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A pan-cancer analysis of PBAF complex mutations
and their association with immunotherapy
response
A. Ari Hakimi 1,2✉, Kyrollis Attalla1, Renzo G. DiNatale1, Irina Ostrovnaya3, Jessica Flynn3, Kyle A. Blum1,

Yasser Ged4, Douglas Hoen2, Sviatoslav M. Kendall3,5, Ed Reznik 6, Anita Bowman7, Jason Hwee7,

Christopher J. Fong5,8, Fengshen Kuo 2, Martin H. Voss 4, Timothy A. Chan 2,5,9,10,11,12 &

Robert J. Motzer 4

There is conflicting data regarding the role of PBAF complex mutations and response to

immune checkpoint blockade (ICB) therapy in clear cell renal cell carcinoma (ccRCC) and

other solid tumors. We assess the prevalence of PBAF complex mutations from two large

cohorts including the pan-cancer TCGA project (n= 10,359) and the MSK-IMPACT pan-

cancer immunotherapy cohort (n= 3700). Across both cohorts, PBAF complex mutations,

predominantly PBRM1 mutations, are most common in ccRCC. In multivariate models of

ccRCC patients treated with ICB (n= 189), loss-of-function (LOF) mutations in PBRM1 are

not associated with overall survival (OS) (HR= 1.24, p= 0.47) or time to treatment failure

(HR= 0.85, p= 0.44). In a series of 11 solid tumors (n= 2936), LOF mutations are not

associated with improved OS in a stratified multivariate model (HR= 0.9, p= 0.7). In a

current series of solid tumors treated with ICB, we are unable to demonstrate favorable

response to ICB in patients with PBAF complex mutations.
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Immune-checkpoint blockade (ICB) therapy has revolutionized
the treatment of many malignancies, leading to an extensive
search for predictive and prognostic biomarkers. We and

others have reported on the association of ICB response with
tumor mutation burden (TMB), neoantigen load and clonality,
copy number alterations (CNA), microsatellite instability, and
human leukocyte antigen zygosity across a variety of cancer
types1–3. Additional evidence has linked ICB response to the
tumor microenvironment (TME), specifically T cell inflamma-
tion4, and integrated analyses have looked at both TMB and T cell
inflammation in joint models5. Despite these consistent signals
across different studies and cancer types, there is a substantial
number of tumors with lower mutation and neoantigen burdens
that respond to ICB. Indeed, even studies that link response to
TMB or neoantigen burden often have overlap between respon-
ders and non-responders.

Recent work from several groups pointed to the association of
ICB response and mutations in the SWI/SNF chromatin remo-
deling complex, more specifically the polybromo and BRG-1
associated factors (PBAF) complex which includes the genes
ARID2, PBRM1, and BRD7 (refs. 6–8). Inactivation of the gene
encoded by the PBAF complex was recently found to sensitize
melanoma cells to T cell-specific killing7. Miao et al.6 demon-
strated that in a series of nearly 100 metastatic clear cell renal cell
carcinoma (ccRCC) patients, those harboring loss-of-function
(LOF) mutations in PBRM1 had clinical benefit from ICB. They
further demonstrated that in other microsatellite stable tumors
such as melanoma, lung, bladder, and head and neck cancers, loss
of PBAF was also associated with clinical response8. Similarly, a
recent report validated the association between PBRM1 altera-
tions and ICB response9 in CheckMate 025, a randomized phase
3 trial of nivolumab versus everolimus which demonstrated a
survival benefit for nivolumab in the second- and third-line set-
ting10. Further functional and transcriptomic analysis suggested
that PBRM1-deficient tumors possessed altered immune signaling
pathways.

