
life

Review

DNA Protection Protein, a Novel Mechanism of
Radiation Tolerance: Lessons from Tardigrades

Takuma Hashimoto 1,2 and Takekazu Kunieda 2,*
1 Laboratory for Radiation Biology, School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku,

Sendai, Miyagi 980-8575, Japan; t.hashimoto@med.tohoku.ac.jp
2 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-0033, Japan
* Correspondence: kunieda@bs.s.u-tokyo.ac.jp; Tel.: +81-3-5841-7582

Academic Editor: David Deamer
Received: 10 April 2017; Accepted: 12 June 2017; Published: 15 June 2017

Abstract: Genomic DNA stores all genetic information and is indispensable for maintenance
of normal cellular activity and propagation. Radiation causes severe DNA lesions, including
double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of
radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are
supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive
study using radiotolerant bacteria suggested that effective protection of proteins and enhanced
DNA repair system play important roles in tolerability against high-dose radiation. Recent studies
using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique
DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in
human-cultured cells. In this review, we provide a brief summary of the current knowledge on
extremely radiotolerant animals, and present novel insights from the tardigrade research, which
expand our understanding on molecular mechanism of exceptional radio-tolerability.
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1. Tardigrades as Model Animals Tolerant to Various Extreme Environments

“Extremophiles” are organisms that have adapted or at least are tolerant to extremely harsh
environments. Most extremophiles are single cellular organisms with simple structure, such as
archaea and bacteria. However, some animals also exhibit extraordinary tolerance against extreme
environments [1]. One of the most known examples of such extremotolerant animals is the tardigrade.
Tardigrades are aquatic invertebrates discovered by German zoologist Goeze in 1773. Their body
is typically 0.1–1.2 mm length (Figure 1) and is composed of five segments; one head segment
and four trunk segments with a pair of legs each [2]. They are in microscopic scale, but possess
a well-developed nervous system including brain [2]. Because of their slow movement, the organisms
were termed Tardigrada, from Latin tardigradus, slow-stepper, by Italian natural scientist Spallanzani
in 1776 [3]. Currently, approximately 1200 species have been reported from various habitats, such as
marine, fresh-water, or limno-terrestrial environments, though the real number of tardigrade species is
estimated to be much higher [4,5]. Tardigrades were found in harsh environments such as Antarctica
as well as in urban area, e.g., from activated sludge in a sewage treatment plant [6–8]. All tardigrades
require surrounding water to grow and reproduce, but some limno-terrestrial species are able to
tolerate almost complete dehydration. When the surrounding water evaporates, tolerant tardigrades
lose almost all body water and enter a metabolically inactive dehydrated state called anhydrobiosis [9].
The dehydrated tardigrades withstand various extreme conditions that normally disallow the survival
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of most other organisms; for example, low and high temperatures (from −273 ◦C [10] to nearly
100 ◦C [11,12]), high hydrostatic pressure (7.5 GPa) [13], immersion in organic solvent [11,14], and
exposure to a high dose of irradiation [11,15,16]. Furthermore, tardigrades are the first animals to
have revived after exposure to outer space for 10 days [17]. The molecular mechanisms enabling these
exceptional resistances, however, are not well understood.
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Figure 1. Scanning electron microscopy images of the extremotolerant tardigrade, R. varieornatus.
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Recently, the genetic information of tardigrades is rapidly expanding, and the genome sequences
have been determined for two tardigrade species: an extremotolerant terrestrial species, Ramazzottius
variornatus, and a less tolerant freshwater species, Hypsibius dujardini [18–20]. The decoded genome of
R. varieornatus has much better contiguity and coverage (the span is 55.8 Mbp in only 199 scaffolds;
N50 = 4.74 Mbp; 96.8% coverage of core eukaryotic gene set) than the other, and is thus considered
as a reference genome of the phylum Tardigrada. The high-quality genome of the extremotolerant
tardigrade provides a solid foundation for molecular dissection of tardigrade tolerant ability. Indeed,
using the genome information, several desiccation-tolerance-related genes have been identified, such
as CAHS (cytoplasmic abundant heat soluble), SAHS (secretory abundant heat soluble), MAHS
(mitochondrial abundant heat-soluble), and LEA (late embryogenesis abundant) proteins [21–23].
Recent rapid progresses of molecular analyses make tardigrades an attractive animal model in
extremophile research.

2. Radiotolerant Organisms

Proper maintenance of genomic DNA is important for preserving correct genetic information
and normal cellular functions. Genomic DNA is constantly exposed to various genotoxic stresses
of both intrinsic and extrinsic origin, e.g., metabolically generated reactive oxygen species (ROS)
or radiation exposure [24,25]. Organisms employ multiple mechanisms to combat these damaging
agents, including various DNA repair processes and the detoxification of the causative agents. In most
organisms, however, the tolerable capacity is limited, and excessive genotoxic stress such as high-dose
radiation, causes severe DNA lesions, including double-strand breaks (DSBs), and leads to genome
instability and less viability [26–28]. This limitation prevents these organisms from advancing to genotoxic
environments; e.g., space radiation is considered a major hazard for humans traveling outer space [29].

