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Abstract

We analyse academic success using a genealogical approach to the careers of over

95,000 scientists in mathematics and associated fields in physics and chemistry. We look

at the effect of Ph.D. supervisors (one’s mentors) on the number of Ph.D. students that

one supervises later on (one’s mentees) as a measure of academic success. Supervisors

generally provide important inputs in Ph.D. projects, which can have long-lasting effects

on academic careers. Moreover, having multiple supervisors exposes one to a diversity of

inputs. We show that Ph.D. students benefit from having multiple supervisors instead of a

single one. The cognitive diversity of mentors has a subtler effect in that it increases both

the likelihood of success (having many mentees later on) and failure (having no mentees

at all later on). We understand the effect of diverse mentorship as a high-risk, high-gain

strategy: the recombination of unrelated expertise often fails, but sometimes leads to true

novelty.

1 Introduction

The question whether evolutionary theory can be applied to the social sciences is as old as evo-

lutionary theory itself [1]. Analogous to biological evolution as a process of genetic reproduc-

tion, cultural evolution has been considered as a process in which particular items (such as

knowledge, skills, practices and values) are being passed on across generations. Such cultural

items are replicated in various social contexts, including through upraising in families, teach-

ing in schools and training in firms [2].

The evolution of scientific knowledge is part of the process of cultural evolution and can

thus be studied as such [3]. Scientific knowledge, skills and practices are passed on between

generations of scientists primarily through training at universities. Its study can be done

through a genealogical lens, as academic training is institutionalized in the form of Ph.D.

supervision. Anyone who graduates has been mentored by one or more Ph.D. supervisors

(mentors) and any graduate can in turn become a supervisor of one or multiple Ph.D. students

(mentees) later on. Arguably, Ph.D. supervisors do not just train Ph.D. students in a particular

knowledge domain, but also selectively pass on their own ideas and skills within this domain

[4]. This implies that the evolution of scientific knowledge is also, in part, driven by genealogi-

cal dynamics: mentors with more mentees are able to pass on their knowledge at a higher rate

than those with fewer mentees.
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In previous studies, academic success has been related to characteristics of good mentors

[5–8] and scientists’ personal relationship with their mentors [9, 10]. Genealogies of scientists

have also been studied before to characterize scientific disciplines or institutes [11], develop

indicators of field interdisciplinarity [11], and intellectual heritage [12]. Others have used

genealogies to investigate to what extent mentees replicate their mentors’ career choices and

success [5], and more specifically to analyse the extent to which Nobel laureates are part of the

same mentoring communities [13].

Our study starts from the idea that recombination plays a key role in scientific advance.

Analogous to the logic of genetic recombination driving biological evolution, we understand

cultural innovation as stemming from new combinations of ideas and artefacts [14, 15]. In the

context of science, Ph.D. students may experience a variety of influences, and combining these

may help them to produce creative ideas. The potential for recombination can be traced back

from the diversity of cultural influences that an individual inherits from its past mentors. Note

that genealogical linkages between scientists in terms of mentorships are not only direct, but

also indirect covering any number of past generations (mentors-of-mentors) [7]. The whole

genealogical past of individuals may, in principle, affect their ability to produce new ideas,

and, in this way, there future careers.

Genealogies can be modelled as networks. A genealogical network is a directed network

that represents the channels of knowledge transmission from mentor to mentees, as well as–

reversely–the opportunities for invention by mentees who combine mentors’ knowledge.

Every scientist can be considered as a node in a directed network, where the in-degree stands

for the number of mentors that a scientist has had as a mentee, and the out-degree stands for

the number of mentees that a scientist mentored later on in the academic career. Studying

mentor-mentee relationships is relevant, because the number of mentees of a mentor offers a

way to understand academic success, one that reflects the selection passing on of knowledge to

new generations [5, 7]. Indeed, having more mentees has been shown to be highly correlated

with publication output and academic prestige [5]. In a genealogical approach to science, the

number of Ph.D. students trained in the course of a career can thus be used as a measure of

academic success. That is, in network terms, a mentor’s academic success can be expressed by

a mentor’s out-degree. In this framework, one can analyze what network properties affect a

mentor’s out-degree. We do so by analyzing the genealogical data of mentor-mentee relation-

ships using a large-scale dataset of 95,502 scientists for the period after World War II.

The central question we aim to answer holds how a scientist’s mentors at the time of Ph.D.

training affect future academic success. First, we investigate this question by looking whether

one’s out-degree as indicator of success (number of mentees) is increased by one’s in-degree

(number of mentors). Second, following the idea of recombination underlying success, we

investigate how the genealogical diversity between one’s mentors affects one’s success later on.

We hypothesize that having a greater ‘cognitive diversity’ of mentors will increase the likeli-

hood of both success (havingmanymentees later on) and failure (having nomentees later on).

