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ABSTRACT

Many types of DNA structures are generated in
response to DNA damage, repair and recombination
that require processing via specialized nucleases.
DNA hairpins represent one such class of structures
formed during V(D)J recombination, palindrome ex-
trusion, DNA transposition and some types of
double-strand breaks. Here we present biochemical
and genetic evidence to suggest that Pso2 is a
robust DNA hairpin opening nuclease in budding
yeast. Pso2 (SNM1A in mammals) belongs to a
small group of proteins thought to function predom-
inantly during interstrand crosslink (ICL) repair. In
this study, we characterized the nuclease activity
of Pso2 toward a variety of DNA substrates.
Unexpectedly, Pso2 was found to be an efficient,
structure-specific DNA hairpin opening endonucle-
ase. This activity was further shown to be required
in vivo for repair of chromosomal breaks harboring
closed hairpin ends. These findings provide the first
evidence that Pso2 may function outside ICL repair
and open the possibility that Pso2 may function at
least in part during ICL repair by processing DNA
intermediates including DNA hairpins or hairpin-like
structures.

INTRODUCTION

DNA hairpins pose a significant challenge to genome sta-
bility. Once formed, such structures must be removed and/
or opened by specialized nucleases to permit subsequent
repair. DNA hairpins may be generated in a variety of
ways with perhaps the most well characterized being
programmed hairpin formation resulting from V(D)J re-
combination (1,2). Hairpin structures capping DNA ends
are also formed at inverted repeat sequences and in some
instances, as intermediates during DNA repair (3.,4).
Regardless of how hairpins are generated, these ends

must be processed appropriately before ligation can
occur. Failure to do so results in accumulation of
double-strand breaks (DSBs), and thus a potentially
lethal cellular event [reviewed in (4,5)].

Cells maintain at least two mechanisms for removal of
DNA hairpins (Supplementary Figure S1). The first
involves the Mrell/Rad50/Xrs2(Nbs) MRX (MRN)
complex which is well characterized for its essential role
in processing DSB during repair (6,7). This complex has
3’-exonuclease activity necessary for DSB repair as well as
a structure-specific endonuclease hairpin opening activity
important for stability of inverted repeat sequences (3,8).
In conjunction with Sae2, MRX has been shown to
catalyze the entire removal of DNA hairpin structures.
MRX/Sae2 functions at damaged cruciform structures
that have been converted into DNA hairpins with a
single strand nick distal to the hairpin cap (9,10). MRX
is able to open a gap from the available nick using its
3’-exonuclease activity and stimulates Sae2 to cleave the
resulting ssDNA on the opposing strand, thereby com-
pletely removing the hairpin structure. Artemis
(SNMI1C) represents a second specialized nuclease
capable of processing DNA hairpins; however, its
function appears to be largely restricted to repair
associated with the non-homologous end-joining (NHEJ)
DSB repair pathway following V(D)J recombination. The
structure-specific endonuclease activity of Artemis
(SNM1C) generates nicks at or very close to the apex of
DNA hairpin structures, generating free ends for further
processing and repair (11). A similar activity has also been
reported for the MRX/Sae2 complex in yeast (9,12).

Artemis belongs to a larger family of nucleases that
share a conserved B-CASP domain essential for catalytic
activity (13-16). Members of the B-CASP family include
SNMIA (Pso2 in yeast), SNMIB (Apollo), SNMI1C
(Artemis), CPSF-73 and ELAC2. ELAC2 and CPSF-73
are involved in processing of tRNA and mRNA, respect-
ively (17,18). While SNM1A and B exhibit 5" exonuclease
activity, only SNMI1C (Artemis) has been shown to
harbour endonuclease activity capable of opening DNA
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hairpins. SNM1A (Pso2 in yeast) and SNMI1B (Apollo)
function at different steps in ICL repair, with Apollo
acting prior to DSB formation and SNMI1A (Pso2 in
yeast) functioning at some point subsequent to DSB for-
mation (19,20). In fact, Apollo is required for generating
DSBs at stalled replication forks subsequent to ICL
exposure (21). Given the close phylogenetic relationship
between Pso2 and SNMI1C (Artemis) it has been suggested
that Pso2 may function in repair of ICL lesions through
cleavage of hairpin-like structures (22).

