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The compliance of head‑mounted 
industrial PPE by using deep 
learning object detectors
Velibor Isailovic1, Aleksandar Peulic2, Marko Djapan1, Marija Savkovic1 & Arso M. Vukicevic1*

The compliance of industrial personal protective equipment (PPE) still represents a challenging 
problem considering size of industrial halls and number of employees that operate within them. 
Since there is a high variability of PPE types/designs that could be used for protecting various body 
parts and physiological functions, this study was focused on assessing the use of computer vision 
algorithms to automate the compliance of head-mounted PPE. As a solution, we propose a pipeline 
that couples the head ROI estimation with the PPE detection. Compared to alternative approaches, it 
excludes false positive cases while it largely speeds up data collection and labeling. A comprehensive 
dataset was created by merging public datasets PictorPPE and Roboflow with author’s collected 
images, containing twelve different types of PPE was used for the development and assessment of 
three deep learning architectures (Faster R-CNN, MobileNetV2-SSD and YOLOv5)—which in literature 
were studied only separately. The obtained results indicated that various deep learning architectures 
reached different performances for the compliance of various PPE types—while the YOLOv5 slightly 
outperformed considered alternatives (precision 0.920 ± 0.147, and recall 0.611 ± 0.287). It is concluded 
that further studies on the topic should invest more effort into assessing various deep learning 
architectures in order to objectively find the optimal ones for the compliance of a particular PPE 
type. Considering the present technological and data privacy barriers, the proposed solution may be 
applicable for the PPE compliance at certain checkpoints where employees can confirm their identity.

The ongoing technological progress has significantly increased reliability of industrial equipment—which has left 
human factors as the leading cause of workplace accidents. Reports from the US alone indicate that injury costs 
were estimated to $161B, while an average annual cost was $1100 per worker (i.e. a factory of 1000 workers has 
an annual cost of $1.1 M due to injuries and accidents)1. Occupational safety and health (OSH) is an interdisci-
plinary scientific field that aims in creating a workplace environment that ensures employees well-being, safety 
and health at work2. Together with employee education, the frontline OSH measure for preventing workplace 
injuries is the use of personal protective equipment (PPE); which is also regulated with the corresponding 
standards and guidelines for each sector of industry. However, the practice has shown that the misuse of PPE 
represents a serious issue for both companies, healthcare systems budgets (i.e., 360B dollars annually to the US 
alone3), and employees that are facing consequences of occurred injuries. Finally, the reports show that large 
portions of recorded injuries could be prevented through the proper use of PPE4, which affordability nowadays 
do not represent an obstacle for ensuring workplace safety.

Safety managers in most companies have limited capacities for timely and objective observation of large 
manufacturing halls and hundreds of employees or visitors that circulate within workplaces. As an alternative, 
there is a tendency and growing need for the computerized tools that could assist safety managers by indicating 
violations from prescribed protection measures. First papers on this topic were focused on using sensors that 
were placed on the equipment itself5, or development of the conceptual framework of smart PPE compliance6. 
In the following paragraph, we will review recent studies on the topic of application of computer vision (CV) 
techniques for enabling contactless PPE compliance of head-mounted PPEs.

Related studies.  Chen and Demachi proposed a solution that uses OpenPose for the detection of body 
landmark points and YOLOv3 for PPE detection, while the PPE compliance was done by analyzing the geomet-
ric relationships of individual’s keypoints and detected PPE8. Balakreshnan et al., proposed a software architec-
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ture, which included an IoT module and the Microsoft Azure Custom Vision AI and Intelligent AI Services to 
assess detection of safety glasses in laboratory environments9. So far, the majority of related studies were focused 
on construction engineering—where the objective was to check if employees are using hardhats and yellow vests. 
Wu et al. assessed application of the SSD architecture for detecting hardhats of various colors on construction 
sites10. Delhi et. al used YOLOv3 to detect the presence of hardhat and safety jackets11. The same detector was 
recently assessed for the compliance of PPEs mounted on various body parts (i.e. hard hat, shirt, belt, gloves, 
pants, shoes)12. Zhafran et. al assessed the Fast R-CNN architecture for compliance of masks, gloves, hardhats, 
and vests—reporting the drop of accuracy with the increase of distance and variations of ambient light13. In 
addition, there are several studies as a result of the Covid19 pandemic crisis, which deal with the detection of 
protection masks. Loey et al. used YOLOv2 for the medical mask detection14, while a separate study combined 
the SSD detector with the MobileNetV2 for the compliance of medical masks used during the Covid1915. Zhang 
et al. have developed their own Depthwise Coordinate Attention (DWCA) algorithm based on YOLOv5 archi-
tecture for hardhat detection16.

