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Fecal Microbiome Alteration May Be a Potential Marker for
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Although intestinal microbial dysbiosis was confirmed to be associated with many chronic diseases and health status through
complicated interaction with the host, the effect on gastric cancer was less studied. In this study, we sequenced the 16S rRNA
and 18S rRNA genes of fecal bacteria and fungi, respectively, in 134 gastric cancer patients and 58 healthy controls matched by
age and gender. Propensity score matching (PSM) was adopted for adjusting diet habits and lifestyle, and 44 patients and 44
healthy controls (matching population) were enrolled. Serum antibody to H. pylori and metabolites of the matching population
were detected. The positive rates of antibody to H. pylori between the patients and the control group did not reach the statistical
difference. LEfSe analysis indicated that bacteria were more stable than fungi when adjusting diet and lifestyle. Veillonella,
Megasphaera, and Prevotella 7 genus and Streptococcus salivarius subsp. Salivarius, Bifidobacterium dentium, and Lactobacillus
salivarius species in bacteria were related to the risk of gastric cancer and showed a good diagnostic value in distinguishing the
patients from healthy controls. Streptococcus mitis showed a risk effect for gastric cancer; however, the effect turned into be
protective after PSM. Serum L-alanine, L-threonine, and methionol were positively associated with Veillonella and Streptococcus
and several fungi genus. Overall, our findings indicated that fecal microbiome constitution alteration may be associated with
gastric cancer through influencing the amino acid metabolism.

1. Introduction

Gastric cancer (GC) ranked the third most commonly diag-
nosed cancer and the second most common cause of cancer
death in 2015 in China [1]. Epidemiologists found that salty
and smoked food intake, lack of fresh fruits and vegetable
consumption, cigarette and alcohol consumption, and H.
pylori infection were the main risk factors of GC. Among
these, H. pylori infection was the only confirmed bacterium
in GC and regarded as I carcinogenic factor by IARC [2].
Besides the H. pylori, other bacteria were also confirmed to
survive in the hostile environment of the stomach [3]. The
high infection rate of H. pylori [4] and low incident rate of

GC among the infected population may indicate the more
complex ecosystem in the stomach.

In general, the microbiota is thought to reside in the
human body from birth and mature in the first year of life.
Recently, some researchers argued the time of colonization
could be even earlier because they found the placenta is not
sterile in healthy pregnant women [5]. The gastrointestinal
tract, from the oral cavity through the esophagus and to the
rectum, is a complex and dynamic ecosystem, and the diver-
sity and abundance of microbes change markedly. The colon
and distal gut have the largest ecosystem in the body (about
1012 per gram of contents), and this ecosystem was regarded
as a metabolic organ [6]. They can produce short-chain fatty
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acids (SCFAs) by soluble dietary fiber fermentation, and
SCFAs (especially acetate, propionate, and butyrate) are
important modulators not only maintaining energy homeo-
stasis of the gut epithelial cell but also involved in metabolic
syndrome and its associated diseases such as diabetes and
obesity [7].

Recently, gut microbiomes become a rapidly advancing
field in human cancers, which shapes a microenvironment
for host cells that can either prevent or promote cancer
formation. For instance, Fusobacterium nucleatum, which
originated from the oral cavity, could potentiate the carcino-
genesis of colorectal cancer by interaction with other micro-
organisms in the intestine, such as Peptostreptococcus spp.
and Leptotrichia spp., and the mechanism which involved
the activation of Wnt target genes increased the secretion of
proinflammatory cytokines and evading anticancer immunes
response [8, 9]. Furthermore, other tumors, such as breast
cancer, pancreatic cancer, and prostate cancer, were also
found to be related to the diversity and community of fecal
microbiomes [10–12]. The intestinal flora could participate
in the metabolic biosynthesis and immune response and thus
provide the possibility in the GC carcinogenesis. Related
research is relatively scarce. A study from Shanxi Province,
China, disclosed the bacteria community alteration in fecal
may be associated with GC [13]. Our previous study showed
that the lifestyle contributed greatly to the GC risk and gen-
der difference [14], since diet and lifestyle were the pivotal
factors in shaping the gut microbes. Propensity score match-
ing (PSM) methods could eliminate the influence of lifestyle
which may attenuate the reliability and relevance of the fecal
bacteria and the risk of GC.