Despite having an important role in ICL repair, very
little is currently known about how Pso2 functions
inside the cell. PSO2 (SNM1) was first identified in a
screen of yeast mutations that greatly increased sensitivity
to the crosslinking agent, psoralen (23). SNM1 was later
found to be allelic to PSO2, which when deleted rendered
cells sensitive to mitrogen mustard, a crosslinking agent
(24,25). Interestingly Pso2 does not appear to function
in DNA repair pathways required for ICL repair such as
homologous recombination and translesional synthesis.
Mutations in PSO2 result in an accumulation of DNA
DSBs following exposure to ICL inducing agents suggest-
ing that Pso2 acts downstream of the incision event in ICL
repair (26). Cells harbouring a pso2 deletion exhibit no
significant sensitivity to other DNA damaging agents
including ionizing radiation, UVC exposure and HO
endonuclease, suggesting a specialized role for Pso2 in
the repair of DSBs formed during repair of ICL lesions
(23,26-28). The specific requirement of Pso2 in ICL repair
suggests that these breaks may be in some way different
from other forms of DNA breaks.

The question then becomes what DNA intermediate is
generated during ICL repair that Pso2 is uniquely able to
act upon? To begin addressing this question, we have
analyzed the activity of Pso2 towards several DNA inter-
mediates that may be encountered during ICL repair.
Interestingly, Pso2 was found to possess an efficient endo-
nuclease activity specific to DNA hairpin structures.
We further demonstrate the requirement of this activity
in vivo for restoring genomic DNA when DSBs are
generated containing covalently closed DNA hairpins.
Thus, yeast Pso2 appears to retain two distinct nuclease
activities, an exonuclease activity able to degrade DNA
from a free 5-end and an endonuclease activity specific
to DNA hairpin structures. These findings suggest that
Pso2 may also function outside of ICL repair, in particu-
lar DNA hairpin repair and suggest that Pso2 and
hSNMI1A may function at least in part during ICL
repair by processing DNA intermediates including DNA
hairpins and/or hairpin-like structures, generated directly
or indirectly by ICL damage.

MATERIALS AND METHODS
Plasmid construction, expression and purification of Pso2

The Saccharomyces cerevisiae PSO2 gene from pQE32
(generously provided by James Hejna, Department of
Molecular and Medical Genetics, Oregon Health and
Sciences University) was amplified by PCR and cloned
into the pDESTI14 expression vector using Gateway

cloning technology (Invitrogen). The Escherichia coli cell
line Rossetta (DE3) pLysS (Novagen), harbouring the
PSO2 expression vector, was grown at 37°C prior to in-
duction with 1 mM IPTG at 16°C overnight. Following
induction, cells were harvested by centrifugation at
10000 x g for 15min, washed once with phosphate
buffered saline (PBS) and re-suspended in lysis buffer
(50 mM sodium phosphate pH 7.0, 500 mM NaCl, 3mM
B-mercaptoethanol, 1% Triton X-100). Cells were lysed by
four sequential passages through a French Press cell
pressurized to 12000 pounds per square inch. Lysate
was clarified via centrifugation at 50000 x g for 40 min
prior to injecting sample onto a 5ml, Ni*'charged
HiTrap Chelating column (Amersham) pre-equilibrated
with buffer A (50mM sodium phosphate pH 7.0 and
500mM NaCl). Subsequent washes with buffer A supple-
mented with 15, 30 and 45mM imidazole occurred before
step elution with buffer A containing 210 mM imidazole.
Dithiothreitol (DTT) and ethylenediaminetetraacetic acid
(EDTA) were immediately added to the eluate to a final
concentration of 5 and 1 mM, respectively. The sample
was then diluted to a final concentration of 100 mM
NaCl using Buffer B (50 mM sodium phosphate pH 7.0,
ImM EDTA and 5mM DTT) and injected onto a 5 ml
HiTrap Q sepharose column (Amersham) equilibrated
with buffer B with 100 mM NaCl. Pso2 was eluted in a
gradient from 100 to 200mM NaCl. Final protein was
exchanged into buffer containing 10mM Tris pH 7.0,
100mM NaCl and SmM DTT prior to concentrating by
ultracentrifugation (30 MWCO, macrosep). Samples were
frozen at —80°C in 10% (v/v) glycerol. The pso2 mutant
H611A was created using site directed mutagenesis
(QuikChange, Stratagene) and purified as wild-type.

