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A B S T R A C T

Background and objectives: Although HIV sequence clustering is routinely used to identify subpopula-

tions experiencing elevated transmission, it over-simplifies transmission dynamics and is sensitive to

methodology. Complementarily, viral diversification rates can be used to approximate historical trans-

mission rates. Here, we investigated the concordance and sensitivity of HIV transmission risk factors

identified by phylogenetic clustering, viral diversification rate, changes in viral diversification rate and a

combined approach.

Methodology: Viral sequences from 9848 people living with HIV in British Columbia, Canada, sampled

between 1996 and February 2019, were used to infer phylogenetic trees, from which clusters were iden-

tified and viral diversification rates of each tip were calculated. Factors associated with heightened

transmission risk were compared across models of cluster membership, viral diversification rate,

changes in diversification rate, and viral diversification rate among clusters.

Results: Viruses within larger clusters had higher diversification rates and lower changes in diversifica-

tion rate than those within smaller clusters; however, rates within individual clusters, independent of

size, varied widely. Risk factors for both cluster membership and elevated viral diversification rate

included being male, young, a resident of health authority E, previous injection drug use, previous
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hepatitis C virus infection or a high recent viral load. In a sensitivity analysis, models based on cluster membership had wider confi-

dence intervals and lower concordance of significant effects than viral diversification rate for lower sampling rates.

Conclusions and implications: Viral diversification rate complements phylogenetic clustering, offering a means of evaluating transmis-

sion dynamics to guide provision of treatment and prevention services.

Lay Summary: Understanding HIV transmission dynamics within clusters can help prioritize public health resource allocation. We

compared socio-demographic and clinical risk factors associated with phylogenetic cluster membership and viral diversification rate, a

historical branching rate, in order to assess their relative concordance and sampling sensitivity.

K E Y W O R D S : molecular phylogenetics; phylogenetic clustering; molecular epidemiology; HIV-1; molecular evolution; transmission;

risk factors

INTRODUCTION

Identifying risk factors for elevated HIV transmission rates is

critical for effective allocation of limited public health resources

for prevention and treatment. In the Canadian province of

British Columbia (BC), where antiretroviral resistance testing

has been standard-of-care since 1998 and a province-wide pro-

gramme to expand access to HIV testing, care and treatment

have been in place since 2010, it is estimated that in 2016, 84%

of people living with HIV (PLHIV) were diagnosed, 85% of

those diagnosed were on treatment and 93% of those on treat-

ment were virally suppressed [1]. While projections suggested

that BC is on track to meet the Joint United Nations

Programme on HIV/AIDS 95–95–95 targets for 2030 [1], par-

ticular groups remain disproportionately affected by HIV/AIDS.

For instance, in BC, men who have sex with men (MSM) have

comprised most new HIV diagnoses in recent years [2].

Quantifying HIV transmission dynamics by reconstructing

social or sexual networks via traditional epidemiological meth-

ods such as contact tracing are limited by the virus’ long period

of infectiousness and low per act transmission rate [3]. The sub-

stantial viral genetic diversity within and between PLHIV result-

ing from HIV’s rapid evolution can be leveraged to build

phylogenetic trees that approximate between-host transmission

networks [4], though these trees generally cannot be used to

infer transmission directionality [5].

Identifying clusters of closely related HIV sequences is com-

monly performed to detect subpopulations experiencing higher

than average transmission rates [6–9]. A multitude of non-

parametric methods is commonly applied to infer clusters from

either genetic or phylogenetic tree distances, with varying criteria

related to monophyly and bootstrap support (see Poon [10] for a

more comprehensive review of clustering methods). Results how-

ever can vary widely by method [10–12]. For instance, the max-

imum pairwise genetic or phylogenetic distance threshold

strongly affects which clusters are recovered from the true trans-

mission network [10, 12]. Furthermore, commonly used phylo-

genetic clustering methods that assume clusters form clades [7,

13, 14] do not consistently recover sexual contact network com-

munities [11]. Cluster detection has been criticized for more

readily detecting differences in subpopulation sampling rates, ra-

ther than transmission rates [10]. Recent parametric clustering

methods have been developed that consider the evolution of

transmission rates along phylogenies and thus distinguish trans-

mission from sampling differences [15, 16]. However, they are re-

liant on strong assumptions about how transmission rates

evolve along the tree, such as that branching (transmission)