However, in a recent randomized phase II study of metastatic
ccRCC, no association was seen between presence of PBRM1
mutations and treatment response to the PD-L1-directed atezo-
lizumab, nor to the combination of atezolizumab plus bev-
acizumab (n= 136); there was a favorable effect on treatment
response in patients receiving sunitinib (anti-VEGF) on the
control arm of the same study (n= 72)4. Given the discordant
clinical data in PBAF complex loss, as well as its potential impact
on the TME, we seek to leverage several large clinical trial data
sets with genomic data along with our inhouse ICB-treated
patients to explore the effects of PBAF loss on the TME and
clinical outcomes. We utilize two large pan-cancer cohorts to
determine the frequency of PBAF mutations, and we explore the
prognostic significance of PBAF mutations across various solid-
tumor malignancies in our Memorial Sloan Kettering Cancer
Center (MSKCC) ICB cohort. Finally, we assess the impact of
PBRM1 LOF mutations on TME expression programs using a
cohort of 594 ccRCC patients with transcriptomic data. We are
ultimately unable to demonstrate a favorable response to ICB in
patients with PBAF complex mutations and further, gene-
expression analysis of PBRM1 mutated metastatic ccRCC
patients demonstrate consistent upregulation in hypoxia induci-
ble factor (HIF) signaling and angiogenesis, but inconsistent
interferon gamma signaling and other immune response
pathways.

Results
Presence of PBAF mutations in TCGA across cancers. To
evaluate the prevalence of PBAF complex mutations, we queried

the pan-cancer TCGA atlas (n= 10,359) and analyzed all three
genes in the complex (PBRM1, ARID2, and BRD7). Overall, 7.7%
of all tumors possessed any PBAF complex mutation; incidence
among malignancies included in the pan-cancer TCGA cohort
was highest in ccRCC (KIRC) particularly for PBRM1 mutations,
followed by melanoma (SKCM), cholangiocarcinoma (CHOL),
stomach (STAD), uterine (UCEC), and bladder (BLCA) cancers
(Fig. 1a, b). Additionally, highly mutated tumors were more likely
to possess PBAF complex mutations (Fig. 2). Mutations in
PBRM1, ARID2, and BRD7 each represented about 3.8% (52.7%
LOF), 3.6% (39% LOF), and 1.1% (34.4% LOF), respectively
(Supplementary Fig. 1).

MSK-IMPACT immunotherapy pan-cancer cohort. We first
assessed the incidence of PBRM1 and ARID2 mutations (BRD7
not included in IMPACT) among all patients treated with ICB
(n= 3700). For the MSK-IMPACT cohort, we restricted our
analysis to 189 ccRCC patients and 2936 patients treated with
immunotherapy comprising 11 other cancer types that had a
minimum of 50 patients and 5 PBRM1 or ARID2 mutants.
Clinical characteristics of the included cohort, including age,
gender and drug class, as well as TMB and fraction genome altered
(FGA) vary substantially across cancer types and are included in
Table 1. Available PBAF complex mutations included PBRM1 and
ARID2, present at 7.4% and 6.5%, respectively, across the pan-
cancer cohort; LOF frequencies are 3.9% and 2.3%, respectively.

Consistent with the TCGA analysis, PBRM1 mutations were
most common in ccRCC patients (46.6%), followed by non-
melanoma skin cancer (9%) and melanoma (8%), while ARID2
was most common in melanoma (13%), followed by non-
melanoma skin cancer and colorectal cancer (11%) (Supplemen-
tary Fig. 2). With the exception of ccRCC, several of the tumors
harboring PBAF complex mutations were highly mutated cancer
types (Fig. 3a, b). This included both LOF mutations (frameshift
and nonsense mutations) as well as missense mutations.