As more diverse mentors provide mentees with more opportunities for creative recombination

of knowledge, skills and practices, there is a higher chance that a mentee produces radically

novel ideas. Such new ideas, then, may be embraced by the scientific community boosting

one’s career, but may also be rejected hampering one’s career. Having less diverse mentors is

expected to lead only to a moderate success (fewmentees later on) consistent with a pattern of

incremental innovations of established lines of thinking.

In the following, we elaborate on our genealogical approach (section 2) and then empiri-

cally analyze a large-scale mentor-mentee database descriptively (section 3) and with regres-

sion models (section 4). We reflect on our results in the light of theories about novelty and

formulate some implications for Ph.D. training within universities (section 5).
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2 A genealogical framework

In the biological sphere, genealogy entails the reproduction of genetic material by parents in

their offspring. Likewise, in the cultural sphere, cultural items are being replicated from person

to person through training. For example, in business studies, it has been found that the survival

rate of a spinoff firm is correlated with the survival rate of the parent firm, which is explained

by the knowledge and skills that the founder acquired while working for the parent firm [16–

18]. In science, knowledge transfer between mentor and mentees is evident from the citation

pattern of Ph.D. students, who are more likely to cite works by their supervisors than works by

people with whom they do not have such a genealogical link [19].

Ph.D. training, however, does not only involve the reproduction of knowledge and skills as

to qualify as an academic scientist, but also has as an explicit objective to produce new scien-

tific knowledge. The future career of a Ph.D. student, then, does not depend so much on the

faithful reproduction of the knowledge and skills of her or his supervisor(s), but much more

on the ability to produce novelty in terms of new theoretical or empirical insights. For a genea-

logical approach to academic success, a key question is then where scientific novelty comes

from. We propose two genealogical principles: ancestry size and ancestry diversity.

First, we argue that for Ph.D. students to become successful, it helps if they can build on the

expertise of multiple supervisors rather than having to rely on just one. One can safely assume

that a Ph.D. student with multiple supervisors will not receive the exact same knowledge inputs

from each of the supervisors. Receiving more inputs means that one can create more new

knowledge, following the view that more knowledge inputs allow for more re-combinational

options [14, 15]. Following this view, the more supervisors a Ph.D. student has, the more

knowledge inputs they will receive, and the more knowledge output they will produce.

Following the genealogical logic, this argument extends to multiple generations. That is, as

mentors themselves have been a mentee in the past, a scientist is not just influenced by its own

mentor(s), but also, indirectly, from the mentor(s) of mentor(s), and so on. Mentoring influences

thus are not only direct, but can also be indirect via mentors of mentors. In principle, genealogical

relationships can be traced back ab initio in a family tree. A genealogical approach thus allows one

to consider the whole ancestry of a mentee, rather than only focusing on the mentor-mentee

dyad. Having more mentors–be them direct or indirect–is thus assumed to lead to more knowl-

edge inputs, which in turn leads to more academic success. This leads us to the first hypothesis:

Hypothesis 1: A large ancestry increases the likelihood of academic success.

Our second genealogical argument reasons from the diversity of inputs. While more knowl-

edge inputs are expected to increase academic success, the nature of knowledge inputs is also

expected to matter. Knowledge inputs from multiple supervisors are arguably always different to

some extent, but the difference between inputs may vary from very similar to very dissimilar. That

is, the mentoring team may be more or less diverse in terms of the knowledge inputs they provide.

The diversity of the mentoring team is a function of the ‘cognitive distance’ between the mentors,

where cognitive distance can be understood as the extent to which two individuals have different

knowledge [20]. In the case of Ph.D. supervisors, the cognitive distance between two supervisors

may reflect their disciplinary backgrounds, theoretical orientations, methodological skills, etc. For

example, one can consider the knowledge of a physics mentor and a psychology mentor to be

more diverse than, say, the knowledge of a computer scientist and an applied mathematician.

Dissimilar inputs from a diverse set of mentors can help the mentee to develop radically

new ideas by recombining these inputs resources [21, 22]. Reversely, when mentors are simi-

lar, the resulting ideas produced by the mentee are more likely to resemble the inputs recom-

bined and, accordingly, will be less radical. However, we argue that for a mentee it will be
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harder to successfully combine dissimilar knowledge inputs than similar knowledge inputs, as

dissimilar inputs refer to different, and often incompatible assumptions, theories and method-

ologies. Successfully recombining dissimilar inputs would require many more mobilized

resources and skills and more creativity. Moreover, the high degree of novelty of the knowl-

edge produced may not be accepted by the academic community, as it deviates from estab-

lished lines of thinking [23]. By contrast, similar knowledge inputs are easier to combine into

incrementally new knowledge, since these are based on the same background knowledge,

skills, and resources [21, 22]. Hence, while dissimilar inputs may provide opportunities for

radically new ideas, it also constitutes a riskier context in which mentees may fail to advance

science in a meaningful and accepted manner. This leads us to the second hypothesis:

Hypothesis 2: A diverse ancestry increases the likelihood of academic success, and of academic
failure.