events are generated by a Poisson process controlled by a dis-

crete evolving character [15], which does not necessarily account

for stochasticity in individuals’ behaviour affecting the probability

of a transmission event. Generally, evaluating whether or not an

individual is within a cluster oversimplifies within-cluster trans-

mission dynamics, particularly if large clusters are common [17].

Moreover, while interpreting cluster membership is straightfor-

ward, it inherently ignores differences within groups.

We previously showed that a model incorporating geographical-

ly aggregated viral diversification rate was more predictive of the

location and number of new HIV cases compared to models com-

prising epidemiological data alone [18]. Furthermore, viral diversi-

fication rates were significantly lower among PLHIV receiving

antiretroviral treatment than those were not, validating the effect-

iveness of Treatment as Prevention [19].

We sought to investigate the relationship between viral diver-

sification rate and clustering, as well as evaluate the concord-

ance of risk factors associated with viral diversification rate and

phylogenetic cluster membership using the clustering method-

ology applied by Poon et al. [6, 17]. Using HIV sequence data

annotated with clinical and socio-demographic data for 8063

PLHIV in BC (after restricting to those alive on 4 February

2019), we inferred four models for the respective outcomes of

individuals’ 2018 viral diversification rate, individuals’ annual

change in viral diversification rate between 2018 and 2017, clus-

ter membership and viral diversification rate among the clus-

tered population. We then compared risk factors across the

four models to test the hypothesis that risk factors for elevated

viral diversification rate among PLHIV in BC would be broadly

consistent with those identified in phylogenetic cluster analyses.

A subsampling sensitivity analysis was also undertaken to

evaluate each model strategy’s robustness to inferring consist-

ent effect sizes in scenarios with less sampling representation.
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METHODOLOGY

Study setting and participants

The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug

Treatment Programme (DTP) is an ongoing clinical registry that

provides all PLHIV in BC with access to HIV care, HIV drug re-

sistance genotyping and highly active antiretroviral therapy at

no cost to the individual [20]. DTP and drug resistance testing

eligibility are described in the supplementary materials. Out of

13 307 DTP participants who ever had a detectable viral load be-

tween 30 May 1996 and 4 February 2019, 9848 participants had

drug resistance testing done. HIV sequences and individual in-

formation were stored in secure, access-restricted facilities at

the BC-CfE in a password-protected Oracle database.

Individuals’ data were de-identified and doubly anonymized.

Ethical approval for this study was granted by the University of

British Columbia—Providence Health Care Research Ethics

Board (H17-01812). The HIV sequence data cannot be shared

outside the BC-CfE as a condition of ethics approval.

Phylogenetic inference

A total of 37 304 clinical HIV resistance genotype tests from

9848 PLHIV were completed on samples collected between 30

May 1996 and 4 February 2019 at the BC-CfE (see workflow in

Supplementary Fig. S1). Between 1 and 46 genotypic resistance

tests were performed per individual (mean, 3.79; median, 2).

Plasma samples were screened for drug resistance mutations

by sequencing the HIV protease and partial reverse transcriptase

genes, referred to as partial pol. Sequences were aligned using

MAFFT version 7.310 [21] and visualized in AliView V1.17.1 [22],

where insertions and deletions relative to HXB2 (GenBank

#K03455), as well as amino acids corresponding to WHO rec-

ognized drug resistance mutation sites were removed prior to

tree inference. A set of shuffled bootstrap alignments were gen-

erated to infer 100 approximate maximum likelihood phylogen-

etic trees with a general time-reversible substitution model and

gamma-distributed rate variation in FastTree2.1 [23].