As illustrated in Table 1, there is no comprehensive study on the topic of AI/CV-based PPE compliance—
instead, there are separate studies focused on specific PPE types that were of interest for specific type of industry. 
Additionally, previous studies mainly considered a single architecture, which makes it difficult to perform direct 
comparison between studies since different datasets were used for the training. The purpose of our ongoing 
AI4WorklaceSafety (http://​www.​ai4wo​rkpla​cesaf​ety.​com (Accessed 29. 10. 2021)) initiative is to perform an 
integral study, which will envelop various types of PPE (used across different industries to protect different body 
parts/functions). In our previous study, we assessed an approach based on combining pose estimation algorithms 
for determination of region of interests—which need to be forwarded to a classifier7. We found that the compli-
ance of a head-mounted PPE is a specific case—as there is a high variability of PPEs in terms of appearance and 
design. Additionally, it is a frequent requirement that an employee needs to wear multiple PPEs simultaneously 
(e.g., hardhat, safety mask, safety glasses and earmuffs). As an alternative for running multiple classifiers or 
multi-class classifiers, this study aims to assess the usage of object detectors as a more suited approach for the 
compliance of the head-mounted PPE. Compared to previous studies related to the PPE detection, which sepa-
rately considered one to maximum four types of head-mounted PPEs (and altogether covered only eight different 
types of head-mounted PPE)—this and our previous study7 together considered twelve different head-mounted 
PPE types that are in use across a wider range of industries. Additionally, this is the first study that enveloped 
and directly bencmarked different deep learning object detection architectures to perform their objective and 
direct comparison on the developed dataset. Compared to our previous classification based study7, which is 
more comprehensive in terms of the number of PPE types considered, in this study we propose an object detec-
tion approach to enable more efficient compliance of body regions with multiple PPEs—such as human head.

The remainder of this paper is structured as follows: In materials and methods section, after describing the 
considered dataset we provide high-level overview of the proposed procedure, followed by details about the con-
sidered deep learning architectures and corresponding training strategies used in this study; In the experiments 
and results, we describe our evaluation strategy and accuracy metrics used to assess procedure performances, 
and present results obtained on the developed dataset; In the discussion and conclusion we provide comparative 
analysis of the considered deep learning architectures with respect to the state of the art on the topic of computer 
vision-based PPE compliance.

Materials and methods
Considered PPE dataset.  Dataset used in this study was collected by merging images from public datasets 
(Roboflow18, Pictor PPE19), with additional images obtained using crowdsourcing. The majority of data that 
support the findings of this study are contained in Roboflow18 and Pictor-PPE19 public datasets, which terms 
of use and availability are defined by original datasets authors. Portion of data acquired by authors of this study 
was collected and processed in accordance with the relevant guidelines proposed with the the Declaration of 
Helsinki—after obtaining ethical approval from Faculty of Medicine, University of Belgrade, Serbia (Approval 
No. 1322/X-42) and informed consent from all participants.