3 Methods

3.1 A genealogical network approach

In demographic studies, genealogies are used to study ancestral lineages in a population [24].

Genealogies can be represented as networks called pedigrees, where edges link parents to offspring.

Nodes, in these networks, represent individuals, while edges represent historic relations between

nodes. In-degree refer to an individual’s number of direct ancestors, and out-degree to the number

of direct descendants. Edges are directed away from the common ancestor at the root of the net-

work. Genealogical networks are acyclic, meaning that they cannot contain directed cycles [25].

In this paper we use a genealogical network to represent mentor-mentee relationships,

where the nodes represent individual scientists and edges represent supervisory relationships

between mentors and mentees [7, 11, 13]. Accordingly, we can specify mentor-mentee rela-

tionships and speak of ancestors and descendants in an academic genealogy. Fig 1 presents a

hypothetical subnetwork with 20 individuals.

Network structures can be described at the micro-level of an individual scientist and at the

macro-level of the entire network. At themicro-level, in-degree denotes the number of men-

tors of an individual and out-degree denotes the number of mentees of an individual. Further-

more, the number of co-mentees can be expressed by the number of individuals with whom

an individual shares a mentor. In this example, individual 3 is thementor of individual 6, while

individuals 9 and 10 arementees of individual 6. Individual 6, then, has an in-degree of 1 and

an out-degree of 2. Besides individual 3, individual 1 also belongs to the ancestors of individual

6, as individual 1 is a second-order mentor of individual 6. And, individual 1 is a third-order
mentor of individuals 9, 10 and 11.

At themacro-level, the longest path of directed edges in the network, called the network’s

diameter, reflects the total number of generations [25]. In Fig 2, the longest path of directed edges

is 3 (from individual 1 to individuals 9, 10 and 11). A diameter of 3 implies that there are four gen-

erations of scientists. Another macro-level property is the number of components and their size.

In the example, we have three components, with the largest component containing 11 nodes, the

second largest component 7 nodes and the smallest component only 2 nodes. Over time, compo-

nents may merge into one: for example, if individuals 11 and 18 supervise a new node, then their

respective components will merge into one larger component with size 11+7+1 = 19.

3.2 Data

To analyse the determinants of scientists’ academic success, we use a large-scale genealogical

network of scientists. Our genealogical data is drawn from the Mathematics Genealogy Project,
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an online database developed as a historical record of scientists with a Ph.D. in mathematics to

keep track of mentor-mentee relationships [26]. For our analysis, we have obtained the data

through recursive queries to the Mathematics Genealogy Project using R and the R-package

‘rvest’ [27]. Queries ran between the 27th of June 2018 and the 10th of July 2018.

Fig 1. Example of a subnetwork of a genealogy of scientists.

https://doi.org/10.1371/journal.pone.0243913.g001

Fig 2. Network characteristics. Number of nodes (scientists with a Ph.D. degree) (upper left), number of edges (mentor-mentee relationships) (upper right), number

of components (bottom left), and relative size of the largest component (bottom right).

https://doi.org/10.1371/journal.pone.0243913.g002
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The project has been a source of inspiration for similar data collection efforts in other scien-

tific disciplines [28, 29]. Despite its crowdsourced nature, this database is recognized as one of

the most complete historical Ph.D. records in the field of Mathematics [12, 30]. Over time, it

has come to include other scientific fields that are associated with mathematics, primarily,

physics and chemistry. The case of mathematics, physics and chemistry is especially useful for

studying the evolution of scientific knowledge, because these fields are less constrained by geo-

graphical and political interests, language barriers and access to materials than social sciences,

humanities, and engineering [31]. Therefore, these constraints that typically affect the evolu-

tion of scientific knowledge are somewhat less relevant for mathematics, physics and chemistry

than for other disciplines.

Each scientist is registered by a unique ID. The project also records the institute and coun-

try where the Ph.D. degree was obtained, the year in which the degree was obtained, and,

often, the title and subject classification of the thesis. No other personal information is pro-

vided in the dataset. The earliest observation in the network is from the year 1574, the latest

from 2018. The total network contains 196,667 nodes and 288,147 edges, distributed over 24

generations. Fig 2 presents the development of the network between 1574 and 2018. We see

that the total amount of Ph.D. degrees awarded annually has started to grow rapidly after 1945

(Fig 2, top left) and, correspondingly, the amount of mentor-mentee relationships (Fig 2, top

right), and the number of components in the network (Fig 2, bottom left). The relative size of

the largest component (Fig 2, bottom right) tends to increase, with sudden large jumps in the

years 1766 and 1822 resulting from mergers of components. After that, the largest component

covers the large majority of scientists.