Cluster identification and characterization

HIV phylogenies with all available sequences were used to iden-

tify clusters defined by patristic distance cutoffs, as routinely

applied by the BC phylogenetic surveillance programme [6, 17].

In order for viruses from different individuals to be linked in a

cluster, the pairwise patristic distance between a participants’

earliest HIV sequence and any sequence from a different indi-

vidual must be < 0.02 substitutions per site (95th percentile of

within-host patristic distances, [17]) in >90% of bootstrap phy-

logenies. Clusters were limited to comprise � 5 members to

protect individuals’ confidentiality [17], consistent with the

methods approved by the research ethics board.

To further characterize the differences within the clustering

subpopulation, the distribution of viral diversification rates and

changes in viral diversification rate were compared among (i)

those who did and did not cluster, and (ii) different cluster size

ranges, using violin plots and non-parametric Kruskal–Wallis

tests, followed by pairwise two-sided Wilcoxon rank-sum tests

(i.e. Mann–Whitney) with a Bonferroni P-value adjustment to

compare multiple cluster size ranges. Clusters were binned into

cluster size categories (5–10, 11–20, 21–50, 51–100 and >100)

based on the total number of PLHIV (without excluding those

who had died) within them in 2018 (Supplementary Fig. S3).

Viral diversification rates and changes in diversification rates

were visualized for three representative clusters with newly diag-

nosed cases in 2018 using the Compound Spring Embedder

Layout in Cytoscape v3.7.2 [24].

Viral diversification rates

The full bootstrap trees (n¼ 37 304) were pruned into 2017

(n¼ 9596) and 2018 (n¼ 9832) trees, which were generated by

retaining only sequences collected prior to or during each year

and then pruning to each individual’s earliest sample

(Supplementary Fig. S1). Trees were rooted based on root-to-tip

regression of evolutionary divergence over time, fit using the

lowest root mean square error via the rtt command in R pack-

age ape v5.0 [25, 26]. Although including all sampled viruses is

useful to infer overall phylogenetic relationships between and

within hosts, we retained only the earliest sample available

from each individual to avoid artificially inflating diversification

rate for individuals with more than one sample. For each tip on

each bootstrap tree, the viral diversification rate was calculated

and the mean diversification rate across 100 bootstrap trees

was computed. As the reciprocal of the equal splits metric [27],

the viral diversification rate for each tip on a rooted bifurcating

tree is the reciprocal sum of Ni branch lengths (lj) from tip i to

the root, with each consecutive edge (j) down-weighted by a fac-

tor of 1 – 2 [28]. See Supplementary Fig. S12 for an example of

calculating viral diversification rate.

Viral Diversification Ratei ¼ Equal Splits�1
i ¼

XNi

j¼1

lj

2j�1

0
@

1
A
�1

The annual change in diversification rate for each participant

between 2018 and 2017 was calculated as the difference be-

tween their 2018 and 2017 diversification rates. Cases newly

diagnosed in 2018 (222 of the 8063 participants included in the

analysis) were assigned a change in diversification rate of zero

to emphasize changes in transmission rate among the preva-

lent population. Distribution of log-transformed diversification
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rate in 2018 for full dataset and subsampled sets are provided

in Supplementary Fig. S4.

Comparisons of transmission risk factors

Analyses were restricted to 8063 individuals alive at the time of

data generation in February 2019 to focus on current transmis-

sion trends. The association of individuals’ clinical and socio-

demographic attributes with different estimates of transmission

activity was compared. As both viral diversification rate and

change in diversification rate are continuous outcomes with ap-

proximately lognormal distributions (Supplementary Fig. S4),

log linear regression models were inferred and exponentiated

coefficients were interpreted as adjusted relative risks (aRRs).