In contrast to the bacteria, the altered components of
fungi were less studied in human health and disease condi-
tion. The first aim of our study is to profile the fecal micro-
biomes, both bacteria and fungi, in GC patients. Unlike the
genetic and epigenetic elements, the constitution of the gut
microbiome could be improved or changed by probiotic,
prebiotic, and symbiotic. Thus, we tried to provide a new
biomarker and/or preventive target for GC. Additionally, to
understand the effect of microbiota more deeply, we tried
to explore the association of the fecal microbiota with the
metabolic features in GC patients.

2. Methods

2.1. Study Participants and Sample Collection. A total of 192
individuals, 134 GC patients and 58 healthy controls, were
enrolled in this study from January 2015 to January 2017 in
Jiangsu Province Hospital of TCM. GC patients were diag-
nosed by endoscopy combined with pathological biopsy.
The exclusion criteria for patients included (1) chemother-
apy or biotherapy prior to stool sample collection, (2) diag-
nosis of other malignancies within 5 years from the time of
recruitment, and (3) antibiotics or probiotics for the last 4
weeks. The healthy control subjects with no intestinal dis-
eases were recruited from the individuals attending annual
health check at the same hospital and matched to the GC
patients by sex and gender. The inclusion criteria for the con-
trols included the following: (1) having not used antibiotics,

probiotics, and acid blocker for the last 4 weeks; (2) without
any malignant tumor; (3) without type 2 diabetes and other
metabolic diseases; and (4) digestive system disease-related
serum markers (i.e., carbohydrate antigen (CA)19-9; carci-
noembryonic antigen, CEA; and alpha-fetoprotein, AFP)
within the normal range. Information on dyspeptic symp-
toms and intestinal disease status were self-reported and
were collected by a questionnaire. All the subjects were with
Han nationality. This study was approved by the institutional
ethics review committee of Jiangsu Province Hospital of
TCM (grant no. 2015 NL-016-01), and all study participants
signed written informed consent before the interview and
sample collection. All patients provided fecal samples and
peripheral blood samples. Fresh stool samples were collected
in a clean environment and placed in a sterile sampling tube
within 2 hours after excretion. Samples were immediately
preserved at -80°C until assay.

2.2. Propensity Score Matching. Propensity score matching
(PSM) methods were adopted to further match the GC
patients and healthy controls through age, gender, smoking,
drinking status, and some diet habits (eating speed, salty,
fried foods, and fruits consumption) [15]. The value of cali-
pers was limited to 0.1, logistic regression was used to obtain
the propensity score (PS), and a ratio of 1 : 1 was used to
obtain the matching population.

2.3. Serum H. pylori Antibody Detection. The serum H. pylori
antibody was detected by western blot using a typing
detection kit for antibody to H. pylori (Shenzhen Blot
Biotech, China).

2.4. Serum Sample Preparation and GC/MS Analysis. The
serum sample was taken from -80°C and thawed at 4°C.
Thawed serum was placed at room temperature for 30min
and vortexed for 5 s. 50μL serumwas mixed with 25μL inter-
nal standard (1 g/L, heptadecanoic acid-methanol) and vor-
texed for 15 s. Subsequently, 150μL of methanol was added
to the tube, vortexed for 15 s, and centrifuged at 13 000 rpm
at 4°C for 10min. 185μL of supernatant was centrifuged
and dried in a vacuum at room temperature for 2 h. 25μL
of methoxyamine-pyridine (20 g/L) was subsequently added
and vortexed for 15 s, and the mixture was incubated in
80°C for 15min, then cooled in room temperature. 25μL of
N-methyl-N-trimethylsilyltrifluoracetamid was added, vor-
texed for 15 s, and incubated at 80°C for 15min; then, the
resultant was cooled in room temperature and centrifuged
at 13,000 rpm at 4°C for 10min. 50μL of supernatant was
added into a 1.5mL centrifugal tube. The reference sample
was used to ensure the stability and reliability of the metabo-
nomics, and blank samples are used to eliminate the back-
ground noise produced during the sample preparation and
GC/MS analysis.