Pso2 was quantified using absorbance measured at
280nm after dilution into 6 M guanidine-HCI by the
method of Pace et al. (29). Western blot analysis was per-
formed according to the manufactures instructions
(Perkin Elmer) with primary detection using mouse
anti-His antibody followed by identification with second-
ary goat anti-mouse antibody conjugated with horse
radish peroxidase.

DNA substrates

Oligonucleotides labelled at the 5-end were generated
with [y->*P]-ATP (Perkin Elmer) using T4 polynucleotide
kinase according to manufacturer’s instructions (New
England BioLabs). Oligonucleotides labelled at the
3'-end were generated using Klenow exo~ and (a-*°P)-
GTP (Perkin Elmer) according to manufacturer’s instruc-
tions (New England Biolabs). Labelled oligonucleotides
were purified using denaturing polyacrylamide (10%) gel
electrophoresis (PAGE). Double stranded substrates were
generated by annealing labelled oligonucleotide with a
molar equivalent of the non-labelled complementary
oligonucleotide to produce blunt ends, 3’-overhangs and
S-overhangs. Annealing was performed by heating to
95°C for 5min followed by cooling to room temperature
over 60 min. Hairpin substrates were annealed at 1puM
concentrations to promote intermolecular interactions.
Treatment with T7 exonuclease and RecJf verified the



integrity of the substrates. All of the DNA substrates
labelled at the 3’-end contained a free 5'-phosphate
unless stated otherwise. Specific oligonucleotide sequences
used in substrate generation are listed in Supplementary
Table S1.

Double stranded DNA substrate containing two hairpin
capped ends was generated by 5-labelling of the sequence
5-CAATCAAGGGAACCTTGATTGCAGAGATGGG
AACCATCTCTG, prior to ligation with T4 ligase in the
presence of 40mM Tris-HCI pH 7.8, 10mM MgCl,,
10mM DTT, 0.5mM ATP at 25°C overnight.

DNA substrate containing an interstrand crosslink was
prepared using the method of K. Chvalova er al. (30), by
treating cisplatin (CAS 15663-21-1) with an equimolar
concentration of AgNO; and removing the precipitate
via centrifugation. Four molar equivalents of activated
cisplatin were incubated with 1 M equivalent of the oligo-
nucleotide 5-CTTCCTTCTCCCTTCTCCTACTCTCCC
TTCTCCCTCGCTCT, containing a 3'-label and
S-phosphate, in 100mM sodium perchlorate pH 5.6 at
37°C for 7 days in the dark. The oligonucleotide contain-
ing a monoadduct at G was gel purified and annealed with
the complementary strand in the presence of 400 mM
NaCl. The dsDNA was exchanged into 100mM sodium
perchlorate pH 5.6 and incubated at 37°C for 14 days in
the dark. Quantification of DNA was performed by
reading absorbance at 260 nm.

In vitro nuclease activity

Nuclease assays were performed by incubating varying
concentrations of Pso2 with 1pmol DNA in the
presence of 10mM Tris pH 7.9, 10mM MgCl,, 50 mM
NaCl and ImM DTT in a final volume of 10pl
Reactions were carried out at 25°C for various time inter-
vals (0.25, 0.5, 0.75, 1, 2, 4, 8, 16 and 32min) and
quenched by addition of an equal volume of formamide
and incubation at 90°C for Smin. The DNA was resolved
using 20% denaturing PAGE and analyzed by
autoradiography.

Relative activities were determined using 5'-labelled
substrates containing a non-bridging phosphorothioate
substitution between the second and third nucleotide so
that only a single reaction product could be generated for
each DNA substrate. Relative activities for hairpin
opening were calculated by quantifying the disappearance
of substrate. Radiolabelled DNA substrates and products
were quantified using ImageQuant (Molecular Dynamics).
All experiments were performed in triplicate.