Where cluster membership was the outcome, a multivariate lo-

gistic model was inferred and exponentiated coefficients were

interpreted as adjusted odds ratios (aORs). The aRRs and aORs

for reported risk factors were calculated relative to reporting

‘no’ for each risk factor and individuals could report multiple

risk factors. In the combined modelling approach, risk factors

associated with elevated viral diversification rates among the

clustered subpopulation were evaluated, highlighting differen-

ces within clusters. The model output for viral diversification

rate among the non-clustered subpopulation, as well as

changes in diversification rate among the clustered and non-

clustered subpopulations, were explored in the supplementary

material (Supplementary Figs S5–S7).

Variables included in the analysis are sex at birth; age at the

end of 2018 (categorized as 29 and under; 30–44; 45–59; and

60 and over), health authority (HA) of residence at enrolment

(anonymized to letters A through E for regional confidentiality);

risk factor exposures including identifying as MSM, having het-

erosexual exposure, identifying as people who inject drugs

(PWID), previous hepatitis C virus (HCV) infection; and most

recent plasma viral load (HIV RNA copies/mL). Individuals who

had unreported heterosexual exposure were the same as those

with unreported MSM exposure, thus only MSM unreported

was included in the models.

Sampling sensitivity analysis

To characterize the robustness of modelling approaches to

inferring consistent effect size estimates with lower sampling

representation, we randomly subsampled 25, 50 and 75% of the

8063 individuals in the analysis. Clusters were identified anew

using pruned trees with viral sequences (tips) collected from

subsampled patients in the full tree for all bootstraps, resulting

in respective trees with 7736 (20.1%), 15 443 (41.4%) and

23 308 (62.5%) tips. The 2018 and 2017 interval trees from the

original analysis were pruned to only tips from subsampled

patients to recalculate diversification rates, which resulted in

2018 trees with 20.5%, 40.9%, and 61.4% of tips present in the

original 2018 tree, and 20.3%, 40.9%, and 61.3% of tips present

in the original 2017 tree. Models were re-inferred for the 25%,

50%, and 75% subsamples (Supplementary Figs S9–S11). We

quantified how well models using subsampled data recapitu-

lated the full model by comparing for each parameter and each

subsample whether the significance (yes or no) and effect direc-

tion (above or below one) of each coefficient was the same, the

difference in mean effect sizes, the proportion of confidence

interval (CI) overlap and the fold increase in CI width (Fig. 4).

The distribution of viral diversification rates and cluster sizes

for the full and subsampled datasets were compared in

Supplementary Figs S2 and S3.

RESULTS

Characteristics of phylogenetic clusters

Of the 8063 representative viruses from PLHIV in the study, 3343

(41.5%) were phylogenetically clustered (Table 1). There were

227 clusters identified, of which 143 clusters comprised 5–10

members, 5 had > 100 members and the largest cluster had 407

members, prior to excluding participants who had passed away

(Fig. 1A). Clustering was associated with sex at birth (chi-

squared test: P< 0.001) and age (P< 0.001). Younger age

groups had a greater tendency to cluster than older age

groups—those 30–44 represented 28.2% of the total clustered

population compared to 22.9% of the total study population.

Furthermore, clustering was dependent on individuals’ HA of

residence (P< 0.001). MSM were underrepresented in the clus-

tering population (P< 0.001; 30.3% of clustering population;

37.1% of study population), while PWID made up a greater pro-

portion of the clustering population (P< 0.001; 41.5%; 29.4%),

as did those with a previous HCV infection (P< 0.001; 33.9%;

24.1%).

Relationship between viral diversification rate and

clustering

Individuals who clustered tended to have viruses with higher di-

versification rates; however, viruses with high diversification

rates were also found among individuals who did not cluster

(Supplementary Fig. S2). The distributions of log-transformed

viral diversification rates and changes in log diversification rate

between individuals who did and did not cluster differed signifi-

cantly (Fig. 1B and C). A Kruskal–Wallis rank-sum test con-

firmed that diversification rates were significantly higher among

those in clusters (P< 0.001), while the annual changes in diver-

sification rate were significantly lower among members of clus-

ters (P< 0.001). Among those who clustered, log-transformed

diversification rates varied widely from 2.34 to 7.19—compared

Concordance of HIV transmission risk factors McLaughlin et al. | 341

https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab028#supplementary-data


to 2.32–6.03 among those who did not cluster. Annual changes

in diversification rate were similarly variable among both indi-

viduals who did and did not cluster. Together, this suggests

transmission levels vary both within and outside identified

clusters.