PBAF mutation and response to immunotherapy in ccRCC.
Given the findings of Miao et al.6 and Braun et al.9 with respect to
PBRM1 LOF mutations and response to ICB in RCC, we analyzed
our cohort of ICB-treated metastatic ccRCC patients (n= 189)
with more detailed clinical annotations including International
Metastatic Renal Cell Carcinoma Database Consortium (IMDC)
prognostic score (n= 180; Table 2), treatment details and out-
comes with therapy, including time-to-treatment failure (TTF).
PBRM1 LOF mutations were present in 61 of these 189 patients
(32%), and non-LOF mutations were found in 27 patients (14%).
Since ARID2 mutations were only present in six patients (4 of
them LOF) and might have a distinct effect on outcome, we
further analyzed only PBRM1 mutations. There were 57 deaths
and 147 treatment failures among these 189 patients, with a
median overall survival (OS) of 68.2 months (95% CI 44.4, NA)
and median TTF of 8.9 months (95% CI 6.9, 12.42), but no
difference for either outcome when comparing patients with
PBRM1 LOF to others (Fig. 4). PBRM1 mutation rate was not
significantly different in patients who received first line (n= 97,
30% LOF mutations) or second or higher line (n= 92, 35%) ICB
or ICB/VEGF combinations. PBRM1 mutations were not asso-
ciated with TTF in the entire ccRCC cohort (LOF HR 0.73, p=
0.11; non-LOF HR 1.05, p= 0.84) and not significantly associated
with OS (LOF HR= 1.5, p= 0.16; non-LOF HR= 1.05, p= 0.91)
(Table 3). When comparing outcomes with first-line ICB therapy
in patients with PBRM1 LOF mutations vs. wild type, no sig-
nificant differences were seen for TTF (HR= 0.6, p= 0.075) or
OS (HR= 1.7, p= 0.29); similarly, no differences were seen for
those receiving ICB in the second line or higher (TTF HR= 0.87,
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p= 0.61; OS HR= 1.71.3, p= 0.44) (Fig. 5). In a multivariate
model adjusted for TMB and drug class (significant predictors of
progression free survival), PBRM1 was not significantly associated
with TTF (LOF HR= 0.85, 95% CI 0.57, 1.28, p= 0.44; non-LOF
HR= 1.22, 95% CI 0.77, 1.94, p= 0.4). Similarly, in the model for
OS adjusted for IMDC risk score and line of therapy (significant
predictors of OS), PBRM1 was not significant (LOF HR= 1.24,
95% CI 0.69, 2.25, p= 0.47; non-LOF HR= 0.88, 95% CI 0.36,
2.14, p= 0.78).

PBAF complex mutation and ICB outcomes in other cancer
types. To assess the impact of PBAF complex mutations in non-
RCC cohorts treated with ICB profiled with MSK-IMPACT, we
restricted our analysis to 11 tumor types with at least 50 patients
and at least 5 patients with PBRM1 or ARID2 mutations (n=
2936). These included bladder, colorectal, non-small-cell lung,
esophagogastric, endometrial, non-melanoma skin, hepatobiliary,
head and neck cancers, melanoma, glioma, and cancer of
unknown primary. Overall prevalence was 4.9% for PBRM1 (2%
of them LOF) and 6.7% for ARID2 (3% of them LOF). PBRM1
mutations were not significantly associated with OS in a cohort of
11 cancer types in a Cox model stratified by cancer type (LOF
HR= 0.9, 95% CI 0.6,1.4, p= 0.7; non-LOF HR 1.03, 95% CI
0.73,1.5, p= 0.86), and remained insignificant after adjusting for
TMB and total CNA (LOF HR= 1.2, 95% CI 0.8,1.81, p= 0.37;
non-LOF HR= 1.32, 95% CI 0.92,1.9, p= 0.13) (Supplementary
Table 1). Results were similar when combining PBRM1 and
ARID2; LOF HR= 0.85, 95% CI 0.65, 1.1, p= 0.25 unadjusted
and HR= 1.1, 95% CI 0.83,1.45, p= 0.52 adjusted. Given the
higher frequency of ARID2 mutations in the non-RCC cohorts,
we combined PBRM1 and ARID2 LOF and non-LOF mutations
for individual subtype analysis, which was significant in non-
small-cell lung cancers (Fig. 6a, Supplementary Table 2). When
univariately examining LOF mutations in PBRM1 and ARID2 as
well as LOF in PBRM1 alone, they remained significantly asso-
ciated with adverse OS in non-small-cell lung cancer (Fig. 6b, c).
In individual cancer types, PBRM1 was correlated with worse OS
in non-small-cell lung cancers (n= 983; HR 2.91, p < 0.001) after
adjusting for TMB and total CNA (Supplementary Table 3). A

significant correlation with adverse OS was also seen in bladder
cancer (n= 245; HR 11.85, p < 0.001); however, only three
PBRM1 mutants comprised this group. ARID2 was not significant
in either cancer type.