The derivatized serum samples were analyzed on Perki-
nElmer Clarus 680 gas chromatography-tandem with
AxION-iQT mass spectrometer (PerkinElmer, US). An HP-
5MS Quartz capillary column (30m × 0:25mm × 0:25 μm,
Agilent, US) was utilized to separate the derivatives.
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Helium was used as the carrier gas with a 20 : 1 shunt
ratio at a flow rate of 1mL/min through the column. The
injection port temperature is 200°C, the detection tempera-
ture is 250°C, and the injection volume was 1μL. The temper-
ature program is as follows: the initial temperature was held
at 50°C for 4min, ramped to 140°C at a rate of 10°C/min
for 4min, and then ramped to 170°C at a rate of 2°C/min
for 6min. The mass spectrometry conditions are as follows:
the temperature of ion source (electron impact) was set at
230°C, collision energy was 70 eV, and interface temperature
of GC/MS was 230°C. Mass data were acquired in a full-scan
mode (m/z 40-400). All samples were analyzed in a random
sequence.

2.5. GC/MS Data Processing and Structural Identification of
Metabolites. The acquired GC/MS data were uploaded to
the XCMS online platform (http://xcmsonline.scripps.edu)
to extract chromatographic peak, compute peak area integral,
correct retention time, deduct the impurity peak and solvent
peak, etc. TIC (total ions chromatogram) and preprocessed
data of GC patients and healthy controls were obtained and
imported into the SIMCA software (version 14.1, Sweden),
where principal component analysis (PCA) and orthogonal
partial least squares-discriminant analysis (OPLS-DA) were
performed. The OPLS-DA model was validated by 200 times
permutation analysis. Variable importance in the projection
(VIP) was obtained from the OPLS-DA model. A differential
normalized peak area between the two groups was compared
by two-tailed Student’s test (if the distribution was normal),
otherwise by Mann–Whitney U test on the XCMS online
platform; meanwhile, the fold change (FC) was calculated.
Receiver operating characteristic curve (ROC), the area
under the curve (AUC), 95% CI, specificity, and sensitivity
were analyzed by the “Biomarker discovery” module on
MetaboAnalyst 4.0 platform (http://www.metaboanalyst.ca/
faces/home.xhtml).

The METLIN online database was used to identify
metabolites preliminarily by charge-to-mass ration and
retention time of pretreated samples. The metabolites were
confirmed by the KEGG (http://www.genome.jp/kegg/kegg2
.html), HMDB (http://www.hmdb.ca/metabolites), and Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov) online databases.

2.6. Gene Amplification. Total microbial DNA was isolated
from fecal samples by E.Z.N.A.® Soil DNA Kit (Omega Bio-
Tek, Norcross, GA, US) according to the manufacturer’s pro-
tocols. Bacterial 16S rRNA V3-V5 region gene was chosen
and amplified by PCR. The forward prime was 341F 5′-bar-
code-CCTAYGGGRBGCASCAG-3′, and the reverse primer
was 806R 5′-GGACTACNNGGGTATCTAAT-3′; the ITS1-
2 regions in the fungal 18S rRNA gene were amplified using
the forward primer ITS1F 5′-barcode-CTTGGTCATTT
AGAGGAAGTAA-3′ and reverse primer ITS2R 5′-GCTG
CGTTCTTCATCGATGC-3′. The PCR conditions were the
same as our previous study [16]. The amplified DNA was
then purified and quantified by QuantiFluor™-ST Assay Kit
(Promega, US).