Diversification rates and annual changes in diversification

rate also differed significantly by cluster size category (Kruskal–

Wallis: both P< 0.001; Fig. 1D and E). Individuals from smaller

clusters had significantly lower viral diversification rates than

individuals from all larger cluster size ranges (Wilcoxon tests

with Bonferroni correction: all P< 0.001, except comparing clus-

ters sized 11–20 to 51–100 and clusters sized 21–50 to those

sized >100). Conversely, individuals within smaller clusters had

significantly higher annual changes in diversification rate com-

pared to individuals in larger clusters (all P< 0.001, except

comparing clusters sized 5–10 to 11–20 and clusters size 51–

100 to >100).

Although larger clusters generally had higher viral diversifica-

tion rates and lower changes in viral diversification rate than

smaller clusters, Fig. 2 illustrates how viral diversification rates

and changes in viral diversification rate can vary substantially

within clusters, regardless of size. Regardless of cluster mem-

bership, individuals who were phylogenetically proximate to

newly diagnosed cases in 2018 (<0.02 substitutions per site

across >90% of bootstraps) had significantly higher changes in

viral diversification rate and higher viral diversification rates

compared to individuals who were not proximate to new cases,

regardless of cluster membership (Kruskal–Wallis: both

P< 0.001; Supplementary Fig. S13). We estimated there were

339 individuals paired to individuals whose first antiretroviral

Table 1. Characteristics of the overall study population and the subset who were members of phylogen-

etic clusters

Study population (n¼ 8063) Clustering population (n¼ 3343)

Characteristics n % of total % of reported n % of total % of reported P-values

Sex at birth Female 1394 17.3 17.8 643 19.2 19.8 <0.001

Male 6428 79.7 82.2 2602 77.8 80.2 –

Unreported 241 3.0 – 98 2.9 – –

Age category 60 and over 1956 24.3 24.4 634 19 19 <0.001

45–59 3890 48.2 48.4 1594 47.7 47.8 –

30–44 1845 22.9 23.0 943 28.2 28.3 –

29 and under 341 4.2 4.2 163 4.9 4.9 –

Unreported 31 0.4 – 9 0.3 – –

Health authority A 418 6.2 6.7 162 5.8 12.9 <0.001

B 778 11.6 12.5 158 5.7 12.6 –

C 1680 25.0 26.9 335 12 26.7 –

D 4351 64.8 69.7 184 6.6 14.7 –

E 263 3.9 4.2 667 23.9 53.1 –

Unreported 573 8.5 – 1837 65.9 – –

Men who have sex

with men

No 2673 33.2 47.2 1421 42.5 58.4 <0.001

Yes 2988 37.1 52.8 1012 30.3 41.6 –

Unreported 2402 29.8 – 910 27.2 – –

Heterosexual exposure No 3761 46.6 66.4 1573 47.1 64.7 <0.001

Yes 1900 23.6 33.6 860 25.7 35.3 –

Unreported 2402 29.8 – 910 27.2 – –

People who inject drugs No 4015 49.8 62.9 1287 38.5 48.1 <0.001

Yes 2371 29.4 37.1 1388 41.5 51.9 –

Unreported 1677 20.8 – 668 20 – –

Previous Hepatitis C

infection

No 3187 39.5 62.1 986 29.5 46.5 <0.001

Yes 1942 24.1 37.9 1133 33.9 53.5 –

Unreported 2934 36.4 – 1224 36.6 – –

Reported P-values were calculated using chi-squared contingency table tests.
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dispensation was in 2018 (taken as a proxy for new infection in

2018)—310 of 339 (91.4%) proximate individuals were in

clusters.