PBRM1 mutations and the TME. Previous work by our group
and others suggested that PBRM1 loss was associated with further
hypoxic signaling and angiogenic expression11, 12. This was fur-
ther bolstered by the association with improved response of
PBRM1 mutated tumors to VEGF blockade therapies13–15. We
utilized transcriptomic data from three independent cohorts to
analyze the impact of PBRM1 LOF mutations on transcriptional
pathway enrichment. These included COMPARZ16, a phase 3
randomized trial comparing the efficacy and safety of pazopanib
and sunitinib as first-line therapy (n= 352 (targeted exome and
whole-genome RNA microarray)), McDermott et al.4, a rando-
mized phase 2 study of atezolizumab alone or combined with
bevacizumab versus sunitinib in treatment-naive metastatic renal
cell carcinoma (n= 201 (whole exome+ RNASeq)), and Miao
et al.8, which analyzed a cohort of approximately 100 metastatic
ccRCC patients to identify genomic alterations correlating to
response to ICB (n= 41 (whole exome+ RNASeq)). All three
cohorts demonstrated higher hypoxia pathway enrichment in
PBRM1 mutated samples with GSEA p value as 0.002, 0.008, and
0.002, respectively. In the COMPARZ and McDermott et al.
cohorts, we observed downregulation of interferon alpha and
gamma response genes. With respect to interferon gamma
response or JAK/STAT signaling, we were able to validate higher
expression in the Miao et al. cohort (as previously reported) but
we found lower expression in both the COMPARZ and McDer-
mott et al. cohorts. We further performed immune deconvolution
using ssGSEA focusing on immune and angiogenic gene sig-
natures. We consistently observed significantly higher angiogenic
gene expression in PBRM1 mutated tumors in the COMPARZ
and McDermott et al. data sets, p= 0.0004 and 0.005, respec-
tively, and a similar trend in Miao et al. cohort (Fig. 7a). Further,
immunohistochemical (IHC) staining from the COMPARZ and
McDermott cohort demonstrates significantly higher CD31-
positive staining in PBRM1 mutated tumors, implying higher

Table 1 Patient characteristics by cancer type in MSK IMPACT cohort.

Gender Drugs

Variable Age F M Tumor mutation
burden score

Fraction genome
altered (median)

CTLA-4 CTLA-4 | PD-
1/PD-L1

PD-1/PD-L1

Overall (n= 3125) 64 (15, 90) 1310 (41.9) 1815 (58.1) 6.1 (0, 368.6) 0.48 24 (1) 681 (21.8) 2420 (77.4)
Bladder cancer (n= 249) 69 (32, 90) 61 (24.5) 188 (75.5) 7.9 (0, 209.5) 0.56 0 (0) 45 (18.1) 204 (81.9)
Cancer of unknown
primary (n= 117)

64 (17, 89) 54 (46.2) 63 (53.8) 5.3 (0, 90.4) 0.51 1 (0.9) 15 (12.8) 101 (86.3)

Colorectal cancer
(n= 145)

56 (19, 88) 60 (41.4) 85 (58.6) 8.8 (0, 368.6) 0.37 1 (0.7) 13 (9) 131 (90.3)

Endometrial cancer
(n= 129)

66 (40, 90) 129 (100) 0 (0) 6.1 (0, 156.4) 0.43 0 (0) 19 (14.7) 110 (85.3)

Esophagogastric cancer
(n= 173)

62 (23, 87) 40 (23.1) 133 (76.9) 4.9 (0, 62) 0.62 1 (0.6) 45 (26) 127 (73.4)

Glioma (n= 177) 54 (15, 82) 67 (37.9) 110 (62.1) 4.4 (0, 330) 0.29 0 (0) 4 (2.3) 173 (97.7)
Head and neck cancer
(n= 164)

62 (17, 84) 36 (22) 128 (78) 5.3 (0, 68.5) 0.43 0 (0) 11 (6.7) 153 (93.3)

Hepatobiliary cancer
(n= 81)