DNA-binding assays

Increasing amounts of Pso2 were added to 4 pmol of
3/-32P end-labelled ssDNA containing a phosphorothioate
substitution between the first and second nucleotide and
either a 5-phosphate or 5-hydroxyl. Pso2 is unable to
digest DNA substrates containing a phosphorothioate
substitution at the non-bridging oxygen located between
the first and second nucleotides (Supplementary Figure
S2). Therefore, in order to analyze binding without the
complication of substrate degradation, binding assays
were performed using 5-hydroxyl or 5-phosphate
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containing substrates harbouring a phosphorothioate sub-
stitution after the first nucleotide. The reactions were
carried out in the presence of 10mM Tris pH 7.9,
50mM NaCl, ImM DTT and 15% glycerol at 25°C for
20min. The extent of DNA binding was analyzed by
running reactions on an 8% non-denaturing gel in TAE
buffer. Quantification of bound and unbound species was
performed with ImageQuant (Molecular Dynamics).

In vivo endonuclease activity

Saccharomyces  cerevisiae  MYO37 was generously
provided by CIiff Weil (Department of Agronomy,
Purdue University) and transformed with pWL201 (31).
These cells were grown to saturation at 30°C in drop out
base media containing raffinose as a carbon source.
Induction of transposase was carried out by the addition
of 1% galactose. Cells were serially diluted and plated
onto media lacking either uracil or both uracil and
adenine. Transposition frequency was determined by
dividing the number of ade” revertants by the total
number of colony forming units.

RESULTS

Pso2 exonuclease activity is not dependant on DNA
structure but does require a 5'-phosphate

Nuclease activity of highly purified Pso2 (Supplementary
Figure S3) was analyzed using a variety of DNA sub-
strates. In agreement with work by Li et al. (32), Pso2
was found to possess 5'- but not 3’-exonuclease activity
(Figure 1). Our analysis further demonstrates that Pso2
is able to fully degrade the entire DNA substrate to a
single mononucleotide indicating that Pso2 does not
have a minimum DNA length requirement for activity.
An interesting observation made while analyzing the
exonuclease activity of Pso2 was that only DNA contain-
ing a free 5-phosphate could be degraded by Pso2. As
shown in Figure 1, Pso2 fully degraded substrate contain-
ing a 5'-phosphate (Figure 1F) but not the identical sub-
strate containing a 5'-hydroxyl (Figure 1E). Inability of
Pso2 to degrade a 5-hydroxyl containing substrate was
not due to reduced substrate binding affinity (Figure
1G) as comparison of dissociation constants with 5-OH

and 5-PO4 containing substrates (8.0 £0.6 and
9.0 £4.0nM, respectively) showed no significant
differences.

As shown in Supplementary Figure S4A—C, all double
stranded DNA substrates (blunt ends, 3'- and
5'-overhangs) were efficiently digested from the 5-end.
However, if a 5-OH was present, these DNA substrates
were not degraded even when Pso2 was present at a
10-fold higher concentration (Supplementary Figure S4D
and E). Importantly, these results clearly demonstrate that
Pso2 does not retain endonuclease activity towards
overhang structures (3’ or 5), ssDNA or dsDNA
substrates.

The unusual requirement of Pso2 exonuclease activity
for a 5-phosphate may be a feature conserved amongst
B-CASP family members as similar requirements have also
been reported for other members of this family including
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Figure 1. Pso2 possesses 5 but not 3’-exonuclease activity and requires a 5'-phosphate for nucleotide removal. Pso2 (80 nM) was incubated with
ssDNA (100nM) labelled at the 5’ (A) or 3’-end (B). Purified pso2 H611A, a catalytic mutant (1 pM) was assayed with ssDNA (100 nM) labelled at
the 5’ (C) or 3’-end (D). Lane 1 in each panel contains no Pso2. Reactions in lanes 2—-10 were carried out for increasing time intervals: 0.25, 0.5, 0.75,
1,2, 4,8, 16 and 32 min, respectively. In panel (E) Pso2 (1.5uM) was assayed using 3'-labelled 20 nt ssDNA (200 nM) containing a 5'-hydroxyl. Lane
1 is a negative control in the absence of Pso2. Reactions in lanes 2-8 were incubated for 0.5, 1, 2, 3, 4, 8 and 16 min, respectively. Panel (F) is
identical to panel (E) except substrate used contains a 5'-phosphate. (G) EMSA reactions using increasing amounts of Pso2 were incubated with a
3'-labelled 12 nt single-stranded DNA substrate (100 nM) containing a phosphorothioate substitution between the first and second nucleotide as well
as either a 5'-phosphate or a 5'-hydroxyl. Lane 1 and 5, no Pso2 added; lanes 2-4 contain 5'-hydroxyl substrate with final Pso2 concentrations of 50,
100 and 200 nM, respectively. Lanes 6-8, 5'-hydroxyl substrate with final Pso2 concentrations of 50, 100 and 200 nM, respectively.