The total number of collected images was 12,682, out of which we annotated 12 various types of PPE. The 
distribution of PPE classes and structure of the dataset is shown in Table 2. In particular, we studied: (1) hardhats, 
(2) caps, (3) hair protection caps, (4) sunglasses, (5) safety glasses, (6) visors, (7) welding masks, (8) cloth masks, 
(9) surgical (medical) masks, (10) N95 masks, (11) cartridge respirators, and 12) earmuffs. To speed-up the image 
labeling process, we first performed human detection and pose estimation—which helped us to automatically 
extract regions of interest (ROI) around the human head (Fig. 1a). These ROIs were further cropped and saved 
as separate image files—which were further labeled and used as input files for the training of deep learning object 
detectors. The labeling process assumed annotation of bounding boxes around corresponding PPEs’ by using 
LableMe19 and CVAT20 software tools.

Procedure overview.  Considering sizes of industry halls, it is very difficult to visually observe and check 
the use of PPE on a company’s entire workspace. Instead, we propose the use of AI to automate the PPE compli-
ance at certain checkpoints, as illustrated in Fig. 1. The proposed approach assumes the existence of check-in 
devices where employees can use a specific electronic certificate (e.g., RFID card). The assumption is that, upon 
the check-in, the on-site camera could capture the employee image and send it to an AI module consisting of 
two parts. The first one performs the employee’s pose estimation (Fig. 1a), which assumes detecting body land-
mark points (e.g., ankles, knees, hips, pelvis, wrists, elbows, shoulders, neck and head)21. By using the obtained 
coordinates for the head and shoulders, the cropped head ROI needs to be forwarded to the second module 
part—deep learning PPE detector (Fig. 1e). It is assumed that the list of PPEs that need to be used by employees 
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at the particular check-point is defined by the company safety professionals (which are trained to follow recom-
mendations of regulatory bodies). In general, for each check-point, there could be prescribed a different list of 
proposed PPEs. Therefore, the purpose of AI-driven PPE compliance may be to compare the lists of detected 
(Fig. 1e) and recommended (Fig. 1d) PPEs and generate the corresponding compliance reports (Fig. 1f). Com-
pared to our previous study7, the concept is improved by replacing the multi-class classification module with 
object detection algorithms: Faster R-CNN, MobileNetV2-SSD and YOLOv5, used to simultaneously inspect 
various PPEs in frames coming from a camera stream. The pseudocode of the proposed procedure is given 
in the listing below, while its workflow is illustrated in Fig. 1. The same procedure was used for all considered 
object detection architectures, where the only adjustment was replacement of the inference function (line 8 in 
the pseudocode) for a particular model.

Table 1.   Comparative review of related studies on the topic of computer vision-based compliance of PPE 
(with the focus on studies related to the head-mounted PPE).

Study Considered head PPEs Approach
Architectures 
employed

Considered 
environment

Dataset
(name, number of 
images, availability) Metrics

Proposed

Hardhats, Caps, Hair 
protection, Sunglasses, 
Safety glasses, Visors, 
Welding masks, Cloth 
masks, Surgical masks, 
N95 masks, Cartridge 
respirators, Earmuffs

Pose estimation + Head 
ROI estimation + Object 
detection

MobileNetV2-SSD
Faster R-CNN, YOLOv5 General purpose

Roboflow,
PictorPPE,
web-mined images
12,682 images
N/A

Precision,
Recall

Vukicevic et al.7

Face mask, Respirator 
mask, Earmuffs, Weld-
ing mask, Visor, Safety 
glasses, Hardhat, Head 
cover

Pose estimation + ROI 
Classification

HigherHRNet + Mobile-
NetV2 General purpose

Roboflow,
PictorPPE,
web-mined images
15,728 images
N/A

Accuracy,
Precision,
Recall,
F1 Score
95%

Chen and Demechi8 Hard hat, full-face mask,
Relationships of the 
pose landmarks and the 
detected PPE

OpenPose + YOLOv3 Nuclear power station

Internet images,
Webcam captured real 
world images
3808 images
N/A

Precision 97.64%
Recall 93.11%

Balakreshnan et al.9 Safety glasses Object detection Microsoft Azure Cus-
tom Vision, n.a