65 (15, 87) 37 (45.7) 44 (54.3) 3.5 (0, 50.9) 0.38 1 (1.2) 3 (3.7) 77 (95.1)

Melanoma (n= 607) 66 (16, 90) 219 (36.1) 388 (63.9) 9.7 (0, 181.8) 0.48 18 (3) 361 (59.5) 228 (37.6)
Non-small cell lung
cancer (n= 1041)

67 (23, 90) 547 (52.5) 494 (47.5) 7 (0, 100.4) 0.58 1 (0.1) 123 (11.8) 917 (88.1)

Clear cell renal cell
carcinoma (n= 189)

61 (35, 84) 47 (25) 142 (75) 3.9 (0, 22.6) 0.36 0 (0) 35 (18.5) 154 (81.5)

Skin cancer, non-
melanoma (n= 53)

70 (35, 90) 13 (24.5) 40 (75.5) 2 (0, 179.1) 0.29 1 (1.9) 7 (13.2) 45 (84.9)

Median (range) reported for continuous variables and % for categorical variables.
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degrees of tumor angiogenesis in PBRM1 mutated tumors
(Fig. 7b). IHC studies from the two cohorts also reveal higher PD-
L1-negative and lower PD-L1-positive staining tumors in PBRM1
mutated tumors compared to wild type (Fig. 7b) and no differ-
ence in CD8 positivity between PBRM1 mutant and wild-type
tumors (Supplementary Fig. 3). Immune deconvolution of bulk
expression data failed to find any specific immune enrichment

patterns across the three cohorts when stratified by PBRM1
mutation status (Supplementary Fig. 4).

Discussion
The identification of genomic biomarkers for ICB therapy
remains an evolving field. While several studies seem to validate
tumor mutation and neoangtigen burden, along with mismatch
repair mutations1–3, numerous other studies have relied on single
gene mutations with relatively small cohorts and often not cor-
recting for potential confounding factors such as TMB or
microsatellite instability/mismatch repair status. Our analysis of
over 3000 patients treated with ICB did not find an association
with PBAF complex loss and ICB response in both univariate or
multivariate tests. Specifically, we found PBAF complex muta-
tions to be most common in ccRCC tumors which were domi-
nated by PBRM1 mutations; interrogation of this cohort of ICB-
treated ccRCC patients failed to reveal an association between
PBRM1/ARID2 mutations and overall survival or time-to-treat
failure. Furthermore, analysis of both the McDermott et al. and
our recently analyzed COMPARZ cohort showed unchanged or
lower IFNγ signaling in the PBRM1 mutants.

3p loss (which encompasses four commonly mutated genes: VHL,
PBRM1, SETD2, BAP1) is a ubiquitous, pathognomonic event in
ccRCC, occurring in upwards of 90% of tumors. Preclinical data
support the notion that VHL (the most commonly mutated gene in
clear cell RCC) and PBRM1 co-occur; although VHL is the initial
driver event in the pathogenesis of clear cell RCC, genetic deletion of
VHL in mice is insufficient to initiate kidney tumors12. After loss of
VHL, loss of additional 3p21 tumor suppressor genes (PBRM1)
further activates HIF1/STAT3 signaling in mouse kidney and posi-
tions mTORC1 activation as the third preferred driver event.
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Table 2 Characteristics of 189 patients with clear cell RCC
treated with ICB therapies.

All (n= 189)

Age at treatment (years)—median (range) 60 (34, 89)
Sex

Male 142 (75%)
Histology subtype

Clear cell RCC 189 (100%)
IMDC risk score at starting ICB therapy

Good 54 (29%)
Intermediate 102 (54%)
Poor 24 (13%)
Missing 9 (5%)

ICB therapy type
Single-agent IO 75 (40%)
IO+ IO combination 38 (20%)
IO+VEGF combination 71 (38%)
IO+ other treatment combination 5 (3%)

Line of ICB therapy
First line 97 (51%)
≥Second line 92 (49%)

PBRM1 mutation type
LOF 61 (32%)
Non-LOF 27 (14%)

ICB immune-checkpoint blockade, IMDC International Metastatic Renal Cell Carcinoma
Database Consortium, LOF loss of function.
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PBRM1 encodes for the protein BAF180, a subunit of the PBAF
subtype SWI/SNF chromatin remodeling complex. The PBAF
complex regulates access to DNA bound to histones by tran-
siently altering the nucleosome structure so that the DNA may be
accessed by the cell’s transcriptional machinery. Mutation of
PBRM1 leads to the integration of an altered BAF180 subunit and
thereby alters the normal activity of the PBAF complex.