hSNMI1A and hSNM1C/Artemis (11,33). The functional
significance of this 5'-phosphate-dependence is not clear,
however it may help to regulate exonuclease activity
perhaps preventing unwarranted degradation at some
single-stranded DNA nicks generated in response to
damaging agents.

Pso2 represents one of only a small number of proteins
currently thought to function solely in repair of
interstrand crosslinks (22). We tested the possibility that
Pso2 might function as a ‘translesional’ exonuclease by
removing one strand of an ICL lesion, unimpeded by
the presence of a crosslink as observed for the human
homologues SNM1A (34). However, when tested with a
DNA substrate containing a single interstrand crosslink,
Pso2 was unable to digest past the ICL lesion
(Supplementary Table S1 and Supplementary Figure S5),
suggesting its role in ICL repair is not associated with
‘translesional’ 5'-exonuclease function.

We further tested the ability of Pso2 to gain entry and
degrade DNA from a nicked substrate. A short 18-bp
DNA substrate (Supplementary Table S1) with an
internal nick and two hairpin ends was used for simplicity.
As shown in Supplementary Figure S4F, Pso2 efficiently
digested the substrate from the nick site in a 5-to
3'-direction. In addition, Pso2 appeared to generate inter-
mediates that are consistent with opening of hairpin struc-
tures on each end of the substrate. Intermediates marked
by red and blue arrows in Supplementary Figure S4F
indicate species that appear to have been produced by
opening hairpins closest to the 5- and 3'-ends,

respectively. Both intermediates were further degraded
by Pso2 once newly generated 5'-phosphates were made
available upon hairpin opening. Thus, in addition to
degrading DNA from a nick, Pso2 also generated inter-
mediates consistent with the ability to open DNA
hairpins.

The rate of Pso2 nuclease activity for each of the sub-
strates analyzed is summarized in Table 1. These findings
demonstrate that the exonuclease activity of Pso2 is func-
tional on a wide range of DNA structures as long as a free
S’-phosphate is available. Since only minor differences are
observed in rates of Pso2 exonuclease activity (Table 1) it
appears that Pso2 exhibits no apparent DNA structure
specificity. This is in marked contrast to the human
homolog of Pso2, hSNMIA, which only degrades
ssDNA from its 5'-terminus.

Pso2 is a structure-specific endonuclease

Results obtained during the analysis of Pso2 exonuclease
activity (Supplementary Figure S4F) suggested that Pso2
might be able to open DNA hairpin structures. To verify
this activity, we analyzed the ability of Pso2 to process a
doubly hairpinned substrate containing no nicks. The in-
tegrity of the fully closed hairpin structure was confirmed
by treatment with both ssDNA and dsDNA exonucleases
(RecJf and T7) (Figure 2B). As expected, the hairpin sub-
strate was completely resistant to both exonuclease
activities. In Figure 2B, the ability of Pso2 to open a
DNA hairpin structure even when there were no nicks
present in the substrate is demonstrated. A Pso2 mutant
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lacking exonuclease activity (H611A) failed to open
hairpin structures (Figure 1C and D) indicating that
Pso2 makes use of a single active site for both endo- and
exonuclease functions. Taken together with the finding
that endonuclease activity does not occur on linear
ssDNA or dsDNA substrates (Figure 1, Supplementary
Figure S4D and E), this data strongly suggests that Pso2
is a DNA hairpin, structure-specific endonuclease.