Indoor / laboratory 
conditions

Images made in labora-
tory conditions
1291 images
N/A

Precision,
Recall,
Average Precision
N/A

Wu et al.10 Hardhat Object detection SSD Construction engineer-
ing

GDUT-HWD
3174 images
Public data

Precision,
Recall,
Average Precision,
Mean Average Precision
83.89%

Delhi et al.11 Hardhat, Safety jacket Object detection YOLOv3 Construction engineer-
ing

Manual collection and 
image scraping online
2509 images
Data available upon 
request

Precision,
96%
Recall,
96%
F1 score
96%

Tran et al.12 Hardhat, shirt, belt, 
gloves, pants, shoes Object detection YOLOv3 Construction engineer-

ing / laboratory

Images collected out-
doors by IP camera
12,000 images
N/A

Precision,
Up to 98%
Recall,
F1 score

Zhafran et al. 13 Hardhat, mask, gloves, 
yellow vest Object detection Fast R-CNN Construction engineer-

ing

Images from CCTV 
camera,
14,512 images,
N/A

Precision,
 ~ 80%
Recall,
 ~ 80%
F1 score
 ~ 80%

Loey et al.14 Medical mask Object detection YOLOv2 Covid19, public safety
Medical Masks Dataset 
(682 images), Face Mask 
Dataset, (853 images),
Public

Average Precision,
81%

Nagrath et al.15 Medical mask Object detection + clas-
sification SSD + MobileNetV2 Covid19, public safety

Combination of various
open-source datasets 
and pictures,
5521 images,
Available on GitHub

Accuracy,
92.64%
Precision,
Recall,
F1 Score
93%

Zhang et al.16 Hardhat Object detection YOLOv5 Construction engineer-
ing

Video surveillance 
on construction site, 
self-collecting on con-
struction
site, Internet crawling,
7076 images,
Available upon request

Average Precision,
Mean Average Precision
 ~ 96%
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Algorithm Procedure for the head-mounted PPE compliance

Input:
List of images obtained from a camera stream streamI

Input:
List of prescribed PPE types prescribedPPE

Output:
Compliance report reportPPE

1
reportPPE = InitializeReport()

2 poseEstimator = InstantiatePoseEstimator()

3
for currentStream in streamI do

4
frame  = CaptureNextFrameFromVideo( streamI )

5 people = poseEstimator.Estimate(frame)

6 for pose in people do

7 landmarkPointsPositions = GetLandmarkPositions(pose, frame)

8
detectedPPE = Inference(frame, landmarkPointsPositions)

9
matchedPPE =MatchDetectedAndPrescribedPPEs( detectedPPE , prescribedPPE )

10
UpdateReport( reportPPE , matchedPPE )

11 end for

12 end for

Considered deep learning architectures.  This study considers three types of deep learning architec-
tures: (1) Faster R-CNN, (2) MobileNetV2—SSD, and (3) YOLO, which have been assessed only separately 
in previous studies on the topic of PPE compliance (see Table 1 for detailed comparative review). The Faster 
R-CCN is a single-stage network that could be trained in the end-to-end manner22. Conceptually, it is composed 
of a base network for features extraction, region proposal network (RPN)—which generates object proposals 
(regions with high probability of containing significant objects), and a detection network that generates the final 
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classes and bounding boxes (fully connected layers two of which are common to the classification and the regres-
sion layer). Although the Faster R-CCN has been established as accurate and robust architecture (especially 
when there is a large variance of objects’ sizes in images), its major drawback is the inability to perform in (near) 
real-time due to the large number of proposals that need to be processed. As an alternative to the RPN, there 
are single-shot-detectors architectures which directly regress bounding boxes and classes from images. In this 
study, we considered YOLO and SSD architectures as two most popular regression-based types of object detec-
tors. In particular, we used the MobileNetV2—SSD15 architecture which consists of two parts: MobileNetV223 
convolutional neural network for the feature map extraction and the Single Shot MultiBox Detector neural 
network for object detection. This architecture was considered because it has been frequently used for deploying 
on mobile and edge devices, as it is less demanding in terms of hardware—while it provides a good trade-off 
between inference spped and accuracy. The third architecture considered in this study was the YOLOv524, which 
at the moment of this study was the latest version of the YOLO ("You Only Look Once") family. As its’ previous 
versions, it consists of three parts: (1) convolutional layer for image feature selection/extraction based on the 
CSPDarknet5325, (2) a set of layers based on PANet26 for mixing and combining features obtained from convo-
lutional layer, and (3) YOLO layer that predicts classes and bounding boxes based on feature maps collected by 
the middle layer.