2.7. Gene Sequencing and Data Analyses. Purified amplicons
were equally pooled, and the barcode was added. The profil-
ing was carried out on an Illumina Hiseq platform. Low-
quality sequencing reads were filtered and removed by
QIIME (version 1.17) [16]. UPARSE (version 7.1) was used
to cluster the filtered sequences into an operational taxo-
nomic unit (OTUS) based on 97% similarity. Chimeric
sequences were identified and deleted by the UCHIME algo-
rithm. Each OTU was aligned to the SILVA database with a
confidence threshold of 70% to perform the taxonomic anal-
ysis. Mothur (version v.1.30.1) was used to analyze the alpha
diversities (i.e., diversity within samples) of gut microbial
communities. Linear discriminant analysis (LDA) effect size
(Lefse) was used to analyze the differential abundance of six
levels (phylum, class, order, family, genus, and species)
between two groups.

When we did the Pearson correlation between gut micro-
biota and serum metabolites, we limited the bacterial taxa
(phylum to genus) with mean relative abundance ≥0.1%,
and we did not limit the mean relative abundance of the fungi
taxa for the overall relative low abundance of fungi. AUC
(Area Under Curve) of ROC (receiver operating characteris-
tic curve) was calculated for each significant taxon. Chi-
square or Fisher’s exact test was used to frequency table data,
and the independent t-test or the nonparametric rank test
was for continuous data.

2.8. Statistical Analyses. The significant level of all analysis
was 0.05, and all statistical tests were two-sided. The analyses
were carried out using R (version 3.4.2) and SPSS for
Windows (version 23.0).

3. Results

3.1. The Common Clinical Characteristics. The characteristics
of the overall participants (134 vs. 58) and matched by PSM
(44 vs. 44) are listed in Table 1. In the matching population,
besides the age and gender, other potential confounders were
also balanced between the two groups (all P values >0.05),
compared to the original population. The positive rate of
antibody to H. pylori did not reach the statistical differences
between the two groups.

The alpha diversities of bacteria and fungi between the
GC and control groups were compared both in the original
and matching population (i.e., ACE, Chao, Shannon, and
Simpson index), and we did not find any difference in the
bacteria group (all P values >0.05). In the original popula-
tion, the Chao index of fungi in the control group was higher
than that of the GC group (P = 0:034); however, in the
matching group, the difference disappeared (P = 0:346), see
Supplementary Table 1.

3.2. Community Structure of Gut Flora. The community
structure of fecal bacteria and fungi in phylum and genus
levels (top 50) were shown in Figure 1. In the phylum level,
fecal bacteria were dominated by Firmicutes, Proteobacteria,
and Bacteroidetes (Figure 1(a) for the original population
and Figure 1(b) for the matching population) and fecal fungi
were dominated by Basidiomycota and Ascomycota
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(Figure 1(e) for the original population and Figure 1(f) for
the matching population). Compared to the GC group, the
relative abundance of Cyanobacteria phylum was reduced
in the control group (P = 0:028) in the original population,
however, no significant differences of fungi phylum levels
in matching population were found. In the genus level, the
relative abundance of the top 50 bacteria genus is shown in
Figures 1(c) and 1(d) (Figure 1(c) for the original population
and Figure 1(d) for the matching population, respectively)
and the top 50 fungi genus is shown in Figures 1(g) and
1(h) (Figure 1(g) for the original population and
Figure 1(h) for the matching population, respectively).

3.3. Effect of Lifestyle on the Potential Diagnostic Value of
Fecal Flora. LEfSe analysis was conducted to compare the
bacteria and fungi taxa differences from phylum to species
between the GC and control groups. The community differ-
ence distribution of fecal fungi was dramatically changed
before and after adjusting lifestyle and diet habits (see
Figure 2(c) for the original population and Figure 2(d) for
matching population, respectively). On the other hand, this
change was not obvious in the bacteria community (see
Figures 2(a) and 2(b)). To explore the potential diagnostic
microbiota biomarkers, we conducted ROC analysis and
obtained AUC of each different taxa.