Table 1. Pso2 nuclease activity with different DNA substrates

DNA Kear (s71)

ss 0.018 = 0.004
ds (blunt) 0.015 + 0.0002
ds (3-overhang) 0.008 + 0.006

0.005 £ 0.004
0.04 £ 0.01

ds (5-overhang)
Hairpin
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Additionally, it also demonstrates that Pso2 is capable
of opening fully paired DNA hairpins in substrates
lacking a nick. This is in direct contrast to Mrell, an
enzyme well characterized for its hairpin processing
ability, which has severely reduced endonuclease activity
towards fully paired hairpins and appears to function with
Sae2 on DNA hairpins containing a single strand nick (8).

To determine the exact location of DNA strand
cleavage we performed kinetic analysis of Pso2 endonucle-
ase activity using a 3/-’P-labelled hairpin substrate
lacking a free 5-POy. The fidelity of this substrate was
established via treatment with T7 and RecJf exonuclease
activities. As expected, T7 exonuclease degraded the sub-
strate to half its original size while RecJf had no effect
(Figure 2A). This substrate is only susceptible to Pso2
exonuclease activity once the hairpin has been
opened. Analysis of nuclease activity with this substrate
(Figure 3) demonstrated the ability of Pso2 to open
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Figure 2. Pso2 opens DNA hairpin structures. DNA substrates containing either a single 3-nt hairpin (A) or covalently closed double 3-nt hairpin
(B) were interrogated with T7 ds- and RecJf ss-exonuclease activities to verify structural integrity of each substrate. In (A) T7 ds-exonuclease is able
to degrade the hairpin to half its original size, while RecJf had no effect since there is no ssDNA present in this substrate. Pso2 opens the hairpin on
the 3’-side of the apex. In (B) neither RecJf or T7 exonuclease activities were able to degrade the fully closed double hairpin structure. Pso2 opened
the hairpin structures and subsequently degraded the substrate using its 5'-exonuclease activity. (C) Pso2 WT and pso2 H611A (5puM) were assayed
with linear pUCI19 plasmid. pso2 H611A shows no exonuclease activity. (D) Pso2 WT and pso2 H611A (1 uM) were incubated with a completely
closed hairpin substrate comprised of 20-bp duplex, two 3-nt DNA hairpins at each end and an internal label.
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Figure 3. Kinetic analysis of Pso2 endonuclease activity. Kinetic
analysis of Pso2 (80nM) endonuclease activity was performed with a
3'-labelled DNA hairpin containing 9bp of dsDNA, a single 3-nt
hairpin and 5-OH (100 nM). An 8-nt product is generated immediately
following initiation of the reaction that is consistent with hairpin
opening 2 nt from the apex on the 3'-side.

hairpin structures on the 3’-side of the apex and subse-
quently remove single nucleotides from the exposed
5'-POy. The preferred site for cleavage was located two
nucleotides away from the hairpin apex.

Pso2 displays DNA hairpin opening activity in
S. cerevisiae

Identification of a robust Pso2 hairpin opening activity
in vitro suggested that hairpin intermediates may be en-
countered and processed by Pso2 during DNA repair
in vivo. To further investigate this possibility, we
analyzed the ability of Pso2 to open chromosomal
hairpin structures in an in vivo transposon based assay.
In this assay, an ADE?2 gene is disrupted by insertion of
an Ac/Ds transposon rendering cells incapable of growth
in the absence of adenine. Ac/Ds is a member of the hAT
superfamily of transposons which generate hairpin struc-
tures in the flanking chromosomal sequence during trans-
poson excision (35,36). Thus, upon induction of
transposase, Ac/Ds is excised leaving DNA hairpins struc-
tures in the flanking sequence. Removal of these hairpins
is required for both cell survival and reversion to an
ADE+ phenotype (36). Hairpin repair was monitored by
growth on drop out base media following induction of
transposon excision. As expected, reversion was reduced
when pso2 was deleted. Complementation with Pso2
restored the rate of ADE" revertants to wildtype levels
(~100-fold) suggesting that Pso2 nuclease function was
responsible for repair of hairpin structures in >95% of
recovered revertants (Figure 4). The remaining revertants,
recovered in the absence of Pso2 (Figure 4, bar 2), are
presumably processed by the well characterized hairpin
opening activities of MRX and Sae2 complexes
(8,9,12,37,38). Interestingly, when Mrell and Sae2 were
deleted we were unable to recover revertants, suggesting
these proteins play an important role in the repair process
(Supplementary Figure S6). However, since Mrell and
Sae2 are important for end joining (6,7,39) it is difficult
to assess their direct contributions in hairpin removal,
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Figure 4. In vivo analysis of Pso2 hairpin opening activity. Reversion
frequency, in percent, is plotted as a function of Pso2 status in S.
cerevisiae. Percentages were normalized to wild-type rates of reversion.
Reversion frequency correlates with repair of chromosomal DNA
hairpins generated via excision of the Ac transposon from within the
ADE gene. Pso2 null strains have ~100-fold decreased repair, which is
only restored by complementation with a wild-type PSO2 or the
B-CASP domain of Artemis.