Training procedure.  All models were pretrained on the COCO dataset27 and loaded into the PyTorch 
framework for the transfer learning (which assumes frizzing of base layers, while end layers were trained on 
the collected datasets to classify PPEs). During the training, we performed the random flip and Gaussian noise 
online augmentations with the probability of 20%. During the training, each dataset was randomly split into 
training (70%), validation (15%), and test (15%) datasets. The training was performed using the Adam optimi-
zation algorithm28. The initial learning rate of the Adam was set to 1e−4, and it was decreased by a factor of 0.1 
every 5 epochs. The batch size was 5 for the Faster R-CNN, 10 for the SSD and 16 for the YOLOv5.

Experiments and results
All the implementations were done by using the Python 3.7.4 programming language; along with the PyTorch 
1.6.0 and torchvision 0.7.0 libraries with the cuda 10.2 GPU drivers. All the computations were done on the 
GPU workstation containing the AMD Threadripper 3970X (32 cores, 3.79 GHz) processor, 128 GB RAM and 
two Titan RTX (24 GB) + NVLink GPUs.

The metrics selected for the evaluation and comparison of the developed models included: Precision =
Tp

(Tp+Fp)
 , 

and Recall = Tp

(Tp+Fn)
 , where Tp are true positive, Tn are true negative, Fp are false positive, Fn are false negative 

classifications. The obtained results are given in Table 2. Briefly, precision is the ratio of the number of true posi-
tive detected objects and the number of positive predictions; Recall represents the ratio of the number of true 
positive detected objects and the total number of objects. In order to classify the output of the model into one 
of these three categories, we used the Intersection-over-Union (IoU) metrics29. The IoU represents the ratio of 
intersection area and union area of the ground truth bounding box and a corresponding predicted bounding 
box around the object detected on an image. By adopting a threshold value of 0.5, we classified the model output 
as it follows: (1) If the IoU is greater than 0.5, we consider the output to be true positive; (2) If the IoU is greater 
than of 0.0 and less than 0.5, we consider the output to be false negative; (3) If the IOU is equal to 0.0, i.e. there 
is a labeled object in the image (ground truth) and the model does not predict it, we consider the output to be 
false negative. The obtained precision and recall values are shown in Table 2, while sample results are shown in 
Fig. 2.