For fecal bacteria, the specific taxa associated with GC in the
original population and matching population are listed in Sup-
plementary Table 2 and Supplementary Table 3, respectively. In
the original population, the relative abundance of Veillonella
genus in GC was significantly higher than that in the control
group (P < 0:001), and the AUC = 0:837 (95% CI: 0.772-
0.902); in addition, the AUC of four species (Streptococcus
mitis, Bifidobacterium dentium Bd1, Streptococcus salivarius
subsp. salivarius, and Bifidobacterium dentium) and two
genera (Megasphaera and Atopobium) were more than 0.7,
and all these taxa were associated with an increased risk for

GC. In the matching population, the trend of Veillonella
genus was consistent with that in the original population, and
the AUC = 0:855 (95% CI: 0.773-0.937). In addition, the AUC
of four species (Bifidobacterium dentium, Streptococcus
salivarius subsp. salivarius, Streptococcus mitis, and
Lactobacillus salivarius) and three genera (Megasphaera,
Prevotella 7, Desulfovibrio) were more than 0.7; all those taxa
had an increased risk for GC, except for the Streptococcus
mitis. To acquire the more stable and relevant diagnostical
microbiota biomarkers, we selected the common different
bacteria taxa both in the original and matching population,
and three genera (Veillonella, Megasphaera, and Prevotella 7)
and four species (Streptococcus mitis, Streptococcus salivarius
subsp. salivarius, Bifidobacterium dentium, and Lactobacillus
salivarius) were obtained (see Table 2). Unlike other taxa,
Streptococcus mitis in the matching population was associated
with a decreased risk for GC; it may indicate the risk effect of
this species depends on the external environment elements.

For fecal fungi, the specific taxa associated with GC in
the original population and matching population is listed
in Supplementary Table 4 and Supplementary Table 5,
respectively. In the original population, the AUC of nine
taxa reached 0.6 and higher; they were the Auriculariales
order, Pyronemataceae, Stachybotryaceae, Lasiosphaeriaceae
family, Humicola, Kazachstania genera, Fusarium sp.,
Petriella sp., and Aspergillus terreus species. All those taxa
were related to an increased risk for GC. In the matching
population, the AUC of Hypocreaceae, Stachybotryaceae,
Lasiosphaeriaceae, Sporormiaceae family, Humicola,
Chaetomium genera, and Petriella sp. reached 0.6 and
higher.

3.4. Cluster Analysis of Fecal Flora. The fecal microbiota is a
complex ecosystem, and the community structure may be
more informative than the individual taxa abundance differ-
ence. We clustered the differential 28 genera of bacteria and

Table 1: Clinical characteristics of GC patients and healthy controls.

Variables
Original population Matching population

Cases (n = 134) Controls (n = 58) t/χ2 P Cases (n = 44) Controls (n = 44) t/χ2 P

Age (year) Mean ± SD 64:5 ± 9:2 65:9 ± 9:4 0.930 0.353 64:8 ± 9:8 63:8 ± 9:7 0.439 0.662

Gender
Male 109 (81.3%) 44 (75.9%) 0.751 0.386 30 (68.2%) 30 (68.2%) 0.000 1.000

Female 25 (18.7%) 14 (24.1%) 14 (31.8%) 14 (31.8%)

Eating speed
<10min 65 (48.5%) 13 (22.4%) 11.426 0.001 14 (31.8%) 13 (29.5%) 0.053 0.817

≥10min 69 (51.5%) 45 (77.6%) 30 (68.2%) 31 (70.5%)

Salty foods
Yes 60 (44.8%) 9 (15.5%) 15.052 <0.001 11 (25.0%) 9 (20.5%) 0.259 0.611

No 74 (55.2%) 49 (84.5%) 33 (75.0%) 35 (79.5%)

Fried foods
Yes 109 (81.3%) 41 (70.7%) 2.688 0.101 31 (70.5%) 30 (68.2%) 0.053 0.817

