of 14,500 M−1 cm−1. Ascorbate levels in samples were normalized 

either to the approximate number of worms analyzed as determined by microscopy, or by 

assuming 1 g of wet weight worm pellet was equivalent to 1 ml of worm volume.

4.4. Addition of ascorbate precursors to C. elegans extracts and intact animals

For incubations with gulono-1,4-lactone with fractions of worms, mixed populations of 

animals were washed with ice-cold M9 medium from 20 NGM plates and pelleted in a 15 

ml conical tube at 600 × g and 4 °C for 2 min. After the supernatant was aspirated, the pellet 

was washed two times with ice-cold M9 medium. The pellet was weighed (~410 mg) and 

820 µl of protein extraction buffer (10 mM Tris-HCl, pH 7.4, 1.5 mM MgCl2, 10 mM KCl, 

50 mM sucrose, 1 mM DTT) was added. The animals were freeze thawed three times with 

liquid nitrogen before lysis (Branson Sonic Power Co., W-350 Sonifier) on ice with 10 5-s 

sonicator pulses (50% duty cycle, intensity 4) in a total time of 5 min. The samples were 

placed in microcentrifuge tubes and centrifuged at 600 × g for 1 min to obtain the “intact 

worm” pellet of unbroken and fragmented animals. The supernatant was transferred to new 

microcentrifuge tubes and centrifuged at 20,000 × g for 15 min to obtain the “worm 

membrane” pellet. The supernatant was transferred to a new microcentrifuge tube and 

labeled “worm cytosol.” An additional 100 µl of protein extraction buffer was added to the 

“intact worm” and “worm membrane” pellets. In a total volume of 75 µl, 25 µl of “intact 

worms,” “worm membrane,” or “worm cytosol” were incubated in 20 µl of water, 5 µl of 

100 mM L-gulono-1,4-lactone (Sigma, catalog # 310301, final concentration of 6.7 mM), 

and 25 µl of 100 mM sodium phosphate and 0.5 mM EDTA, pH 5.6, for 2 h at room 

temperature. The reactions were terminated by adding 75 µl of 10% trifluoroacetic acid and 

140 µl of sample was injected on the HPLC and ascorbate was characterized as described 

above. To confirm the position of ascorbate, 2 units of AAO was incubated with the above 

reactions for 1 h at 4 °C and separated by HPLC.

For incubations of live worms with gulono-1,4-lactone and other possible ascorbate 

precursors, eggs were obtained from 80 NGM plates containing a mixed population of 

animals as described above and incubated in 5 ml of M9 medium at 20 °C and 160 rpm for 

approximately 24 h. The L1 larvae were centrifuged at 3,000 × g for 5 min and the 
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supernatant was aspirated. The worms were washed once with ice-cold M9 medium and a 

pellet with L1 larvae and residual M9 medium (~900 µl) was obtained. 100 µl of L1 larvae 

in suspension were subsequently incubated with 20 µl of either protein extraction buffer, 10 

mM L-gulono-1,4-lactone, 10 mM D-(+)-galacturonic acid (Fluka, catalog # 48280), 10 mM 

D-glucuronic acid (Sigma, catalog # G5269), 10 mM D-galactose (Fisher Scientific, catalog 

# BP656), or 10 mM D-glucose (Fisher Scientific, catalog # D16). After a 2 h incubation at 

20 °C and 160 rpm, 50 µl of washed sea sand was added to each reaction to lyse the animals 

and the ascorbate content was analyzed by HPLC as described above.

4.5. Gas chromatography-mass spectrometry (GC-MS) analysis

After obtaining the animals as described above, pellets of worms were transferred to a 

microcentrifuge tubes and 150–300 µl of GC-MS extraction buffer (0.5 mM butylated 

hydroxytoluene (BHT, Sigma, catalog # B1378) in methanol) was added. Approximately 

50–100 µl of washed sea sand was added to each sample and the animals were lysed with 

100 rotations of a plastic pestle. After the sand was removed, the samples were centrifuged 

at 20,000 × g for 10 min. The supernatant was removed and transferred to amber 

microcentrifuge tubes until use.

Acid washed, amber micro-v glass vials (Thermo Scientific, catalog # C4000-V2) were used 

for the GC-MS analysis. Approximately 300–800 µl of sample was dried in GC vials in an 

unheated vacuum centrifuge (Savant Instruments Inc., model # SVC100H and RH 20–12 

rotor). After the samples were dried, 100 µl of benzene was added to the vials and the 

samples were dried under nitrogen gas for approximately 15 min to remove residual water. 

The samples were derivatized in 50 µl of a 99:1 mixture of N, O-bis (trimethylsilyl) 

trifluoracetamide: trimethylchlorosilane (BSTFA/TMCS) (Supelco, catalog # 33148) at 60 

°C for 90 min. Ascorbate standards were prepared in 0.5 mM BHT in methanol and 

derivatized using the same protocol described above.