In order to benchmark our model with previous studies, we considered two approaches; (1) using public 
images from the Roboflow18 dataset and inference available trained models from literature7,9,10,19 (Table 2); (2) 
using trained models from literature7 and assessing them on our data set. Regarding the first scenario, we empha-
size that the Robolfow dataset contains only three head-mounted PPE types (hardhat, goggles, and masks)—so 
the benchmark was restricted only on them (Table 3). Additionally, study9 considered only goggles, studies10 
and19 only hardhats, while only the study7 considered all three PPEs. We selected the YOLOv5 as the best per-
forming model from Table 2 in terms of mean precision and recall values. The obtained results indicate that 
the proposed study achieved better performances compared to7, while studies9 and10 achieved slightly better 
performances on particular PPE types. Regarding the study7, we were able to perform direct comparison in 8 
out of 12 head-mounted PPE types. The obtained results in Table 4 indicate that classification-based approach 
in7 was better in cases when there were available small data sets, while the object detectors achieved better results 
on the overall benchmark.
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Discussion
The obtained results in Table 2 indicate that performances of considered detectors varied for different types of 
head-mounted PPEs. As there are many developed PPE detectors, for the purpose of consistency, we will discuss 
the trained models with respect to a body part or physiological function that corresponding PPEs protect. For 
the hearing protection, we considered detection of earmuffs. The top-performing model was the YOLOv5 with 
the average precision of 0.920± 0.147 and recall 0.611± 0.287 , which slightly outperformed the SSD that had 
precision of 0.857± 0.236 and recall 0.609± 0.275 , while Faster R-CNN reached sub-optimal results with average 
precision of 0.769± 0.133 and recall 0.596± 0.213 . For the protection of respiratory system (cartridge respira-
tors, N95 masks, surgical masks, cloth masks,), we report that overall performances of considered architectures 
were comparable; while for each PPE type different models achieved top-performances. This indicates that there 
is no gold-standard in terms of selecting the best deep learning architecture for the PPE compliance—instead, 
we report that one would have to experimentally assess various architectures, and find the most optimal choice 
for each particular PPE compliance task. Furthermore, by observing the results and datasets size in Table 2, it 
may be noted that there is a correlation between the number of images present in individual PPE categories and 
results achieved by different models. For example, all architectures have poor object detection performance for 

Table 2.   Performances of the developed deep learning models for PPE compliance. Bold values indicate top-
performing algorithms for a particular task.

PPE category Number of images

YOLOv5 Faster R-CNN MobileNet-SSD Mean Standard deviation

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Hardhats 2552 1.000 0.966 0.822 0.757 1.000 0.956 0.941 0.893 0.103 0.118

Caps 472 0.936 0.630 0.805 0.825 0.929 0.565 0.890 0.673 0.074 0.135

Hair protection 462 1.000 0.274 0.806 0.610 0.952 0.400 0.919 0.428 0.101 0.170

Sunglasses 828 1.000 0.711 0.771 0.360 0.985 0.793 0.919 0.621 0.128 0.230

Safety glasses 2633 0.980 0.923 0.884 0.869 0.988 0.931 0.951 0.908 0.058 0.034

Visors 1080 0.967 0.547 0.807 0.728 0.917 0.647 0.897 0.641 0.082 0.091

Welding masks 431 0.962 0.581 0.600 0.562 0.867 0.309 0.810 0.484 0.188 0.152

Cloth masks 263 0.595 0.186 0.727 0.333 0.387 0.224 0.570 0.248 0.171 0.076

Surgical masks 1472 0.993 0.952 0.958 0.797 1.000 0.939 0.984 0.896 0.023 0.086

N95 masks 457 1.000 0.782 0.900 0.628 0.937 0.681 0.946 0.697 0.051 0.078

Cartridge respirators 204 0.622 0.137 0.667 0.211 0.331 0.196 0.540 0.181 0.182 0.039

Earmuffs 1828 0.983 0.643 0.483 0.475 0.992 0.661 0.819 0.593 0.291 0.103

Mean 0.920 0.611 0.769 0.596 0.857 0.609

Standard deviation 0.147 0.287 0.133 0.213 0.236 0.275

Figure 1.   Study overview.
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cloth mask and cartridge respirator classes, which is indicated with the mean precision calculated for all three 
architectures (0.570 and 0.540 for cloth mask and cartridge respirator, respectively). The best performance was 
obtained by models trained on data from the hardhat and safety glasses—categories with the largest number of 
image samples. In those two cases the confidence threshold value is over 0.9. In terms of dataset size vs. model 
accuracy trade-off, it appears that the Faster R-CNN is the most robust on the lack of data, while YOLOv5 most 
benefit from the data availability. By analyzing the last four columns in Table 1, we report that all architectures 
achieved good/remarkable performances in the following six categories: hardhat, hair protection, sunglasses, 
safety glasses, surgical mask, and N95 mask with mean precision greater than 0.9. Satisfactory results were 
achieved in four other categories: cap, visor, welding mask and earmuffs, with mean precision in range 0.6–0.9. In 
the remaining two categories, cloth mask and cartridge respirator, the achieved performances may be considered 
as not satisfactory (mean precision is less than 0.6).