No 25 (18.7%) 17 (29.3%) 13 (29.5%) 14 (31.8%)

Fruits
Yes 51 (38.1%) 46 (79.3%) 27.555 <0.001 29 (65.9%) 32 (72.7%) 0.481 0.488

No 83 (61.9%) 12 (20.7%) 15 (34.1%) 12 (27.3%)

Smoking
Yes 86 (64.2%) 14 (24.1%) 26.005 <0.001 14 (31.8%) 14 (31.8%) 0.000 1.000

No 48 (35.8%) 44 (75.9%) 30 (68.2%) 30 (68.2%)

Drinking
Yes 81 (60.4%) 22 (37.9%) 8.253 0.004 17 (38.6%) 20 (45.5%) 0.420 0.517

No 53 (39.6%) 36 (62.1%) 27 (61.4%) 24 (54.5%)
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Figure 1: Continued.
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Figure 1: The community structure of gut microbiota in the population. (a) presented the bacterial community at the phylum level for
original population, (b) presented the bacterial community at the phylum level for matching population, (c) presented the bacterial
community of top 50 gener of original population, (d) presented the bacterial community of top 50 genera of matching population, (e)
presented the fungal community at the phylum level of original population, (f) presented the fungal community at the phylum level of
matching population, (g) presented the fungal community of the top 50 genera for the original population, and (h) presented the fungal
community of the top 50 genera of matching population.
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Figure 2: Continued.
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v: Stachybotryaceae
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Figure 2: LEfSe analysis of gut microbiome between GC patients and healthy controls. (a) showed the different bacterial taxa of the original
population, (b) showed the different bacterial taxa of the matching population, (c) showed the different fungal taxa of the original population,
and (d) showed the different fungal taxa of the matching population.
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Figure 3: Hierarchical ward-linkage clustering based on the Pearson correlation coefficient of the fold change of each relative abundance. (a)
demonstrated the seven clusters for gut bacteria; (b) demonstrated the three clusters for gut fungi.
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Figure 4: Continued.
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18 genera of fungi in the matching population into seven and
three clusters, respectively, by hierarchical ward-linkage clus-
tering based on the Pearson correlation coefficient of the fold
change of each relative abundance (Figure 3) [16]. We then
compared the mean relative abundance of each cluster
between the GC and control groups (Figure 4). For fecal bac-
teria, the relative abundances of Cluster 4, Cluster 5, and
Cluster 7 in the GC group were higher than that in the con-
trol group and may have a potential risk effect for GC; on
the contrary, Cluster 2, Cluster 3, and Cluster 6 in the GC
group were lower than that in the control group. For fecal
fungi, the relative abundances of Cluster 2 in the control
group were higher, and the relative abundance of Cluster 3
in the GC group was higher.

3.5. Correlation between Serum Metabolites and Fecal Flora.
GC/MS-based metabolomics was performed to profile the

serum metabolite of GC patients and healthy controls. TIC
chromatographs from healthy controls and GC patients are
shown in Figures 5(a) and 5(b), respectively. Furthermore,
we conducted OPLS-DA (4 PCs, R2X = 0:81, R2Y = 0:97,
Q2 = 0:967), and a dramatic difference between the GC
patients and healthy controls was observed (Figure 5(c)).
PCA was also conducted to illustrate the metabolic difference
between the two groups (12 PCs, R2X = 0:951, Q2 = 0:892),
and the results showed a good performance in distinguishing
the two groups (Figure 6). After the structure identification of
metabolites, we chose the mean relative abundance of bacte-
ria genus more than 0.1% and performed the association of
gut microbiota (both bacteria and fungi) with the serum
metabolite. The results are shown in Figure 7. Serum amino
acid (L-alanine, L-threonine, methionol, L-carnitine, guani-
dinoacetate), heptanal, and phenylethylamine were positively
related to bacteria Streptococcus and Veillonella genus. Three
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Figure 4: Boxplots of relative abundance of the seven gut bacteria clusters (a to g) and three gut fungi clusters (h to j) between the GC patients
and healthy controls. ∗ indicated the P value less than 0.05, ∗∗ indicated the P value less than 0.01, and ∗∗∗ indicated the P value less than 0.001.
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serum amino acids (L-alanine, L-threonine, methionol) were
also correlated with fungi Pseudeurotium, Gibellulopsis,
Petriella, Humicola, Cercophora, Schizothecium, Neurospora,
and Sordaria genus.