For our analysis, we limit the data set to scientists who obtained their Ph.D. after 1945. The

reason holds that only after 1945, it became more common to have multiple formal supervisors

(Fig 3, right). Furthermore, we do not include scientists who obtained their Ph.D. degree in

2000 or later, because there is a time lag in collecting mentees due to career progression (Fig 3,

left).

Fig 3 shows the number of observed scientists in our data set per year, as well as the distri-

bution of the number of mentors and mentees of our observed scientists. Scientists have, on

average, 1.818 mentees and 1.054 mentors. This discrepancy is due to the sharp increase in Ph.

D. graduates in the last years. In the left figure in Fig 3, we can see that many Ph.D. graduates

do not become a mentor themselves, as the majority of scientists have zero mentees. The frac-

tion of scientists with zero mentees increases over time. The distribution is also very skewed.

In the right figure in Fig 3 we can see that having zero reported mentors is extremely rare.

Such observations may either refer to scientists who obtained a professorship without a Ph.D.

degree, or whose supervisor’s name is missing in the dataset. Hence, to the extent that scien-

tists without mentors would signal the inaccuracy of the dataset, the rareness of it can be seen

as a sign of the quality of the dataset. Fig 3 further shows that the majority of Ph.D. students

have one mentor, but a considerable share of Ph.D. students has two mentors. Only 184 Ph.D.

students in our data set have 3 mentors, and 13 individuals have 4 mentors. An in-degree

higher than four does not occur in this dataset. Note that in some rare cases, individuals may

have more than one mentor because they wrote multiple Ph.D. theses with different mentors,

rather than having multiple mentors for one thesis.

3.3 Model

The phenomenon we aim to explain is academic success as measured by a count of a scientist’s

mentees, that is, the out-degree. The large number of scientists with zero mentees reflects that

many scientists who earned a Ph.D. degree did not continue their career in academia and,
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consequently, did not mentor any mentees (Fig 3, left). This can be because they were not sus-

ceptible to an academic position after their Ph.D., but also because they may have found job

opportunities in other industries more attractive. Others may have continued in academia but

never successfully attracted mentees, particularly if working in smaller and less reputed univer-

sities where Ph.D. programs are underdeveloped or in academic institutions others than uni-

versities. While such scientists may have achieved considerable success in other ways, they

have not been able to transfer their scientific ideas to new generations of scientists by training

Ph.D. students.

Given the excessive number of zeroes in the dependent variable, we apply a zero-inflated

negative binomial (ZINB) regression model. Here, we assume that having zero mentees can be

the outcome of two separate processes [7, 32]: first, one’s susceptibility to acquiring an aca-

demic professor position (as modelled in the logit part of our analysis, explaining zero men-

tees), and second, ability to attract and successfully supervise mentees as professor (as

modelled in the negative binomial part of our analysis, explaining the number of mentees).

The negative binomial part of our analysis thus estimates the expected number of mentees,

conditional on being able to acquire a professor position.

Following hypothesis 1 (‘A large ancestry increases the likelihood of academic success’), we

first test the effect of ancestry size on the number of mentees. We do this for the full set of

Fig 3. Count of scientists per year, per number of mentees (figure left) and mentors (figure right).

https://doi.org/10.1371/journal.pone.0243913.g003
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scientists in the dataset (N = 95,502). Here, we distinguish between different generations of

mentors (first-order mentors, second-order mentors and third-order mentors), expecting that

the effect of more distant generations will become progressively smaller. For each scientist in

the network, we thus compute the following characteristics that, together, represent ancestry

size: (a) number of first-order mentors–corresponding to in-degree; (b) number of second-

order mentors–corresponding to the sum of an individual’s mentors’ in-degrees; and (c) num-

ber of third-order mentors–corresponding to the sum of second-order mentors’ in-degrees. In

order to prevent multicollinearity, our variables for second- and third-order mentors are nor-

malized, meaning that they represent the mean number of second-order mentors per first-

order mentor and the mean number of third-order mentors per second-order mentor. For

example, in Fig 1, individual 10 has two mentors who, themselves, both have one mentor. So,

individual 10 has one second-order mentor per first order mentor. And, individual 10 has one

third-order mentor per second-order mentor, because both her second-order mentors have

one mentor (individual 1).

Table 1 provides the descriptive statistics of the genealogical variables used in our model.

We can observe that the mean number of first-, second- and third-order mentors is close to

one. Few scientists have a high number of second- or third-order mentors.