Comparing risk factors for cluster membership, viral

diversification rate, change in diversification rate and viral

diversification rate among the clustered population

Similar risk factors were identified, albeit with varying effect

sizes and CIs, through respective analyses of viral

diversification rate in 2018, annual changes in diversification

rate between 2017 and 2018, cluster membership in 2018 and

diversification rate among the clustered population (Fig. 3).

Cluster membership aORs were consistently further from 1 with

wider CIs than viral diversification rate aRRs.

Men were at a significantly higher adjusted risk than women

in all models except viral diversification rate among clustered,

with an aOR of 1.27 (95% CI: 1.10–1.46) in the cluster member-

ship analysis, an aRR of 1.10 (1.05–1.16) in the diversification

rate analysis and an aRR of 1.05 (1.01–1.09) in the change in

Figure 1. Diversification rates differ by phylogenetic cluster membership and size range. Clusters must contain a minimum of five members connected by pair-

wise patristic distances <0.02 substitutions/site and supported by >90% of bootstrap phylogenies. (A) Clusters were grouped by their number of members

(size ranges), within which the number of clusters, total number of people living with HIV and number of people living with HIV alive in February 2019 were

calculated. (B) Log-transformed viral diversification rates and (C) annual changes in log-transformed diversification rates differed based on cluster member-

ship in 2018. (D) Log-transformed viral diversification rate within different cluster size ranges and (E) annual changes in log-transformed diversification rates

also differed. Significance was assessed using non-parametric Kruskal–Wallis tests across groups, followed by pairwise Wilcoxon rank-sum tests with a

Bonferroni correction for multiple comparisons, where *P< 0.05, **P< 0.01 and ***P< 0.001. The lower and upper hinges in the boxplot correspond to the

25th and 75th percentiles, the whiskers extend 1.5 times the interquartile range from the hinge, and the middle bar represents the median

Concordance of HIV transmission risk factors McLaughlin et al. | 343



diversification rate analysis. Models were fully concordant with

respect to age: individuals in the three younger age categories

had significantly and progressively higher adjusted risks in all

analyses. For example, the aRRs of elevated viral diversification

rate among the clustered were 1.08 (1.01–1.15) for those aged

45–59, 1.35 (1.25–1.45) for those aged 30–44 and 1.59 (1.40–

1.81) for those aged 29 and under, relative to those 60 and older.

The significance and effect direction of HA were not entirely

concordant across all models. Individuals from health author-

ities B and C were at no elevated transmission risk compared to

A in any of the models. Only the cluster membership analysis

identified living in HA D relative to A as a significant risk factor

(aOR¼ 1.36, 1.09–1.69), adjusting for other variables. Living

within HA E was identified as a significant risk factor in the clus-

ter membership analysis (aOR¼ 3.09, 2.19–4.38) and in the

viral diversification rate (aRR¼ 1.36, 1.20–1.54), though not in

the other two models. Participants who did not report a HA

(due to recent migration, homelessness or other circumstan-

ces) had significantly lower adjusted odds of clustering

(aOR¼ 0.45, 0.31–0.63) and a significantly lower adjusted risk

of elevated viral diversification rate (aRR¼ 0.81, 0.72–0.92).

Models were not fully concordant in regard to the effect and

significance of reported risk factors. While MSM had a signifi-

cantly lower adjusted odds of clustering than non-MSM

(aOR¼ 0.65, 0.55–0.77), among the clustering population,

MSM had 1.21 times (1.11–1.31) the adjusted risk of an ele-

vated viral diversification rate than non-MSM. Heterosexual

intercourse was associated with a lower adjusted odds of clus-

tering (aOR¼ 0.83, 0.72–0.96) and a lower adjusted risk of ele-

vated diversification rate (aRR¼ 0.94, 0.89–0.99). Previous HCV

infection was associated with a significantly higher adjusted

odds of clustering (aOR¼ 1.87, 1.60–2.18), higher adjusted risk

of elevated diversification rate (aRR¼ 1.29, 1.22–1.37) and

higher adjusted risk of elevated diversification rate among the

clustered (aRR¼ 1.18, 1.09–1.28), but not associated with a

higher risk of elevated change in diversification rate. Individuals

with higher viral loads were at an elevated risk in all models.