Compared to studies listed in Table 1, this study is the first study that assessed different object detection 
architectures (studied only separately in literature) to solve the problem of PPE compliance. The proposed study 
is also the most comprehensive in terms of data/PPEs types and diversity—as we considered the twelve types of 
head-mounted PPE (which were studied only separately in literature, see Table 1). For the PPE types covered 
in previous studies (Hard hat, face masks, safety glasses, gloves, medical masks)—we report that we reached 
state-of-the art performances. We emphasize that the (indirect) comparison with previous studies is avoided in 
Table 2 because they used different data sets (and cover only a portion of PPEs), while we enveloped all previ-
ously considered deep learning architectures—and thus were able to perform their direct and more objective 
comparison on our own data set.

When it comes to applying such AI-based solutions in real-world industry conditions, we report that a series 
of challenges and limitations may arise. First, there is an increasing variability of PPE designs and appearance, 
which nowadays are closer and more difficult to distinguish from the civil equipment (e.g., glasses, earmuffs). 
Our experimentations on this topic, presented in this and related previous study7, indicate that well developed 
dataset and AI procedures have potential to reduce these problems. Particularly, the ROI classification approach 
proposed in our previous study7 is slightly more robust to PPEs variable—assuming that there is a well-balanced 
and sufficient amount of labeled data. However, considering the number of different PPEs that may be mounted 
on a worker head—running the multiclass object detectors is more efficient than running multiple or multi-class 
classifiers. The major methodological distinction from previous studies in Table 1 is the use of pose estimation 
algorithms for finding ROIs before applying PPE detectors. The reduction of whole images to head ROIs is 
significant from two aspects: (1) it eases the collection of images for dataset and (2) it restricts detectors to the 

Figure 2.   Sample results in laboratory conditions.
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particular area of interest (otherwise, for example, it could not distinguish having hardhat in hands and/or on 
head). Also, from the pose estimation we obtain landmark points for the whole body, not only for the head. 
Based on those landmarks (hands, feet, torso, etc.) it is possible to crop regions of the images in which there are 
other parts of the body, where other types of PPE should be used: gloves, safety boots, shoe cover, yellow vest, 
work suit, etc. Therefore, the solution may be easily upgraded to be useful for inspection of other types of PPE, 
which have not been the subject of research in this paper.

Regardless of the choice of AI strategy for solving the PPE compliance problem, there are also challenges 
and limitations related to the computational costs, data privacy and ethical use of such AI solutions in industry 
practice—which is the subject of our future work. Considering the General Data Protection Regulation (GDPR)30, 
any use of video surveillance for employees monitoring represents a sensitive issue that needs to be justified with 
appropriate data policies and security measures. In technical terms, conventional video surveillance cameras 
typically have very wide lenses, and therefore they provide very distorted images. Thus, in order to be able to use 
conventional surveillance systems for PPE compliance, it is necessary to design it so that in the positions that 
will be used as checkpoints are high-resolution cameras with narrow lenses. This would make the video surveil-
lance system slightly more expensive, but on the other hand it can significantly contribute to the improvement of 
working conditions. Finally, processing video streams from a large number of surveillance cameras may be very 
computationally demanding and financially expensive. As an alternative to the ethical and infrastructural (having 
sufficient number of cameras, optimal camera positioning etc.) challenges of using conventional surveillance 
technology—the more promising direction for further development of the technology described in this study 
is using specialized edge-devices. Having the AI-PPE compliance on the edge device is well suited to be used as 
automated check points—which may alert employees before entering unsafe areas with inappropriate or without 
PPE; or even restrict their entry. On the other side, the digitalization of such unsafe moments enables more effi-
cient safety management and exchange of information31. Considering the above mentioned, our future work on 
this topic will be focused on implementing the presented concept on the Edge AI devices – as it should ease the 
further validation and improvement in real-industry conditions. As the end goal, we aim to envelop various AI 
modules for recognition of various unsafe acts (which besides PPE compliance may include recognition of unsafe 
/ unergonomic actions)7,31–36,39–41, and various manufacturing processes in e.g., logistics37 or quality control38.