4. Discussion

In this study, we identified the potential association of fecal
microbiota, both bacteria and fungi, with the occurrence of
GC and the host serum metabolites. As the largest habitat,
intestine microbes were represented as the most important
“organ” that not only of the digestion but in the host
immune and metabolic system [17]. Thus, increasing evi-
dence showed that dysbiosis of intestinal microbiomes
could influence the initiation and development of systemic
disease beyond the gut and even the effect of immunother-
apy [18]. Fecal specimens represent a conveniently accessi-
ble and noninvasive source for investigating the gut
microbiota composition. Thus, fecal samples were used to
evaluate whether the fecal microbiome can be used as a bio-
marker affecting the risk of gastric cancer. To exclude the
confounding elements, we matched the GC patients and
healthy controls with the diet and some lifestyle habits.

Compared to the bacteria, the fungi community was more
susceptible to environmental elements. This result was con-
sistent with previous findings. David et al. found that ani-
mal- or plant-based diets have a different influence on
fungi species; they could increase the abundance of Can-
dida and Penicillium species, respectively [19]. The rapid
alteration of fungi was also confirmed in the murine gut
[20]. This may be explained that the abundance of bacteria
is larger than fungi; thus, their communities are more
robust than that of fungi.

The genus Lactobacillus is taxonomically complex and
contains over 170 species. Although they are part of the nor-
mal commensal microbes in human gastrointestinal and
extensively used in commercial products and dairy food,
such as yogurt and cheese, they can also be human pathogens
occasionally. Some Lactobacillus species were isolated from a
variety of human infections, and in most cases, malignancies
or gastrointestinal disorders were the main underlying dis-
eases [21, 22]. Our results indicated that Lactobacillus sali-
varius relative abundance was higher in GC cases than in
healthy controls, and this tendency is not influenced by envi-
ronmental factors. This indicates the Lactobacillus species
may be related to the malignancies, represented by GC. This
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Figure 5: TIC (total ions chromatogram) chromatographs from healthy controls (a) and GC patients (b); OPLS-DA (orthogonal partial least
squares-discriminant analysis) between GC patients and healthy controls (c).
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is consistent with our gastric mucosal specimen data, which
suggests that there may be a correlation between the intesti-
nal flora and the gastric mucosal flora [23].

We also found some common oral community mem-
bers (i.e., genus Veillonella, Streptococcus mitis, Streptococ-
cus salivarius, and Fusobacterium) tend to be related to the
risk of GC. Streptococcus mitis is a pioneer colonizer in the
human oral cavity and could produce hydrogen peroxide
(H2O2) to inhibit the growth of downstream bacteria
sensitive to hyperoxic stress [24]. In addition, the reactive
oxygen species (ROS), such as H2O2, are known to be
related to mutagenesis, tumorigenesis, and aging through
damaging various biological macromolecules. As early col-