Model sensitivity to subsampling

As expected, subsampling data resulted in left-shifted distribu-

tions of viral diversification rate (Supplementary Fig. S3) and clus-

ter sizes (Supplementary Fig. S2), whereby the diversification

rates were reduced and cluster sizes were smaller, with fewer clus-

ters identified. Comparing across subsample datasets (25%, 50%

and 75%) to the full dataset for each model strategy/outcome

(Supplementary Figs S9–S11), variables with effect sizes further

from the null in the original model tended to have their effect

Figure 2. Representative phylogenetic clusters of different sizes include a range of viral diversification rates and changes in diversification rate. Node shapes

represent individuals’ health authority of residence and node colours represent either (A) log-transformed viral diversification rates in 2018 or (B) log-trans-

formed changes in diversification rates between 2018 and 2017. Grey nodes without an N denote individuals who have passed away; grey nodes with an

N newly diagnosed cases in 2018 that have an assigned change in diversification rate of 0
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direction and significance better recapitulated in the subsampled

datasets. Viral diversification rate among clustered models most

consistently generated the same significance and effect direction

(Fig. 4A), meanwhile clustering had the least agreement of sig-

nificance and effect direction for all subsample percentages

(mean 0.59 agreement for 25% subsample). When we compared

the difference in mean effect size estimates (Fig. 4B), the spread

in differences was the widest for cluster membership for all

subsamples, although on average, difference in means remained

within 0.2 of the original for all models. Notably, the fold increase

in the CI width increased as data was removed, and this was par-

ticularly the case for the cluster membership models (for 25%: 2.7

mean fold change of CI width; Fig. 4C) and viral diversification

rate among clustered models (for 25%: 3.4 mean fold change).

Viral diversification rate and changes in diversification rate mod-

els had smaller increases in the CI width (for 25%: 1.5 and 1.7

Figure 3. Adjusted relative risks and odds ratios for individual attributes associated with HIV cluster membership, viral diversification rate, annual changes in

diversification rate and viral diversification rate among the clustered population. Relative risks were estimated using log linear regression models, while the

odds ratios for cluster membership were estimated using a multiple logistic regression model with a logit linker equation. Clusters were defined using a pair-

wise patristic distance threshold of 0.02 substitutions/site, representing the 95th percentile of intrapatient patristic distances, and contained a minimum of

five individuals
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mean fold changes, respectively; Fig. 4C). Finally, we evaluated

the percent of the subsampled CI that overlapped with the original

CI—this decreased the more data was removed for all models

(Fig. 4D). The greatest decreases in overlap were in the cluster

membership and viral diversification rate among clustered mod-

els. Taken together, these sensitivity analyses suggest that cluster

membership and viral diversification among clustered models

were the least robust to recapitulating transmission risk estimates

with less data available.

CONCLUSIONS AND IMPLICATIONS

Viral diversification rate is an informative metric to investigate

risk factors associated with HIV transmission, which is gener-

ally concordant with clustering and robust to reduced sam-

pling. Risk factors associated with both elevated viral

diversification rates and cluster membership included being

male, young, living in the HA E, previous injection drug use,

previous HCV infection, not reporting an HCV test or a high

most recent viral load.

Being young was a transmission risk factor in every model

that we evaluated. Conceptually, it makes sense that younger

people would be more active socially and sexually, and may

be more likely to engage in risk-taking behaviour [29].