The PBAF complex has been reported to control the immune
system by modulating immune recruitment and T cell activation
through the IFNγ signaling and JAK/STAT pathway. IFNγ serves
as a critical cytokine for tumor immunity17 and its signaling axis
is mediated through STAT3 and STAT5 signal transduction18.
Notably, STAT3 is part of an important intrinsic pathway for
inflammation by inducing genes that lead to the production of IL-
6, 10, 11, 17, 23, CXCL12, and COX-2 (ref. 19). The activation of
STAT3 is normally a transient process activated by numerous
cytokines, including IL-6 (ref. 20), IFNγ21, and TNFa22, which is
strictly controlled to prevent unscheduled gene regulation. The
pathway of activation is initiated through JAK phosphorylation
whereby STAT3 becomes phosphorylated23 and combines into
dimers to enter the nucleus via importin alpah5/NPI-1 (ref. 24).
Once in the nucleus, STAT3 induces transcription of genes
involved in cell survival and proliferation25, 26.

However, unbridled activation of STAT3 is oncogenic27 and
has been reported in a variety of tumors28, including renal can-
cers29, and can go unchecked due to mutations in negative reg-
ulatory mechanisms30. Growing evidence supports the role of
PBRM1 (via PBAF) as one of these negative regulators of STAT3
and in turn acts to downregulate the transcription of proliferative
and interferon stimulated genes (ISG). In 2011, Verela et al.31

showed that PBRM1 knockdown enhanced proliferation and
migration of kidney cancer cell lines. Later, Pan et al.7 showed
through RNA-sequencing that among PBRM1-deficient cells,
gene sets related to IFNγ and IFNα response were significantly
enriched compared to controls when treated with IFNγ. More-
over, the authors showed that cells deficient in PBRM1 secreted
larger amounts of chemokines necessary for the recruitment of
effector T cells compared to controls following IFNγ stimulation7

and that mRNA levels of PBRM1 negatively correlated with
expression of granzyme B and Perforin 1, as well as with the
granzyme B/CD8A ratio; all this suggests that a lower expression
of PBRM1 correlated to higher cytotoxic T cell activity and that

PBRM1 status may be relevant for immune activation and infil-
tration, perhaps due to STAT3 ISGs7. Similarly, Miao et al.6

showed genes which were most strongly enriched in PBAF
knockout cell lines were immune stimulatory. Indeed, transcrip-
tion analysis of DEG between PBRM1 mutant and wild types in
the Miao et al. cohort supported increased IFNγ gene expression.
However, our analysis of two significantly larger metastatic
ccRCC cohorts, COMPARZ and McDermott et al., demonstrated
lower IFNγ and JAK/STAT3 expression. Given the tight coun-
terbalance between the PBAF complex and ISGs it is highly
conceivable that additional alteration can shift the balance away
from ISG signaling and can explain the lack of efficacy to ICB
seen in an array of PBAF complex mutated cancers.