Turning to hypothesis 2 (‘A diverse ancestry increases the likelihood of academic success, and
of academic failure’), we need to operationalize exceptional success and failure as well as the

diversity of one’s ancestry. Here, academic success again means that a scientist has many men-

tees later on (as measured by the count in the negative binomial part in the ZINB-model),

while academic failure here means that a scientist will have no mentees at all later on (as mea-

sured as zero mentees in the logit part of the ZINB-model).

Ancestry diversity is derived from the network distance between two mentors, which is the

shortest path length between two mentors towards a common ancestor ‘upwards’ in the gene-

alogy. For an example, consider again Fig 1. Individuals 4 and 6 have a network distance of 4,

while individuals 7 and 8 have a network distance of 2. Network distance thus measures the

cognitive distance between mentors prior to their joint mentoring of the Ph.D. student in ques-

tion. A particular case is when two mentors come from different components in the network,

such as individuals 15 and 16 in our example. Since such mentors have no common ancestor,

they have an infinite network distance. To express ancestry diversity while taking into account

infinite values for network distance, diversity is defined as one minus the inverse of network

distance [23]. The value of ancestry diversity thus takes on the value of 1 if two mentors belong

to two different components in the network and 0 when two mentors are the closest, that is,

when one mentor supervised the other.

Ancestry diversity can only be applied to the minority of mentees who have more than one

mentor. Among them, the very large majority (98%) has two mentors (see Fig 3 (right)). We

test the second hypothesis using only the subset of mentees with two mentors (N = 9,296).

From Table 1, we can learn that among the 9,296 Ph.D. students with two mentors, the mean

Table 1. Descriptive statistics for genealogical variables.

Variable N Mean St. Dev. Min Pctl(25) Pctl(75) Max

mentees 95,502 1.818 5.014 0 0 1 144

first-order mentors 95,502 1.054 0.407 0 1 1 4

second-order mentors (mean) 95,502 0.973 0.510 0 1 1 4

third-order mentors (mean) 95,502 0.933 0.553 0 1 1 4

ancestry diversity 9,296 0.770 0.354 0 0.8 1 1

mentees of first-order mentors (mean) 95,502 17.520 16.290 1 6 23 144

https://doi.org/10.1371/journal.pone.0243913.t001
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ancestry diversity is 0.770. Also note that an ancestry diversity of 1 is not uncommon: 43.6% of

Ph.D. students with two mentors have an infinite network distance. Besides infinite distance,

the largest network distance that we observe in our dataset is 29, yielding an ancestry diversity
value of close to 1 (to be precise: 1 – (1/29) = 0.965).

In all regression analyses, we include a number of control variables that are likely to affect

the number of mentees of a scientist and may confound the effect of the ancestry size and

ancestry diversity, if neglected. First, there must be scientists in our data set who did not have

any mentees, not because they did not have the potential to acquire them, but because they

considered external job opportunities more attractive. We cannot consider these scientists as

having failed academically, because they may not have had the ambition to pursue an academic

career. This is particularly likely for scientists with a Ph.D. from engineering universities and

medical universities, for whom there may be many attractive career options outside of academia

and for whom the prospect of an academic career may not be their main consideration to get a

Ph.D. degree in the first place [33]. In this context, a recent study estimated that about half of

Ph.D. students in Europe consider their training as relevant to a wide range of careers [34]. We

therefore include a dummy variable technical & medical university, referring to Ph.D. student

who received their degree from technical university or medical school. Following Frenken, Hei-

meriks and Hoekman [35], we classified universities as technical and based on the university’s

name and, for those for which the name does not specify any such specialization, the university’s

home page was checked for mentioning a technical or medical specialization.

Second, as we are analysing a network, there may be interdependencies between individual

scientists’ number of mentees, and the number of mentees of their mentor(s) in the network.

This is even likely, given our genealogical network, as talented people may be drawn to talented

supervisors. Then, it is likely that mentors with a large number of mentees have had mentors

who, themselves, have had a large number of mentees [5, 16]. Therefore, we include the mean

number of mentees of an individual’s first-order mentors, as a lagged dependent variable,

which corresponds to the mean academic success of an individual’s mentors. Note that, as we

see in Table 1, the mean number of mentees of first-order mentors is higher than the overall

mean number of mentees, because the overall number of mentees includes many scientists

with zero mentees, while the number of mentees of first-order mentees logically does not.

Finally, the number of mentees being trained has steadily risen over time (see Fig 3). We

therefore include dummies for each decade from 1940s until the 1990s (with the 1940s being

the reference category).

4 Results

4.1 Ancestry size and academic success

In Table 2, we present the results of four zero-inflated negative binomial regression models.

We model the count variablementees using measures of ancestry size as independent variables.

In models (1)-(3) we add the three ancestry size variables one by one, while we base our inter-

pretation on model version (3), which includes all variables We control for decade and techni-
cal & medical university in all models.