as the ability to recover revertants in this assay is abso-
lutely dependent on functional end joining.

Our data suggests that Pso2 is responsible for opening
hairpin structures generated during transposon excision. If
this is true, then the repair defect in a Pso2 deletion should
be suppressed by an activity that is able to open hairpins.
We tested this possibility by complementing a pso24 strain
with the -CASP domain of human Artemis. This domain
of Artemis is constitutively active and able to open DNA
hairpin structures in vitro and in vivo (40). As shown in
Figure 4, the B-CASP domain of Artemis was able to
suppress the repair defect in Pso2 deficient cells, suggest-
ing that Pso2 is also able to open DNA hairpins in vivo.

DISCUSSION

Pso2 belongs to a small group of proteins required for
repair of ICL induced damage [reviewed in (21,41)]. Of
the 10 PSO genes characterized in S. cerevisiae, only
PSO?2 is specifically required for repair of ICL lesions
(22,41). It has been shown that Pso2 and SNMI1A is es-
sential for processing of DSBs generated during repair of
ICL damage (26-28), but not breaks generated by other
means including exposure to bleomycin, HO endonuclease
and ionizing radiation (23,26). An obvious question then
arises as to what DNA intermediate is generated during
ICL repair that is unique from DSBs generated by other
damaging events and that cannot be processed by nucle-
ases functioning in other repair pathways. Despite being
discovered more than 30 years ago, there are still no good
mechanistic explanations for the specialized role of Pso2
in ICL repair. Our work demonstrates that Pso2 displays
5’-exonuclease activity that is independent of DNA struc-
ture, but absolutely dependant on the presence of a
5’-phosphate. Surprisingly, Pso2 also maintains a highly
active hairpin-specific endonuclease activity able to open
fully paired hairpin structures in S. cerevisiae. At what
point such hairpins would occur in budding yeast is not


http://nar.oxfordjournals.org/cgi/content/full/gkr1059/DC1

clear; however, our work suggests that when formed, Pso2
contributes to their resolution and repair. Together, these
results identify several novel aspects of Pso2 activity, and
raise questions regarding the mechanism of Pso2 and
SNMI1A in repair of DNA intermediates generated
either directly or indirectly through exposure to ICL
inducing agents.

Role of Pso2 in DNA hairpin opening

Cells utilize at least two mechanisms for hairpin process-
ing. The first involves hairpin ‘removal’ and makes use of
a nick close to the hairpin end (9); while the second
involves ‘opening’ of the hairpin close to its apex and is
independent of a nick (3,11) (Supplementary Figure S1).
In mammalian cells, Artemis is essential for opening of
fully paired hairpin structures (11). Other hairpin
opening endonuclease functions, such as the MRX
(MRN in mammals) complex do not efficiently open
fully paired hairpins, but rather appear to mediate
removal of hairpin structures generated at inverted
repeat sequences typically containing larger hairpin
loops (3,42). In the work reported here, we show that
both Pso2 and Artemis cleave DNA hairpin structures
two nucleotides from the hairpin apex on the 3'-side
underscoring the similar manner in which they engage
and process their substrates. We further show that a con-
stitutively active domain of Artemis is able to partially
complement a pso2 deficient strain for repair of DNA
hairpins. Given the recent findings that Artemis does not
possess 5'-exonuclease activity we can conclude that it was
not exonuclease function that restored the repair defect
(43). Thus, our findings provide strong evidence that
Pso2 acts on similar substrates processed by Artemis,
further suggesting that these proteins may be more func-
tionally related than previously appreciated. It is import-
ant to note that human SNM1A does not appear to have
hairpin opening activity and has recently been shown to
possess translesional exonuclease activity (33,34). Both of
these functions are in contrast to the findings reported
here with Pso2. It is possible that apparent differences in
function are due to the particular design of experiments.
This seems particularly likely, given that prior work has
demonstrated that SNM1A, but not full length Apollo or
Artemis, can rescue pso2 mutants (44).