Samples were analyzed using an Agilent 6890 GC-MS with 5975 mass selective detector 

and helium carrier gas. The autosampler syringe was washed 3 times with chloroform before 

and after each injection. 1 µl of derivatized sample was injected and the GC-MS was set to 

have a 50:1 split injection, helium flow rate of 1.3 ml/min, and a 250 °C injection port 

temperature. Samples were separated on an Agilent JW HP-5-MS column (30 m length, 250 

µm inner diameter, and 0.25 µm film thickness) with the following 17.7 min method: 1 min 

at 140 °C, increase temperature 15 °C/min until 300 °C, 6 min at 300 °C. A 3 min solvent 

delay was applied to prolong detector life. GC-MS chromatograms were analyzed and 

molecules identified using the Agilent Enhanced Chemstation, NIST Mass Spectral Search 

Program 2.0f, and the NIST Mass Spectral Library 08. Ascorbate eluted at approximately 

8.6–8.7 min and levels in C. elegans samples were normalized by comparing the ratio 

between the extracted ion current (EIC) areas of ascorbate (332 m/z) to serine (204 m/z).

To determine if ascorbate is present in the buffers and E. coli used to grow C. elegans, 100 

µl of LB, 400 µl of E. coli (~8 × 109 cells) lysed by sonication in 0.5 mM BHT in methanol, 

100 µl of a 5% sucrose solution in water, 200 µl of M9 medium, 200 µl of S medium (to 

every 100 ml of S Basal (5.84 g/l NaCl, 50 ml of 1M KH2PO4, pH 6, per liter, 1 ml of 5 

mg/ml cholesterol (prepared in ethanol) per liter) the following components were added: 1 

Patananan et al. Page 6

Arch Biochem Biophys. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ml of 1 M potassium citrate, pH 6, 1 ml of trace metals solution, 0.3 ml of 1 M CaCl2, and 

0.3 ml of 1 M MgS04), 100 µl of 0.5 mM BHT in methanol, and a mixed population of C. 

elegans extract washed from 10 NGM plates and prepared as previously described, were 

dried by vacuum centrifugation and derivatized as described above. The total ion current 

(TIC) and EIC of these samples were analyzed by GC-MS.

4.6. Paraquat and ethanol stress on C. elegans ascorbate levels

A mixed population of animals were collected from approximately 6 NGM plates, washed 

without a sucrose float, and incubated in flasks with 100 mL of S medium and OP50 E. coli 

at 20 °C and 160 rpm. After approximately 24 h, paraquat (Sigma, catalog # 856177) was 

added and the flasks were allowed to incubate for another 7 days. The samples were 

subsequently centrifuged at 600 × g for 2 min, the supernatant was aspirated, and the pellet 

was washed once with M9 medium. 0.5 mM BHT in methanol was added to the pellet in a 

1:1 ratio (g pellet: ml extraction buffer) and lysed by sonication as described above. GC-MS 

analysis was performed as described above using 400 µl of extract. For ethanol stress, a 

mixed population of animals was obtained from 80 NGM plates as described above. 

Approximately 250 µl of worms were transferred to microcentrifuge tubes with ethanol 

(Acros, 200 proof, catalog # 61509-0010) diluted in M9 medium. After a 39 h incubation, 

the animals were pelleted, washed, lysed, and analyzed for ascorbate by reversed-phase 

HPLC as described above.

4.7. Labeling of C. elegans using 13C-labeled OP50 E. coli

5 ml of LB medium supplemented with 50 µg/ml of streptomycin was inoculated with OP50 

E. coli. After an incubation at 37 °C and 250 rpm for approximately 8 h, 100 µl of the 

culture was transferred to a flask containing 12.5 ml of a E. coli M9 minimal medium with 

10.9 mM D-glucose-13C6 (Cambridge Isotope Laboratories, catalog # CLM-1396-0), 93.7 

mM KH2PO4, 56.3 mM K2HPO4, 62.2 mM Na2HPO4, 13.5 mM K2SO4, 20.6 mM NH4Cl, 

17.5 mM uracil, 4.9 mM MgCl2, 0.2 mM CaCl2, 0.1 mM FeSO4, 28.5 µM MnCl2, 16.5 µM 

CoCl2, 11.9 µM ZnSO4, 8.6 µM CuCl2, 1.6 µM H3BO3, 4.6 µM (NH4)6Mo7O24, and 65.8 

µM EDTA. After this culture was incubated at 37 °C and 250 rpm for approximately 14 h, 

all 12.5 ml were transferred to a flask containing 497.5 ml of the 13C-glucose containing 

medium described above and cultured for 9 h. The cell pellet (~1.5 g wet weight) was 

obtained by centrifugation at 6,000 × g for 5 min at 4 °C and washed once with C. elegans 

M9 medium before it was resuspended in 1.5 ml C. elegans M9 medium. 150 µl of this 

concentrated E. coli was spotted onto NGM agarose plates and allowed to dry. For animals 

incubated in liquid culture, 1.5 ml of concentrated E. coli was added to 70 ml of M9 medium 

in a 250 ml beveled flask. Unlabeled E. coli cells were prepared using the same protocol 

with the exception that D-glucose (Fisher Scientific, catalog # D16) was substituted for 

the 13C-labeled glucose.