In the logit part of our models, we find that having more supervisors (first-order mentors)
decreases the likelihood of having zero mentees (that is, each extra mentor decreases the likeli-

hood of zero mentees with a factor e-0.322 = 0.725). This shows that those with multiple super-

visors are much more likely to ultimately be in a position to mentor others. We do not,

however, find a robust effect of second- and third-order mentors on having zero mentees.

We further find that scientists with a Ph.D. degree from an engineering university or medi-

cal university are more likely to have zero mentees (odds ratio (OR) = e0.046 = 1.047). We can
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interpret this finding as an indication that such scientists are indeed more likely to face attrac-

tive career opportunities in industry or the hospital sector, respectively, leaving them less sus-

ceptible to an academic career. However, the effect is neither very high nor very significant

statistically. Interestingly, we also find a positive and significant effect ofmentees of first-order
mentors in the logit part of model (3), suggesting that other descendants of one’s ancestors

increase the likelihood of not acquiring a mentoring position. This might be because such sci-

entists may compete for the same positions [36, 37]. The decade dummies finally suggest that,

over time, the likelihood of Ph.D. students to become a mentor themselves decreases

gradually.

We find that in the negative binomial part of model (3), first-order mentors positively affect

the expected value ofmentees. As such, the number of direct mentors positively affects aca-

demic success. There is also a (much smaller) positive and significant effect of second- and

third-order mentors on academic success. Technical & medical university andmentees of first-
order mentors both positively affect the expected number of mentees of an individual. Finally,

Table 2. Zero-inflated negative binomial regression coefficients for ancestry size (dependent variable: Mentees).

(1) (2) (3)

logit count logit count logit count

first-order mentors -0.323��� 0.254��� -0.327��� 0.255��� -0.322��� 0.252���

(0.037) (0.026) (0.037) (0.026) (0.037) (0.026)

second-order mentors -0.057� 0.064�� -0.044 0.039^

(0.027) (0.021) (0.028) (0.021)

third-order mentors -0.035 0.075���

(0.025) (0.019)

mentees of first-order mentors 0.009��� 0.010��� 0.009��� 0.009��� 0.009��� 0.009���

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

technical & medical university 0.046^ 0.127��� 0.046^ 0.131��� 0.046^ 0.126���

(0.036) (0.029) (0.036) (0.029) (0.036) (0.029)

decade: 1950s 0.176 -0.068 0.176 -0.067 0.178 -0.067

(0.163) (0.068) (0.163) (0.068) (0.162) (0.068)

decade: 1960s 0.847��� -0.260��� 0.847��� -0.259��� 0.846��� -0.253���

(0.152) (0.064) (0.152) (0.064) (0.151) (0.064)

decade: 1970s 1.415��� -0.300��� 1.414��� -0.294��� 1.411��� -0.289���

(0.152) (0.064) (0.152) (0.064) (0.151) (0.064)

decade: 1980s 1.214��� -0.595��� 1.211��� -0.592��� 1.207��� -0.582���

(0.152) (0.063) (0.151) (0.063) (0.150) (0.063)

decade: 1990s 1.835��� -1.062��� 1.831��� -1.061��� 1.826��� -1.048���

(0.152) (0.063) (0.151) (0.063) (0.151) (0.063)

constant -1.226��� 1.290��� -1.214��� 1.288��� -1.140��� 1.176���

(0.163) (0.069) (0.282) (0.075) (0.166) (0.074)

observations 95,502 95,502 95,502

log likelihood -123,855 -123,871 -123,829

Nagelkerke R2 0.250 0.250 0.251

Note:
^p<0.1

�p<0.05

��p<0.01

���p<0.001. Only scientists who obtained their Ph.D. degree between 1945 and 2000 are included in the regression (N = 95,502). Decade 1940s is the reference category.

https://doi.org/10.1371/journal.pone.0243913.t002
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we find that the potential of academic success gradually decreases over time, compared to the

1940s, as shown.in the count part of our model (3),

In sum, we find support for our first hypothesis (‘Scientists who have had more direct and
indirect mentors, will experience more academic success’). Controlling for technical and medical

universities, decade, and mentor success, we find that having more mentors decreases one’s

likelihood of having zero mentees, and increases one’s expected number of mentees. This effect

is particularly clear for direct mentors, and weaker for indirect mentors.

4.2 Ancestry diversity and academic success

Table 3 presents the results for ancestry diversity of our zero-inflated negative binomial regres-

sion models based on a subset of our data consisting of 9,296 scientists who had two mentors.

In model (4), we control again for decade, technical and medical universities, and mentor suc-

cess in our models. In the final model (5), we also control for ancestry size effects of second-

and third-order mentors, to see if results from model (3) in Table 2 are robust. We do not

Table 3. Zero-inflated negative binomial regression coefficients for ancestry diversity (dependent variable: Mentees).