Furthermore, there has been evidence to suggest that the HIF
pathway, the main driver of ccRCC in VHL loss, itself may be
associated with the immune response through PBRM1. The PBAF
complex has been shown to suppress the hypoxia transcriptional
signature in VHL negative ccRCC11, 12. Nargund et al.12 showed
through GSEA analysis in untreated ccRCC from the TCGA and
a PBRM1 knockout mouse model that PBRM1 loss had increased
transcriptional outputs of HIF1 and STAT3. The authors show
HIF1α and STAT3 cooperate to activate the expression of HIF1α
targets including genes involved in angiogenesis through a feed-
forward amplification loop32. It has been separately shown that
HIF1α induces PKM2 to activate STAT3 which prompts further
HIF1α expression33, 34. Similar findings were reported by Miao
et al.6 after GSEA analysis of RNA-sequenced pre-treated ccRCC
PBRM1 LOF tumors which showed increased expression of
hypoxia and IL-6/JAK-STAT3 gene sets. If PBRM1 acts to inhibit
STAT3, the inference is that PBRM1 prevents the amplification of
the HIF1α and STAT3 transcriptional outputs upon VHL loss12.
However, when PBRM1 is also lost through mutation, the
intrinsic HIF1α-STAT3 propagation goes unchecked. Indeed,
Nargund et al.12 showed that in VHL knockout cells, PBRM1
suppresses the self-perpetuating amplification of HIF1α/
STAT3 signaling. Consistently, we found higher angiogenic
expression in PBRM1 mutated tumors. Clinically, this is sup-
ported by the fact that PBRM1 mutated tumors respond better to
antiangiogenic therapy. Carlo et al.35 demonstrated in 105
patients with metastatic ccRCC who had received systemic
therapy, TTF with VEGF-targeted therapy differed significantly
by PBRM1 mutation status, where PBRM1 mutants associated
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with more favorable TTF (p= 0.01, median 12.0 months for
PBRM1 mutants versus 6.9 months for wild-type tumors)35.

Finally, we have shown in the COMPARZ cohort that PBRM1
mutations are associated with both higher angiogenesis expres-
sion and response to anti-VEGF therapy. This parallels the
findings of the sunitinib arm of the McDermott et al. cohort,

wherein sunitinib efficacy was enriched in highly angiogenic
tumors and coincided with PBRM1 mutant tumors, demon-
strating improved progression free survival and objective
response rates in tumors with high angiogenic gene signature.

Braun et al.9 recently reported on the association between
PBRM1 alterations and ICB response in CheckMate 025, a large
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randomized phase 3 trial of nivolumab versus everolimus in
advanced renal cell carcinoma10. The validation study demon-
strated a modest, albeit significant, mutation effect on improved
response and survival in nivolumab-treated patients, none in
subjects on the everolimus arm. Intriguingly, this effect was
observed in patients who received prior antiangiogenic therapy;
previous studies of PBRM1 mutations in the first-line setting had
negative results, and PBRM1 alterations have also been associated
with benefit from antiangiogenic therapies4, 6. It is noteworthy to
mention that among nivolumab-treated patients, a higher pro-
portion of responders (15 of 38) harbored truncating PBRM1
mutations, which was statistically significant but numerically
similar to the non-responders (16 of 74). This lack of effect in the
first-line setting may explain the lack of response of the atezoli-
zumab arm in the PBRM1 LOF mutations in the McDermott et al.
cohort, a finding we were also unable to validate in both first- or
second-line patients.

As the field of precision oncology continues to evolve, limita-
tions to its current applicability in the clinical setting exist. Novel
putative prognostic or predictive molecular biomarkers should
prove complementary or superior to the best available clinical
prognostic or predictive factors before entering clinical practice.
Indeed, prior studies have specifically examined the applicability
of genomic signatures to improve the prognostic performance of
established prognostic models; in one such instance, de Velasco
et al.36 demonstrated a model of genomic signatures which
improved the prognostic performance of IMDC and MSKCC risk

classifications. Globally, factors predicated around the cost of
large-scale genomic analyses, fostering collaborative efforts on the
behalf of dedicated independent research programs so as to limit
waste of resources, and tumor-specific factors such as intratumor
heterogeneity, must be brought to the forefront of any discussion
regarding quests for novel molecular biomarkers37.

Methods
Cohort selection. TCGA: Pan-cancer TCGA cohort (n= 10,359 from 31 cancer
subtypes) data, including ARID2, BRD7, and PBRM1 mutations, mutation count as
well as FGA (which is an estimate proportion of the tumor genome affected by
copy number gains and losses), were queried and downloaded from MSKCC
cBioPortal (cbioportal.mskcc.org). Specifically, FGA is calculated as the length of
segments with log2 CNA value larger than 0.2, divided by the length of all segments
measured. Among various mutation types the truncating mutation (putative dri-
ver) is treated as a LOF mutation and the remainder treated as non-LOF.