Pso2 endonuclease activity in ICL repair

The mechanism of ICL repair in eukaryotes is still poorly
understood. Although studies have identified key proteins
in ICL repair, it is not yet clear how these proteins
function to generate DNA intermediates suitable for
repair. Pso2 represents one of only a small number of
proteins that function predominantly in ICL repair (22).
The finding that Pso2 is able to open DNA hairpin struc-
tures in vitro and in vivo suggests that this activity may be
important for processing related DNA intermediates
generated directly or indirectly in response to ICL

damage.
How might DNA hairpins be generated during ICL
damage and/or repair? Several possibilities exist.

Introduction of a DNA interstrand crosslink creates
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Figure 5. Model for generation and repair of hairpins during ICL
damage. As the replication fork moves toward an ICL lesion helicase
causes cruciform extrusion between the fork and ICL. Topoisomerase I
activity ahead of the ICL also may create cruciform structures.
Cruciform structures are resolved into hairpin capped DSBs (3, Cote
and Lewis, 2008). Pso2 and/or the MRX/Sae2 complex process hairpin
structures for subsequent end-joining repair.

a physical barrier to DNA replication, causing stalling,
fork collapse and formation of DSBs (45). In support of
this idea, DSBs are found to accumulate to a greater
extent in actively versus non-actively replicating cells fol-
lowing exposure to ICL-inducing agents (46). Brendel
et al. (22) proposed a model whereby movement of the
replication fork toward an ICL lesion would cause cruci-
form extrusion (Figure 5). These structures could be
generated on both sides of an ICL lesion due to topoisom-
erase I activity functioning ahead of the replication fork.
Similar to cruciforms formed at long inverted repeats in
yeast (3), cruciforms generated by replication toward an
ICL would be converted into various sized hairpin-capped
double stranded breaks (Figure 5) (10). These substrates
may in turn serve as intermediates for MRX and/or Pso2
endonuclease activities. Consistent with this hypothesis,
deletion of PSO2 has been shown to result in accumula-
tion of DSBs (26). As such, it is thought that Pso2 func-
tions subsequent to DSB formation in ICL repair. The
biochemical and genetic analysis of Pso2 presented here,
is consistent with at least a subset of these DSBs being
capped by hairpin structures.

A second possibility for how Pso2 might utilize its
structure-specific endonuclease function in ICL would be
repair not of DNA hairpins but rather of ‘hairpin-like’
structures. Even if a DSB were not generated close to an
ICL, the distortion created by ICL damage may be suffi-
ciently similar to a DNA hairpin for Pso2 to recognize and
cleave the lesion.

In this work we have shown that Pso2 is required for
processing DNA hairpins not readily accessed by other
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nucleases. This phenomenon is apparent in vivo and is in-
dependent of ICL damage, suggesting that Pso2 may play
a cellular role in DNA hairpin processing that is in
addition to its specialized function in ICL repair.
Furthermore, Pso2 was shown to account for >95% of
the fully paired hairpin opening activity in S. cerevisiae,
explaining its non-epistatic relationship to MRX (28).
Although both these functions process DNA hairpins,
they do not appear to work equally well on precisely the
same intermediate. While Pso2 efficiently opens fully
paired hairpin structures its activity on hairpin structures
generated at long inverted repeats is apparently greatly
reduced compared to the MRX complex (3).

The finding here that Pso2 has structure-specific endo-
nuclease activity toward DNA hairpins opens up many
fascinating possibilities for potential roles of Pso2 in the
ability of yeast and human cells to protect themselves
against DNA damage.
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