Conclusion
Ensuring employees’ workplace safety within a complex and constantly evolving industrial environment a chal-
lenging problem. Since there may be numerous PPE types mounted on various body parts (head, hands, legs, 
upper body, whole body)—this study was focused on proposing and assessing a solution that could enable 

Table 3.   Comparison of the best developed deep learning model for PPE compliance (based on three types of 
head-mounted PPEs that exist in the Roboflow public dataset) with models available from the literature on test 
images from the Roboflow public dataset (P—precision, R—recall).

PPE category

YOLOv5 7 9 10 19

P R P R P R P R P R

Hardhats 0.922 0.914 0.918 0.913 n/a n/a 0.891 0.889 0.941 0.918

Safety glasses 0.848 0.820 0.895 0.883 0.921 0.862 n/a n/a n/a n/a

Mask 0.954 0.917 0.911 0.899 n/a n/a n/a n/a n/a n/a

Table 4.   Comparison of the YOLOv5 deep learning model for PPE compliance with our previous 
classification based model on test images from the dataset used in this paper.

PPE category

YOLOv5 7

P R P R

Hardhats 1.000 0.966 0.961 0.936

Caps 0.936 0.630 n/a n/a

Hair protection 1.000 0.274 0.917 0.887

Sunglasses 1.000 0.711 n/a n/a

Safety glasses 0.980 0.923 0.924 0.919

Visors 0.967 0.547 0.923 0.914

Welding masks 0.962 0.581 0.936 0.908

Cloth masks 0.595 0.186 n/a n/a

Surgical masks 0.993 0.952 0.920 0.912

N95 masks 1.000 0.782 n/a n/a

Cartridge respirators 0.622 0.137 0.931 0.894

Earmuffs 0.983 0.643 0.922 0.889
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automation of the head-mounted PPE compliance. Particularly, we considered three different deep neural net-
work architectures—which were studied only separately in literature. Another distinction from previous studies 
on the topic is the fact that our approach uses the head ROI estimation before performing the PPE detection—
which ensures excluding the false positive cases of detecting PPE on irrelevant image/body regions (e.g., employee 
holding hardhat or mask in hands). Moreover, we report that the use of automated head ROI detection largely 
speeds up the collection and labeling of new data, and thus development of new models. For the purpose of 
validation of the proposed approach, we developed a dataset of 12 distinct PPE types, which makes our study 
more comprehensive and generic compared to previous ones (which were mainly focused on assessing AI for 
the PPE compliance of particular PPE types, as shown in Table 1). The results in Table 2 showed that there was 
no gold standard in terms of selecting the best model—as we found that various deep learning architectures 
reached different performances for the compliance of various PPE types. This indicates that further studies on 
this topic should invest more effort into developing more comprehensive datasets that will envelop more different 
PPE types—as well into the considering and assessing various deep learning architectures in order to objectively 
find the optimal ones. Instead, we conclude that it is more expected that the proposed and similar solutions will 
first find its place for the automated PPE compliance at certain checkpoints, e.g., at the entrance of areas where 
employee authentication may be performed (e.g., by using a RFID) or for the continuous monitoring of PPE 
misuse into particular zones with high risk from injuries.

Data availability
The data that support the findings of this study are contained in Roboflow18 and Pictor-PPE19 public datasets, 
which terms of use and availability are defined by original datasets authors. For portion of data collected by 
authors of this study, we report that they are not publicly available and can-not be distributed as per agreement 
with the study participants.
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