Mixed populations of C. elegans were used in the labeling experiments and prepared as 

described above from 46 NGM plates. 100 µl of animals (~1200 mixed stage worms and 

~2970 eggs) were pipetted onto each of 10 NGM agarose plates and allowed to incubate in a 

20 °C incubator for 85 h. For liquid culture, 1 ml of animals (~12,000 mixed stage worms 
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and ~29,700 eggs) were added to the 70 ml flasks and incubated at 20 °C and 160 rpm for 

85 h. The animals were harvested, washed, and analyzed by GC-MS as described above.

5. RESULTS

5.1. Ascorbate is detected in N2 C. elegans extracts and is not present in growth media, E. 
coli cells, or the extraction reagent

HPLC and LC-MS/MS had previously been used to provide evidence for the existence of 

ascorbate in C. elegans (42,53,54). In this work, we optimized a reversed-phase HPLC 

method to detect ascorbate, which eluted on our system between 3.6 and 4 min (Fig. 1A). To 

verify the presence of ascorbate, ascorbate oxidase (AAO) was used to convert ascorbate 

into dehydroascorbate, which has a decreased absorbance at 265 nm (55,56) (Fig. 1A). 

When an extract from a mixed population of N2 animals was analyzed, a species was 

detected at an elution time similar to ascorbate (Fig. 1B). The addition of AAO to this 

sample resulted in a decreased absorbance at 265 nm, suggesting that this peak was 

ascorbate (Fig. 1B). To verify the presence of ascorbate, we analyzed extracts of C. elegans 

by GC-MS. Ascorbate derivatized in BSTFA/TMCS displays several major GC-MS 

fragment ions from data in the NIST mass spectral library, including a relatively abundant 

species with a peak at 332 m/z (Fig. 2A). We therefore analyzed a mixed population of C. 

elegans by GC-MS and found a strong 332 m/z EIC signal at 8.7 min (Fig. 2B). An analysis 

of the fragmentation pattern of the material eluting at 8.7 min (Fig. 2C) revealed a pattern 

matched to the ascorbate standard found in the NIST mass spectral library with a probability 

score of 93.9%, a Match score of 799 (comparison of the sample to the library spectrum; 

700–800, fair match; >800, good match), and an R. Match score of 848 (comparison that 

ignores peaks in the sample not present in the library spectrum) (Figure 2C). To verify that 

ascorbate elutes at this position, we analyzed a derivatized ascorbate standard by GC-MS 

and found a species eluting at 8.7 min identified in the NIST library as ascorbate with high 

probability (94.9%, Match score of 740, R. Match score of 747) (Fig. 2D). We found no 

evidence for the presence in C. elegans of D-isoascorbate, the 5-epimer of L-ascorbate, 

which can be resolved from ascorbate on the GC system (data not shown). Combined, these 

results demonstrate the presence of ascorbate in C. elegans extracts.

It is possible that some or all of the observed ascorbate was derived from the extraction 

solution or the C. elegans growth media components. We thus investigated if the OP50 

bacterial food source of C. elegans or the LB medium used to grow the bacteria contains 

ascorbate. In addition, we also analyzed C. elegans growth media (M9 and S media), the 

sucrose involved in separating animals from E. coli, and the extraction buffer (0.5 mM BHT 

in methanol) to determine if ascorbate was present. However, GC-MS analysis did not 

indicate the presence of ascorbate in any of the solutions or E. coli extracts tested (Fig. 3A 

and B). Although sucrose and E. coli extracts did have a small EIC signal at the 332 m/z, the 

fragmentation pattern at this elution time did not match ascorbate (Fig. 3C and D). Taken 

together, these HPLC and GC-MS analyses have confirmed that C. elegans contain 

ascorbate and that it is not a derived from the media or the bacterial food source.
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5.2. mcp-1 (tm2679) animals have similar ascorbate levels to wild type N2 animals

MCP-1 (C10F3.4) is a C. elegans protein with homology to VTC2, an enzyme in the 

ascorbate biosynthesis pathway in plants (3,42,53,57,58). Because plants deficient in VTC2 

have decreased ascorbate levels (58), we hypothesized that if MCP-1 was important for 

ascorbate biosynthesis in C. elegans, mutants should also result in decreased levels. We 

therefore tested the ascorbate levels in mcp-1 (tm2679) deletion animals and compared them 

to those found in wild type. The analysis of mcp-1 (tm2679) extracts by HPLC confirmed 

the presence of ascorbate in animals (Fig. 4A) and the levels were quantified to be 15±7 

fmol of ascorbate/worm, a concentration not significantly different to N2 animals (36±16 

fmol/worm) (Fig. 4B). To further confirm our findings, we used GC-MS to determine the 

ratio of ascorbate (332 m/z) to serine (204 m/z) in samples. Our analysis did not find a 

statistically significant difference between the ratio in N2 (0.024±0.008) and mcp-1 

(tm2679) (0.045±0.04) animals. These results suggest MCP-1 is not essential for C. elegans 

ascorbate biosynthesis. A similar conclusion was previously reached with other methods 

(53,54).