(4) (5)

logit count logit count

ancestry diversity 0.136� 0.092��� 0.127� 0.071���

(0.063) (0.019) (0.065) (0.020)

second-order mentors 0.057 0.103���

(0.056) (0.017)

third-order mentors 0.054 0.095���

(0.053) (0.016)

mentees of first-order mentors 0.007��� 0.009��� 0.006�� 0.008���

(0.002) (0.001) (0.002) (0.001)

technical & medical university 0.019 0.092��� 0.015 0.083���

(0.067) (0.020) (0.067) (0.020)

decade: 1950s -0.029 -0.196��� -0.031 -0.200���

(0.249) (0.044) (0.249) (0.044)

decade: 1960s 0.611�� -0.459��� 0.606�� -0.466���

(0.226) (0.041) (0.226) (0.041)

decade: 1970s 0.917��� -0.329��� 0.918��� -0.325���

(0.226) (0.041) (0.226) (0.041)

decade: 1980s 1.072��� -0.596��� 1.077��� -0.587���

(0.225) (0.041) (0.225) (0.041)

decade: 1990s 1.598��� -0.994��� 1.604��� -0.983���

(0.223) (0.042) (0.223) (0.042)

constant -0.701�� 2.263��� -0.795��� 2.101���

(0.229) (0.043) (0.237) (0.047)

observations 9,296 9,296

log likelihood -19,965 -19,924

Nagelkerke R2 0.249 0.257

Note:
^p<0.1

�p<0.05

��p<0.01

���p<0.001. Only scientists with more than two mentors in time period 1945–2000 are included in the regression (N = 9,296). Decade 1940s is the reference category.

https://doi.org/10.1371/journal.pone.0243913.t003
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control for the number of first-order mentors, as this number if always 2 in the subset we con-

sider here.

In model (5), we find that ancestry diversity significantly affectsmentees. We find that a

one-unit increase in ancestry diversity increases the expected number of mentees conditional

on acquiring an academic position (with a factor e0.071 = 1.074)), but also increases the likeli-

hood of having zero mentees (with a factor e0.127 = 1.135), as hypothesized. Including ancestry

size variables in model (5) does not significantly change the effect of ancestry diversity onmen-
tees, which shows that our results in Table 3 are consistent with those found in model (3) in

Table 2. These findings shed a new light on mentor diversity compared to a previous study (7)

where mentor diversity was shown to increase the likelihood of acquiring an academic posi-

tion, and to have no effect on the number of mentees.

In summary, we find that the effect of ancestry diversity in both the count models and the

logit models is positive and significant, thereby providing evidence in support of our second

hypothesis (‘A diverse ancestry increases the likelihood of academic success, and of academic
failure’).

5 Discussion

We developed a genealogical framework to explain the academic success of Ph.D. students

later on in their careers. We focused on the size and diversity of Ph.D. student’s ancestry, and

reasoned that one’s ancestors provide valuable knowledge inputs that one can recombine and

pass on to new generations of Ph.D. students. As such, we argue that scientists who acquire

many mentees to pass on their knowledge can be considered academically more successful

than scientists who do not, at least from a genealogical perspective.

Our results suggest that the more supervisors are involved with a Ph.D. student who is sus-

ceptible to an academic career, the more academically successful this student will be later on.

That is, individuals with more mentors later on generate more mentees, suggesting that, in a

general sense, Ph.D. students benefit from any knowledge input. Looking more closely at

ancestry diversity, we find, different from a previous study (7), that network distance between

an individual’s mentors–as a proxy for cognitive distance–makes both success and failure

more likely. Cognitive distance between supervisors may reflect different disciplinary back-

grounds, theoretical orientations, and methodological skills, or in short, knowledge diversity.

We hypothesized that such a diversity of inputs provides opportunities for radically new ideas,

but are poses challenges how recombine inputs in a meaningful way. Our empirical findings

provide support for this hypothesis as ancestry diversity is shown to more often lead to

extreme success and failure. More generally, our findings indicate that to understand academic

success by looking at mentorship, it is important to take all mentors into account rather than

only one as has been common in previous studies (8–10).

Practically, our findings have implications for the effective organization of Ph.D. training.

In general, adding another supervisor to a team pays off. And, if two supervisors are cogni-

tively diverse, one may benefit from the opportunities to make very new combinations of exist-

ing knowledge. However, such contexts are also more prone to failure. In other words, one can

think of having diverse supervisors as a ‘high-risk, high-gain’ strategy for PhD students. This

suggests that if projects are set-up with diverse supervisors, it may be worthwhile to foresee a

back-up plan, in case progress is slow and collaboration turns out to be less fruitful than hoped

for. Given the institutional differences across countries and disciplines regarding Ph.D. super-

vision, the organization and coordination of multiple supervisors can take on different forms.