MSK ICB Cohort: After receiving institutional review board (IRB) approval at
MSKCC, institutional pharmacy records were used to identify patients who had
received at least one dose of immunotherapy at MSKCC for metastastic cancer, and
these were then cross-referenced with patients who had MSK-IMPACT testing
done in the context of routine clinical care. Informed consent was obtained from all
patients prior to MSK-IMPACT testing. For MSK pan-cancer cohort we selected all
patients treated with immunotherapy at MSKCC between 2010 and 2018 who had
their tumor profiled with MSK-IMPACT targeted sequencing platform (n= 3700
from 51 cancer subtypes). After limiting non-renal cell carcinoma patients to 11
cancer types with at least 50 patients and 5 PBRM1 or ARID2 mutations, the pan-
cancer cohort was comprised of 2936 patients.

Details of tissue processing and next-generation sequencing and analysis were
previously described38. Patients enrolled in ongoing clinical trials for which study
outcomes have not been reported were removed, as were a small proportion of
patients with either localized disease treated in the neoadjuvant setting or localized
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disease. Other preceding or concurrent non-ICB treatments were not recorded or
accounted for in the analysis.

IMPACT mutational profiling. The MSK-IMPACT assay was performed on DNA
extracted from formalin-fixed, paraffin-embedded primary tumor samples as
previously published39. The total number of somatic mutations identified was
normalized to the exonic coverage of the respective MSK-IMPACT panel in
megabases. Importantly, concurrent sequencing of germline DNA from peripheral
blood was performed for all samples to identify somatic tumor mutations. For each
histology, we subsequently identified cases in the top twentieth percentile of TMB
and determined the log-rank p value for difference in overall survival (OS) and the
direction of the effect with an HR determined from a coxph model. Additional
analyses were performed with the TMB cutoff ranging from 10 to 50%, as well as
with the TMB cutoff instead defined among all patients (both ICB- and non-ICB-
treated patients). LOF mutations were defined as any truncating mutation (non-
sense, frameshift) or homozygous deletion. Splice site mutations were not con-
sidered LOF mutations as it is not determinable from our data if in fact mutations
at splice sites cause frameshifts or premature stops resulting in LOF, or perhaps
activate cryptic splice sites instead.

Statistical methods. OS was defined as time from the start of immunotherapy
until death or last date of follow-up. For patients who received multiple courses of
ICB, the first treatment was used for analysis. Patients were censored at the date of
most recently attended appointment at MSKCC if death was not recorded in the
electronic medical record. For the ccRCC cohort, TTF was defined as time from the
start of immunotherapy until treatment discontinuation for any reason. The
Kaplan–Meier method was used to estimated TTF and OS curves. Effect of the
mutations was tested using univariate and multivariate Cox proportional hazard
regression. For the analysis of pan-cancer cohort, the Cox model was stratified by
the cancer type. In analysis of ccRCC cohort all variables with p < 0.05 univariately
were included in the multivariate model. Wilcoxon rank-sum test implemented as
R wilcox.test function was used for testing the difference of deconvolved immune
features between mutant and wild-type groups. All analyses were performed in the
R platform v3.6.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data from the MSK-IMPACT and TCGA cohorts were obtained from
MSKCC cBioPortal (http://cbioportal.org) and the GDC data portal (https://gdc.cancer.
gov/about-data/publications/pancanatlas), respectively. The expression data used for the
transcriptomic analyses were obtained from the original publications and are publicly
available (McDermott et al.4 cohort: European Genome-Phenome Archive (EGA) at
accession number EGAS00001002928, Miao et al.8 cohort: dbGap at accession number
phs001565.v1.p1). Trial data sets for COMPARZ16 are available on application to the
linked Data Access Committee [novartis.datasharing@novartis.com] at the EGA
repository under the accession code EGAD00010001930. All remaining relevant data are
available in the article, Supplementary Information, or from the corresponding author
upon reasonable request.
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