5.3. Ascorbate levels vary between growth stages

Previous research has indicated that ascorbate levels decline with age in organisms, 

including humans (59), rats (60), plants (29), and potentially Drosophila (39). To determine 

if levels also decline in C. elegans, we analyzed ascorbate concentrations at different growth 

stages. The HPLC analysis of C. elegans extracts derived from eggs, L1 larvae, and mixed 

populations found ascorbate levels to be the highest in the egg stage (0.144 ± 0.023 mM), 

compared to L1 larvae (0.055 ± 0.028 mM) and mixed population (0.021 ± 0.014 mM) 

(Figure 5). These levels of ascorbate are low compared to higher plants and vertebrates, but 

are only somewhat lower than those found in the algae Chlamydomonas reinhardtii (Table 

1). Ascorbate levels in C. elegans are also comparable to those of erythroascorbate in the 

yeast Saccharomyces cerevisiae (Table 1).

5.4. Sugar precursors from known ascorbate biosynthetic pathways and oxidative 
stressors do not increase ascorbate levels

Plants and animals utilize one of two major alternative ascorbate biosynthetic pathways. To 

determine if there are proteins in C. elegans that are homologous to those associated with 

ascorbate synthesis in plants or animals, we compared C. elegans by protein BLAST search 

to M. musculus and A. thaliana. In the comparison to M. musculus, three proteins, UDP-

glucose pyrophosphorylase, UDP-glucose dehydrogenase, and β-glucuronidase, represented 

apparent orthologs with mutual best hits (Table 2). Additionally, the mouse UDP-

glucuronosyltransferase and glucuronate reductase appear to have similar species in worms 

although they are not mutual best hits. Most importantly, however, the final two enzymes in 

the animal biosynthetic pathway (the lactonase and oxidase) do not appear to be found in 

worms (Table 2). A comparison to the plant biosynthetic pathway likewise identified 

probable C. elegans enzymes for eight steps of the pathway. However, there was no 

apparent ortholog in worms of the plant epimerase and the final L-galactono-1,4-lactone 

dehydrogenase. These results suggest that a complete set of genes encoding all of the 

enzymes of either the animal or plant pathway is not present in C. elegans. Finally, D-
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galacturonate has been determined to be an intermediate in a third pathway of ascorbate 

biosynthesis in some protists and green plants in a reaction forming L-galactonate (21, 45–

47). Although C. elegans has an apparent ortholog of the enzyme catalyzing this step 

(Y39G8B.1), this organism still appears to lack the final two enzymes that are shared with 

plant pathway to form ascorbate.

We wanted to explore the possibility that C. elegans may still have the missing enzyme 

activities of either the animal or plant pathway expressed by more distant or even unrelated 

genes. To directly address this question, mixed populations of animals were first prepared 

either as intact animals, or as membrane and cytosolic protein fractions from cell lysates. 

These materials were subsequently incubated with the last precursor of the animal pathway, 

L-gulono-1,4-lactone, and analyzed by HPLC. In comparison to the membrane fraction 

alone, membranes incubated in the presence of the sugar did not have significantly altered 

ascorbate levels under our assay conditions (Fig. 6A). A similar result was observed for the 

cytosolic protein fraction and intact animals (Fig. 6B, C). We next tested if live animals 

could use sugars from both the plant and animal pathways to synthesize ascorbate. In order 

to analyze a uniform population and eliminate the possibility that the bacteria present as a 

food source would use the ascorbate precursors, starved L1 larvae that were prepared in 

media lacking bacteria were incubated with D-galactose, L-gulono-1,4-lactone, D-

galacturonic acid, D-glucose, or D-glucuronic acid. Once again, no difference in the level of 

ascorbate was observed by HPLC with the addition of the sugar precursors in comparison to 

the control (Fig. 6D). Although it is possible that our in vitro incubation conditions and/or 

the gene expression status of the live worms were not conducive to detect ascorbate formed 

from the added precursors, these results open the possibility that ascorbate synthesis in C. 

elegans may occur through a novel pathway.

Previous research in Chlamydomonas found that oxidative stress can increase ascorbate 

levels (25). We therefore hypothesized that oxidative stress may increase ascorbate 

accumulation in C. elegans and incubated mixed populations of N2 animals with OP50 E. 

coli and 50, 100, or 200 µM paraquat, a dipyridyl oxidative stress agent. After a 7 day 

incubation, we observed no significant difference by GC-MS analysis in the ascorbate:serine 

ratio of treated animals in comparison to nontreated animals (Fig. 7A). We also tested 

animals incubated in the presence of 0.5% and 1% ethanol and found no increase in 

ascorbate concentration (Fig. 7B). Unsurprisingly, ascorbate levels declined sharply when 

10% ethanol was added, a concentration associated with poor survival of C. elegans (61), 

further suggesting that C. elegans may synthesize ascorbate (Figure 7B).