Participants previously infected with HCV were at a significant

risk of elevated diversification rate overall and among the

clustered population, as well as at a higher odds of clustering,

but not when evaluating the annual change in diversification

rate. This is consistent with historical HIV transmission pat-

terns in the province—in the 1990s, injection drug use was a

primary risk factor for HIV and HCV transmission [30], but

harm reduction measures such as InSite, North America’s

first safe injection site [31], have subsequently reduced new

HIV cases in this population, resulting in fewer large changes

in diversification rate.

Although odds ratios approximate relative risks for rare out-

comes [32], 41.5% of our study population were in a cluster.

Comparing odds ratios from the cluster membership analysis

to relative risks from the viral diversification rate analyses is

therefore not an equivalent comparison, as odds ratios tend to

exaggerate the effect size [32]. This wider trend was consistent

with our results—aORs for cluster membership were consist-

ently further from 1 than the aRRs for viral diversification rate

within the entire study population and among only the clus-

tered subpopulation. This suggests that diversification rate

offers modelling advantages over cluster membership as rela-

tive risks calculated from continuous outcomes more accur-

ately estimate the effect size than odds ratios calculated from

binary outcomes. Additionally, the CIs on the aORs for cluster

membership were consistently wider than those for the aRRs

Figure 4. A summary of model robustness to subsampling. For datasets limited to 25%, 50% or 75% of the full dataset participants, resulting exponentiated

model coefficient estimates were compared to those from the full dataset model in terms of (A) whether detected significance and effect direction were con-

sistent; (B) the difference in mean effect size estimates; (C) the proportion of the subsampled confidence interval (CI) overlapping the full model CI; and

(D) the fold increase in the width of the subsampled CI. Colours represent the various model outcomes/strategies, lightly coloured points represent model

parameters, thick rectangle is the mean and confidence bars represent 95% confidence intervals
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for viral diversification rate, especially in the subsampled data-

sets, where we detect the combined effects of clustering being

a binary variable, as well as only accepting clusters with five or

more members.

The interpretations of cluster membership and elevated viral

diversification are similar; they identify viral lineages that

branched rapidly, suggesting frequent between-host transmis-

sion. However, viral diversification rate gives more weight to re-

cent branching events, does not rely on thresholding and has

inherent modelling advantages as a continuous outcome. While

it could be argued that the binary classification of cluster mem-

bership is more easily interpretable and actionable than a con-

tinuous metric with an abstract unit, dichotomizing the range of

transmission activity obscures the detail necessary to prioritize

treatment, particularly as clusters become larger and more nu-

merous. Since clusters are easily interpretable to public health

authorities and provide insights into how outbreaks span geog-

raphies and risk groups, we recommend viral diversification

rates be used to complement phylogenetic clusters, resolving

transmission dynamics within clusters and helping to both pri-

oritize clusters of interest and make inferences about the mech-

anisms of cluster growth. Future work is needed to identify an

optimal combined approach where viral diversification rate can

be used to decipher differences within clusters, facilitating their

prioritization. Our analyses showed that while larger clusters

generally had higher diversification rates and lower changes in

diversification rate, there is wide variation within clusters and

cluster size alone does not predict individuals’ viral diversifica-

tion rates. Clustering was more sensitive to empirical subsam-

pling than viral diversification rate, therefore viral diversification

rate could be useful in geographies with limited sequencing

capacity. Viral diversification rate may be partially subject to a

similar challenge as clustering in that differences between sub-

populations may reflect sampling differences more readily than

transmission differences. While our empirical subsampling ana-

lysis showed that clustering was more sensitive to lower sam-

pling rates than viral diversification rate, in future work, this

could be explored further with simulations of structured popula-

tions with varying sampling and transmission rates.

Phylogenetic analyses of HIV sequences available through

routine drug resistance genotyping highlight transmission risk

factors that can help prioritized public health service allocation.

We have shown that viral diversification rate, while generally

concordant with phylogenetic clustering, was more robust to

lower sampling representation. Viral diversification rate has un-

tapped potential in the field of infectious disease epidemiology

to decipher transmission dynamics.

SUPPLEMENTARY DATA

Supplementary data is available at EMPH online.
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