onizers and most predominant oral bacteria, the species of
Veillonella genus can coaggregate with the initial colonizer
such as Streptococcus mitis. Veillonella, a bridging species,
not only provide food and site to downstream pathogens,
such as Fusobacterium nucleatum and Porphyromonas gin-
givalis, but also protect them from oxygen stress and
support the survival. Except for periodontal diseases, Fuso-
bacterium nucleatum and Porphyromonas gingivalis were
regarded as the carcinogenic organisms of colorectal
cancer and esophageal cancer, respectively [8, 25]. Under-
standing the interaction between the later and pioneer
colonizers would lead to the development in disease
prevention for GC.
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Figure 6: Principal component analysis (PCA) of serum metabolite difference between GC patients and healthy controls.
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Through the serum metabolite analysis, we found bacte-
ria Streptococcus and Veillonella were both positively corre-
lated with serum amino acid (L-alanine, L-threonine,
methionol, L-carnitine, guanidinoacetate), heptanal, and
phenylethylamine. Fungi Pseudeurotium, Gibellulopsis, Pet-
riella, Humicola, Cercophora, Schizothecium, Neurospora,
and Sordaria were also correlated with these three serum
amino acids (i.e., L-alanine, L-threonine, methionol). It
may indicate metabolic of the amino acid are shared cross
the bacteria and eukaryotes. Amino acid homeostasis is
essential for the balance of cellular amino acid pools in the
microbiota. Except for the metabolic prerequisite for the
microbe’s growth, the balance could also ensure the host
amino acid homeostasis. L-alanine, for instance, has a great
abundance in cellular concentration, only second to gluta-
mate and aspartate, and participates in amino acid biosyn-
thetic and catabolic pathways and thereby connecting
crucial metabolic networks [26, 27]. L-threonine was thought
to generate SCFAs, acetate, butyrate, and propionate and
plays a prominent role in maintaining proper intestinal func-
tion and integrity [28]. Abubucker et al. identified several
biosynthesis genes for L-threonine metabolism in human
gut microbiota using metagenomic data [29], and our associ-
ation data also confirm the relationship between this amino
acid and gut microbiota.

Although the gut is dominated by bacteria, other
microbes, such as fungi, archaea, and phages, also reside in
the gut. The number of fungi in the gut is far lower than that
of bacteria, but the fungal cells are much bigger and more
complex [30]. The fungi dysbiosis has also been reported to
be accompanied by diseases such as inflammatory bowel dis-
eases [31]. The Candida-derived prostaglandin E2 (PGE2)
can reach the lungs and promote allergic inflammation
through acting on lung macrophages [32]. Intestinal fungi
could influence immunity at distant body sites through both
productions of fungal metabolites and interaction with
immune cells [33]. We described both fecal bacteria and
fungi community alteration associated with GC and serum
metabolites, and it may provide some clues for the further
investigation of the complex interaction of gut microbiota
and the host.

There are some limitations in this study. First, in terms
of the selection of the control group, we did not use gas-
troscopy to exclude patients with gastric diseases, who
have no obvious symptoms of dyspepsia. Since the control
group came from the normal physical examination popu-
lation in the hospital, in addition to using the question-
naire to collect gastric symptoms and disease status
information, we also checked the patient’s digestive system
disease-related serum markers (i.e., carbohydrate antigen
(CA)19-9; carcinoembryonic antigen, CEA; and alpha-feto-
protein, AFP) and selected those individuals with normal
indicators. Second, we used the serum sample to test the
antibody against the H. pylori instead of 13C-urea breath
test, rapid urease test, or histological staining of H. pylori,
which do not always reflect current infection. Third, self-
reports of lifestyle habits (eating speed, taste, and so on)
may be biased. Large sample research with multicenter
cooperation is needed in follow-up research.

5. Conclusion

Taken together, the findings of our study suggest that fecal
bacteria and fungi community alteration may be related to
the risk of GC with the same H. pylori infection status. The
relative abundance of Veillonella, Megasphaera, and Prevo-
tella 7 genus and Streptococcus salivarius subsp., Salivarius,
Bifidobacterium dentium, and Lactobacillus salivarius species
in bacteria increased in the GC patients and showed a good
diagnostic value in distinguishing the patients from healthy
controls. Serum L-alanine, L-threonine, and methionol were
positively associated with Veillonella and Streptococcus and
several fungi genus. The fecal microbiome community
change may be a new biomarker and/or preventive target
for GC. Our results should be considered as preliminary
due to the small sample size. Thus, further studies in a larger
population with different ethnicities were encouraged.
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