5.5. C. elegans synthesizes ascorbate

To directly demonstrate that C. elegans synthesizes ascorbate and to elucidate a possible 

pathway, we labeled a mixed population of animals with either [12C6]- or [13C6]-glucose-

labeled E. coli on plates or in liquid media. We then analyzed the fragmentation pattern of 

ascorbate purified by GC-MS from extracts of these worms. In the 12C-labeled animals from 

both plates and liquid cultures, we detected the 449 m/z fragment corresponding to the 

all 12C-ascorbate species, as well as a 451 m/z species that could represent the hydrogenated 

lactone species that proceeds ascorbate in the plant and animal pathways (Fig. 8, compare to 
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the L-ascorbate standard in Fig. 2A). For the corresponding material from 13C-labeled 

animals, we detected not only the 449 and 451 ions, but also the 455 and 457 m/z ions, 

which would represent the fully 13C-labeled species (Fig. 8). In the control animals grown 

on 12C-E. coli, there were no 455 or 457 m/z ions detected (Fig. 8). Because the 451 and 457 

m/z ions that possibly correspond to the hydrogenated lactone precursor of ascorbate were 

detected at the same GC-MS elution time as ascorbate, it was not possible to definitely 

assign these ions to this possible precursor. Finally, we searched for molecules at other 

elution times in the GC-MS that could be precursors in the biosynthesis pathway by 

comparing the fragmentation patterns across GC fractions of the 12C- and 13C-labeled 

samples. Although we found several known species that incorporated the 13C-label (such as 

amino acids), we did not identify any possible precursors to ascorbate.

We then analyzed each of the ascorbate GC-MS fragments to confirm that ascorbate 

was 13C-labeled. C. elegans incubated with 12C-E. coli had ascorbate fragment species 

whose mass-to-charge ratios closely matched that of the NIST mass spectral library database 

(Fig. 2A and Fig. 9). Because the 117, 147, 205, 259, 304, 332, and 449 m/z species 

correspond to 2, 2, 2, 4, 3, 4, and 6 carbon species of ascorbate, respectively, the 

incorporation of heavy carbon in all positions would result in fragments of 119, 149, 207, 

263, 307, 336, and 455 m/z. With the exception of the 147 m/z fragment, full labeling was 

observed for the remaining species in animals incubated on plates and in liquid culture 

with 13C-labeled bacteria (Fig. 9). Combined, these data support the conclusion that C. 

elegans is capable of synthesizing ascorbate. However, as described above, we found no 

evidence that this biosynthesis utilized either the known plant or animal pathways.

6. CONCLUSIONS

Ascorbate and erythroascorbate are important reducing agents found in many vertebrates, 

plants, and fungi. To our knowledge, no other study has confirmed the biosynthesis of 

ascorbate in an invertebrate organism. However, work on crustaceans (62) and insects, such 

as the corn borer Diatraea grandiosella (63), the corn earworm Helicoverpa zea (64,65), the 

moth Plusia signata (66), and fruit fly Drosophila melanogaster (39) suggest that ascorbate 

is present and has biological roles potentially associated with metamorphosis, aging, and 

preventing oxidative stress. Furthermore, a study involving the parasitic nematode Brugia 

malayi found ascorbate to be important for the L3 to L4 molt (67). In C. elegans, ascorbate 

is an important molecule associated with handling oxidative stress, although its role in 

influencing longevity in wild type animals is unclear (68–72). The addition of ascorbate not 

only alleviates defective phenotypes in animals exposed to pro-oxidants (73), but can also 

increase survival and restore normal longevity to short lived mutant animals with elevated 

reactive oxygen species (ROS) (74–76). Interestingly, ascorbate abolishes life span 

extension in long lived mutant animals with elevated superoxide and normal ROS levels 

(77). In the present study, ascorbate was confirmed to exist in C. elegans by two 

independent methods, and the biosynthesis of ascorbate in this organism is supported by in 

vivo labeling experiments. Therefore, this study supports the hypothesis that invertebrate 

organisms are also able to synthesize ascorbate.
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The presence of ascorbate in C. elegans is perhaps unsurprising because many of its proteins 

have mammalian homologs that require ascorbate for proper function. In particular, the 

ascorbate-dependent prolyl 4-hydroxylase is found in C. elegans and is important for the 

hydroxylation of collagen in other animals (78,79). Approximately 1% of the genes in C. 

elegans are devoted to the synthesis of collagen, which composes 80% of the cuticle 

exoskeleton and is replaced in each molting cycle (80–82). Various mutations in the dpy-18 

and phy-2 genes that encode the prolyl 4-hydrolase result in abnormal morphology and 

lethality (78,79). Additionally, the gene let-268 encodes the only lysyl hydroxylase in C. 

elegans and is important for type IV collagen processing (83). It is therefore reasonable to 

expect C. elegans to have ascorbate in order to maintain these Fe2+/α-ketoglutarate-

dependent dioxygenases and ensure the proper formation of the eggshell and cuticle. Finally, 

the mammalian enzymes associated with carnitine, tyrosine, and peptide hormone 

metabolism that use ascorbate as a cofactor, including ε-N-trimethyl-L-lysine/γ-

butyrobetaine hydroxylases, dopamine beta hydroxylase, peptidylglycine alpha-amidating 

monooxygenase, and the 4-hydroxyphenylpyruvate dioxygenase (17), are highly 

homologous to the GBH-1/GBH-2, TBH-1, PGAL-1, and HPD-1 proteins, respectively, in 