For example, in some contexts a Ph.D. student is part of a (externally funded) research project,

with co-supervisors being involved from the start. Then, supervisory roles and responsibilities
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can be largely defined ex ante. In other contexts, aspiring Ph.D. students submit their own

research proposal to a graduate school and may select their own supervisor. Here, the organi-

zational question becomes how to match students and supervisors and under what conditions

a student is allocated multiple supervisors.

Our study illustrates the power of applying a genealogical approach to the analysis of

human creativity, innovation and success. It complements the already extensive literature on

team collaboration and innovation [19, 38, 39], which has thus far mainly reasoned from the

perspective of senior scientists rather than the Ph.D. students. In evolutionary terms, collabo-

ration assumes horizontal transmission among team members, to be analyzed as an undirected

network, while genealogy looks explicitly at vertical transmission, to be analyzed as a directed

network. A next step is to combine both perspectives in a single framework, for example, by

analyzing not just mentors of mentees, but also the co-location of mentees at the same moment

in time. Such peers may cross-fertilize their ideas, yet may also compete for similar jobs in the

further stages of their career. Indeed, our results support the idea that mentors with many

mentees bring about successful mentees [5], but also that having a productive mentor may be a

source of competition [36].

Our study also contributes to the ‘proximity’ literature [22], by introducing an alternative

understanding of the concept of cognitive distance [40]. It has been argued that engaging with

cognitively distant partners in collaboration is a balancing act between individuals’ ability to

understand each other (supported by cognitive proximity), and their potential to learn from

one another (supported by cognitive distance). This results in an ‘optimal cognitive distance’,

above and below which the difficulties may outweigh the benefits. That is, assuming risk aver-

sity, the optimal strategy is to have multiple mentors with only moderate cognitive distance.

Our results further suggest that ideas that arise under circumstances of high cognitive distance

may often fail, but may also lead to a very productive career later on. This means that the ‘opti-

mum’ is not a universal value, but depends on the risk preferences of actors involved: if one

engages in a risky strategy and aims for very novel knowledge, the optimal cognitive distance

is higher than if one aim for more incremental knowledge. The institutional and disciplinary

contexts may also matter. Some research contexts are more liberal and open allowing students

to be mentored by a diverse set of mentors, while other research contexts may be more disci-

plinary and focused, following certain standards and traditions akin to a research school [41].

There are several limitations to our work. First, there may be a self-selection bias, particu-

larly in terms of ancestry size. It might be the case that skilled Ph.D. students are more likely to

work with a larger set of mentors, possibly because they have more specific mentoring

demands. However, given that we control for mentor success, we believe that the self-selection

effect is small.

Secondly, our success variable, number of mentees, is defined genealogically rather than in

terms of academic quality or impact. Indeed, the number of mentees that a scientist supervises

is not a direct measure of the quality of research. Moreover, not all skilled scientists aspire to

become a mentor in the first place. Alternative indicators of quality could be prizes awarded or

number of citations received. We have chosen the number of mentees as a dependent variable

not only to showcase the power of genealogical thinking but also for reasons of data availabil-

ity, given that alternative indicators are hard to collect for long periods of time. And, we do

consider the number of mentees as a proper proxy of quality as it has been shown to correlate

with well-known indices of academic quality [5].

Third, our reliance on the Mathematics Genealogy Project (MPG) database comes with

some inherent limitations. The data are crowdsourced but curated by the MPG team. This

ensures a high quality of the data; yet, the crowdsourced nature of the raw data implies that the

database itself is incomplete in that some scientists are missing. There is only one alternative
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world-wide database called academictree.org [7, 42], which is similarly crowdsourced but not

curated [7], and one official U.S. national database called the ProQuest PhD Dissertation &

Thesis Databank [8]. Interestingly, these databases by now cover many disciplines. Exploiting

such databases in the future would allow one to test our hypotheses across disciplines. Our use

of the MPG database also implied that we abstracted from personal characteristics of scientists

as such information is not available in the database (nor in academictree.org). We deemed the

manual collection of personal data to be infeasible given the high number of observations in

the dataset, indicative of a trade-off between a high number of observations and low number

of independent variables in these types of analyses.

Finally, our work focused mainly on the context of mathematics, physics and chemistry.

We realize that this limits the generalizability of our study. However, in terms of our theoreti-

cal understanding of knowledge creation as a process of recombination, we believe that our

framework may well apply to other scientific disciplines as to other fields of human creativity

[16–18]. We hope that our study will inspire colleagues to start collecting genealogical data on

other contexts as well, both within and outside academia.
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Data curation: Mignon Wuestman.

Formal analysis: Mignon Wuestman, Koen Frenken, Iris Wanzenböck.
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