C. elegans.

Other than serving as an antioxidant and protein cofactor, ascorbate may also have a 

symbiotic role in supporting the microbial environment of C. elegans. It has been suggested 

that C. elegans, like other organisms, can not only benefit from their microbiota in terms of 

the nutrients, vitamins, and energy they provide, but the worm can also support bacteria with 

shelter and nutrients (84). Although it is thought that bacteria are unable to synthesize 

ascorbate, E. coli has an ascorbate transporter that may enable the fermentation of ascorbate 

and its use as a carbon source under anaerobic conditions (85–88). Furthermore, C. elegans 

has homologs to the nucleobase ascorbate transporter (NAT) family of proteins found in 

other organisms (89). In a preliminary analysis of used liquid M9 medium after a C. elegans 

culture, we were able to find a concentration of approximately 1 µM ascorbate (data not 

shown). Although this may be due to the release of ascorbate from the lysed cells of dead 

animals, it is also possible that C. elegans may actively export ascorbate, either to neutralize 

oxidative stresses in the environment or provide a carbon source to bacteria, an organisms in 

which it is integrally entwined with in nature.

In our study, we did not observe ascorbate in the unused culture media alone or in the E. coli 

used to grow the animals. Only C. elegans extracts were found to contain ascorbate at 

average concentrations ranging between 21 µM in mixed populations to 144 µM in egg 

preparations. Interestingly, preliminary experiments indicate ascorbate levels in mixed 

animal populations are not significantly different when they are fed heat killed OP50 

bacteria (data not shown), indicating ascorbate synthesis may not depend on bacterial 

viability. However, it is possible that feeding C. elegans a bacterial strain other than OP50 

may result in an alteration in ascorbate levels. Previous studies have found that the bacterial 

diet of C. elegans can influence gene expression, fat storage, metabolism, and longevity 

(75,90–94), and future studies could use diet to dissect the ascorbate biosynthesis pathway. 

It is also interesting to note that the concentration of ascorbate drops from the highest in 

eggs to the lowest level in the L1 larva and mixed populations. This result suggests 
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ascorbate is required at different levels during development for either added protection 

against oxidative stress or for specific enzymatic processes. The hypothesis that ascorbate 

levels are linked with enzymatic activities is possibly supported by the observation that the 

expression of one prolyl 4-hydroxylase catalytic subunit, the PHY-3 isoform, is limited to 

the early embryo, late larval, and adult nematode stages (95). Additionally, a recent study 

has determined that the expression of several genes associated with collagen formation in C. 

elegans is regulated (96). More research is needed to determine how ascorbate levels are 

regulated in C. elegans.

Through the use of 13C-labeled E. coli, the present work has provided evidence for the first 

time of ascorbate biosynthesis in an invertebrate organism. Although 13C-labeled ascorbate 

was observed when C. elegans were grown on plates with 13C-labeled E. coli, unlabeled 

species were also present. Interestingly, 13C-incorporation appeared to be greater for 

animals grown in liquid culture in comparison to those grown on plates. Unpublished work 

by Reinke et al.1 found only 1% of genes differentially expressed when comparing animals 

grown under these two different conditions. Interestingly, the genes upregulated in liquid 

culture were associated with oxidative stress protection and included thioredoxin, 

glutathione-S-transferase, and the mitochondrial NADP transhydrogenase. It is therefore 

possible that genes linked to ascorbate synthesis may also be altered in liquid culture.

Finally, this study did not observe any significant alteration in the ascorbate levels of C. 

elegans exposed to oxidative stresses. Although these oxidative agents may be increasing 

ascorbate levels, we may not be able to observe any concentration change due to the use of 

ascorbate to neutralize these molecules. We also found that C. elegans incubated with 

precursors from the plant and animal pathways also do not synthesize increased levels of 

ascorbate. Because our study only incubated L1 larvae with these precursors, an increased 

level of ascorbate may be observed using different larval stages or specific growth 

conditions. Nevertheless, a similar negative result was observed when D. melanogaster, an 

organism that has ascorbate in its extracts, was incubated with L-gulono-1,4-lactone (39). It 

is therefore possible that invertebrates share a common ascorbate biosynthetic pathway that 

is significantly different from that found in animals, plants, and fungi.
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Highlights

• Little is known about the presence and biosynthesis of ascorbate in 

invertebrates.

• HPLC and GC-MS analysis found ascorbate in Caenorhabditis elegans extracts.

• C. elegans lacks orthologs to key enzymes in known ascorbate biosynthesis 

pathways.

• Worms fed 13C-labeled bacteria synthesize 13C-ascorbate.

• C. elegans is the first invertebrate organism confirmed to biosynthesize 

ascorbate.
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Figure 1. HPLC detection of ascorbate in extracts of mixed populations of C. elegans
(A) Ascorbate standard separated by reversed-phase HPLC. The black line represents 3.9 µg 

of ascorbic acid dissolved in a final concentration of 1.7% metaphosphoric acid, 1.7 mM 

EDTA, 1.7 mM tris(2-carboxyethyl) phosphine hydrochloride, and 130 mM sodium citrate, 

pH 8, and separated on a reversed-phase HPLC column as described in the “Materials and 

Methods” section. 2 units of ascorbate oxidase (AAO) were added to the standard to confirm 

the elution of ascorbate as described in “Materials and Methods” (red line). (B) Reversed-

phase HPLC analysis of a C. elegans extract prepared from a mixed population of animals 
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obtained by washing two NGM plates (~142,000 worms) as described in the “Materials and 

Methods.” 55 µl of sample was injected onto the HPLC (black line). 2 units of AAO was 

added to confirm the elution of ascorbate (red line).
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Figure 2. GC-MS detection of ascorbate in mixed populations of C. elegans
(A) GC-MS fragmentation pattern of ascorbate derivatized with BSTFA/TMCS from the 

NIST Mass Spectral Library 08. An enlarged view of the m/z for the specific fragments 

labeled a–g are shown in the panels at the top. In the structures represented below the panel, 

the fragment of ascorbate is shown in red; when multiple fragments are possible for a 

particular m/z, the alternative fragment is shown in blue. Among the peaks, the 332 m/z 

fragment represents one of the most intense signals. (B). GC-MS analysis of a BSTFA/

TMCS derivatized extract of mixed population of C. elegans obtained from ten NGM plates 

was performed as described in the “Materials and Methods.” The total ion current (TIC) and 

332 m/z extracted ion current (97) are represented by the black and red traces, respectively. 
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The asterisk (*) denotes the ascorbate peak. (C) The MS fragmentation pattern of the species 

denoted by the asterisk identified in panel B. (D) GC-MS analysis of a standard of 150 ng of 

ascorbate derivatized in BSTFA/TMCS to confirm the elution time of ascorbate as described 

in the “Materials and Methods.” The TIC and 332 m/z EIC are represented by the black and 

red traces, respectively. The asterisk (*) denotes the ascorbate peak. The peak located at 7.4 

min is an artifact identified as derivatized triethylene glycol.
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Figure 3. Lack of detectable ascorbate in C. elegans growth media and extraction reagent
(A) TIC and (B) 332 m/z EIC were analyzed by GC-MS of an extract derived from a mixed 

population of C. elegans, 0.5 mM BHT in methanol extraction buffer, S medium, M9 

medium, sucrose, E. coli extract, and LB medium. Samples were derivatized with BSTFA/

TMCS as described in the “Materials and Methods.” The dashed red line denotes the elution 

position of ascorbate. Although small peaks were found in the TIC and 332 m/z EIC of 

sucrose and E. coli, further analysis of the mass spectrum at these elution times for the 

sucrose (C) and E. coli (D) samples reveal that the fragmentation patterns do not match 

ascorbate, but rather weakly match derivatized ribofuranose and phosphate, respectively.
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Figure 4. C. elegans deficient in mcp-1 have ascorbate levels equivalent to wild type
(A) mcp-1 (tm2679) extracts were prepared from two NGM plates containing a mixed 

population of worms (approximately 208,000 animals) and analyzed by reversed-phase 

HPLC as described in the “Materials and Methods” (black line). The extracts were treated 

with 2 units of AAO to confirm the existence of ascorbate (red line). (B) Ascorbate levels 

were quantified by HPLC and compared between the N2 wild type and mcp-1 (tm2679) 

extracts prepared from two NGM plates containing a mixed population of worms (N2, 

43,700–142,400 animals; mcp-1 (tm2679), 106,000–318,500) as described in the “Materials 
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and Methods.” The points represent three independent samples, the horizontal line the 

average, and the error bars represent standard deviations. Statistical significance was 

determined using an unpaired, two-tailed Student’s t-test. (C) N2 and mcp-1 (tm2679) 

extracts were prepared in 0.5 mM BHT in methanol and analyzed by GC-MS as described in 

the “Materials and Methods.” The area of the ascorbate 332 m/z EIC peak in each sample 

was determined and compared against the area of the serine 204 m/z EIC peak. The points 

represent four independent samples, the horizontal line is the average, and the error bars 

represent standard deviations. Statistical significance was determined using an unpaired, 

two-tailed Student’s t-test.
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Figure 5. Ascorbate levels are highest in the egg stage of C. elegans
Extracts of eggs, L1 larvae, and mixed populations derived from 9–83, 5–69, and 38–455 

mg wet weight of animals, respectively, were prepared as described in the “Materials and 

Methods” section. Ascorbate was separated by reversed-phase HPLC and quantified. Five, 

sixteen, and twelve independent samples were analyzed for the eggs, L1 larvae, and mixed 

population of worms, respectively. The data points represent independent samples, the 

horizontal line is the average, and the error bars represent standard deviations. Statistical 

significance was determined using an unpaired, two-tailed Student’s t-test.
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Figure 6. The addition of ascorbate precursors from known ascorbate biosynthetic pathways 
does not increase ascorbate levels in C. elegans
(A–C) C. elegans membrane, cytosolic, and intact worm fractions were incubated with a 

final concentration of 6.7 mM L-gulono-1,4-lactone for 2 h at room temperature and 

analyzed by HPLC as described in the “Materials and Methods.” Asterisks (*) denote the 

elution position of ascorbate. (D) L1 larvae obtained from 80 NGM plates were incubated in 

a final concentration of 1.7 mM D-galactose, L-gulono-1,4-lactone, D-galacturonic acid, D-

glucose, or D-glucuronic acid for 2 h at 20 °C and 160 rpm, before the samples were lysed 

and analyzed by reversed-phase HPLC according to the “Materials and Methods” section. 

The variability in ascorbate elution between panels A–C and D is due to a change in HPLC 

column.
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Figure 7. Paraquat and ethanol stress do not increase ascorbate levels in C. elegans
(A) A mixed population of animals was obtained from approximately six NGM plates and 

incubated in S-medium supplemented with OP50 E. coli and 0, 50, 100, and 200 µM 

paraquat for 7 d as described in the “Materials and Methods.” GC-MS analysis was 

performed as described in the “Materials and Methods” and the amount of ascorbate in 

samples was analyzed by comparing the EIC area of ascorbate (332 m/z) to that of serine 

(204 m/z). The points represent four independent samples, the horizontal line is the average, 

and the error bars denote standard deviations. Statistical significance was determined using 
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an unpaired, two-tailed Student’s t-test. (B) Mixed populations of animals from 80 NGM 

plates were incubated in a microcentrifuge tube at 20 °C and 160 rpm in M9 medium 

supplemented with 0, 1%, 5%, or 10% ethanol. After incubation for 39 h, the animals were 

pelleted, washed, lysed, and analyzed by reversed-phase HPLC according to the “Materials 

and Methods” section. The data points represent two independent samples and the horizontal 

line denotes the average. Statistical significance was determined using an unpaired, two-

tailed Student’s t-test.
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Figure 8. Incorporation of 13C into C. elegans ascorbate from 13C-labeled E. coli food
(A) Expected mass change in ascorbate and the possible reduced precursor species due to 

uniform13C labeling. (B) A mixed population of animals were incubated with 12C6-D-

glucose or 13C6-D-glucose-labeled E. coli on plates or in liquid culture at 20 °C for 85 h as 

described in the “Materials and Methods” section and analyzed by GC-MS. The asterisk 

denotes the position of ascorbate.
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Figure 9. Ascorbate fragmentation pattern from C. elegans fed unlabeled or 13C-labeled E. coli
Mixed populations of animals were incubated with unlabeled OP50 E. coli or OP50 E. coli 

labeled with 13C6-D-glucose on (A) NGM plates or (B) in liquid culture for 85 h at 20 °C 

and analyzed by GC-MS as described in Figure 8 and the “Materials and Methods.” 

Ascorbate fragmentation data for animals incubated with unlabeled or 13C-labeled OP50 E. 

coli is shown in blue and red, respectively, and overlaid for direct comparison. The peaks 

labeled a, b, c, d, e, f, and g correspond to major ascorbate fragmentation peaks shown in 

Figure 2 and include the 117, 147, 205, 259, 304, 332, and 449 m/z ions. A magnified view 
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of these fragmentation peaks is shown in the inset figures in panels A and B, with the y-axis 

representing relatively intensity and the x-axis denoting the m/z.
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Table 1

Comparison of ascorbate levels in C. elegans to other organisms.

Organism Ascorbate (mM)a References

Myrciaria dubia (camu camu) 136–170 Justi et al. (98)
Gest et al. (22)

Arabidopsis thaliana (flowering plant) 4–9 Smirnoff et al. (21)

Terrapene carolina (box turtle) 1.6–5.5 Rice et al. (34)

Thamnophis sirtalis (common garter snake) 1.1–3.7 Rice et al. (34)

Fragaria ananassa (strawberry) 1.5–3.3 Tulipani et al. (99)
Wang et al. (100)
Gest et al. (22)

Mus musculus (mouse) 0.4–3 Tsao et al. (101)

Xenopus laevis (African clawed frog) 1–2.3 Rice et al. (34)

Himantura signifer (freshwater stingray) 0.04–1.2 Wong et al. (41)

Chlamydomonas reinhardtii (green algae) 0.1–0.8 Urzica et al. (25)

Saccharomyces cerevisiaeb (budding yeast) <0.1–0.4 Spickett et al. (102)

Caenorhabditis elegans (nematode) 0.144 ± 0.023 (eggs)
0.055 ± 0.028 (L1 larvae)
0.021 ± 0.014 (Mixed population)

This study

a
Ascorbate concentrations from the literature were converted to mmol/l by assuming 1 gram of fresh/wet weight material is equivalent to 1 ml.

b
Concentration shown is that of the ascorbic acid analog erythroascorbic acid.
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