For mammals, doses of several Gray (Gy) units of ionizing radiation are fatal. The median lethal
dose (LD50) is approximately 7 Gy for mouse and approximately 4 Gy for human [30]. In general,
prokaryotes exhibit much higher radiation tolerance than animals. For instance, the LD50 of Escherichia
coli is in a range from 50 to several hundred Gy depending on a strain. However, almost all E. coli perish
when they are irradiated with 2000 Gy [31]. On the other hand, Deinococcus radiodurans, one of the most
famous radiotolerant bacteria, is reported to survive without loss of viability even after exposure to
irradiation with 5000 Gy of gamma-rays [32,33]. Irradiated D. radiodurans suffer severe fragmentation
of its genomic DNA, but their fragmented DNA is rapidly patched up to complete circular genome by
extensive DNA repair system [34]. Extensive studies revealed that the radiotolerant bacteria utilize
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three major strategies contributing to its radiation tolerance: antioxidant defenses, cellular cleaning,
and DNA repair [35–39]. Antioxidant defenses prevent radiation induced damage to their proteomes
and protect DNA repair enzymes. This enables the effective repair of DNA damage using the polyploid
genome, and the elimination of severely damaged molecules to recover cellular integrity. Mutation
of DNA repair pathway compromises the radiotolerance of D. radiodurans, suggesting that the high
radioresistance depends in part on a powerful DNA repair system [39].

In animals, bdelloid rotifers and larvae of Polypedilum vanderplanki (sleeping chironomid) have
the ability to enter anhydrobiosis, and in a dehydrated state they can withstand several thousand Gy
of gamma irradiation [40,41]. Both animals exhibit fragmentation of DNA by high-dose irradiation
with a level similar to other ordinary animals. Therefore, it is suggested that their high radiotolerant
abilities also depend on the DNA repair system. As rotifers possess a high antioxidant capacity,
antioxidant defenses and DNA repair are proposed to contribute to radiotolerance in animals as
well [42]. Their radiotolerances are significantly lower in a hydrated state. For instance, approximately
80% of P. vanderplanki larvae in a dehydrated state survive after 4000 Gy of gamma irradiation, but
only 30% larvae survive in a hydrated state. It is well known that approximately two-thirds of the
X-ray damage to DNA in mammalian cells is caused by hydroxyl radicals generated from irradiated
water molecules (indirect effect [43,44]). Thus, it is assumed that dehydrated animals are expected to
be less damaged by radiation and exhibit better tolerance compared to hydrated conditions [45].

It is known that the sensitivity to irradiation is affected by the change of the chromatin structure.
Indeed, chromatin relaxation and the loss of the chromatin protein increase the number of DNA
DSBs after irradiation [46]. In radiotolerant organisms, it is suggested that DNA condensation may
contribute to the radiotolerance. Indeed, a condensed ring-like structure of nucleoid was observed in
D. radiodurans [47], and comparative analyses among several species in Deinococcaceae suggested that
the extremely radioresistant species exhibited more condensed genome structures than those in the
radiosensitive species [48]. The tight and ordered DNA packaging might be proposed to facilitate DNA
repair by promoting both template-independent DNA joining and RecA-dependent recombination.

3. Extraordinary Tolerance to Irradiation in Tardigrades

Certain tardigrade species can tolerate high doses of ionizing radiation. Current knowledge
about radiotolerances of tardigrades is summarized in Table 1. Typically, limno-terrestrial species, e.g.,
R. varieornatus, Milnesium tardigradum, H. dujardini, and Richtersius coronifer, were able to withstand
several thousand Gy of radiation [11,15,16,49].

It is noteworthy that the periods used for LD50 estimation are different among analyses.
The regular period for LD50 estimation is 60 days for humans and is 30 days for mice, whereas
the most analyses using tardigrades and other invertebrates, e.g., P. vanderplanki, are relatively much
shorter, ranging from 24 h to 7 days. This could be justified due to the differences in life span (usually
one to several months in tardigrades) and genome size among animal species, but the used duration
should be taken into account when LD50 values are compared among different animals. In humans,
doses higher than 50 Gy cause convulsions over the entire body and severe shock, which leads to
death within five days. In the case of mice irradiated with 800–1000 Gy, they can survive for only
0.1–0.01 day [50]. Thus, the radiotolerance of tardigrades, which can survive for several days after
4000 Gy of irradiation, should be considered extraordinary. Furthermore, some tardigrade eggs were
able to hatch even after irradiated with 2000 Gy of 4He ions in dehydrated condition, and LD50 values
were reported as 1690 Gy for dehydrated eggs and 509 Gy for hydrated ones [51], indicating that
tardigrades have a high radiotolerance even in early embryonic stages.

One of the characteristic features of the radiotolerance of tardigrades is that they exhibit high
radiotolerance, even in a hydrated state with a level similar to those in a dehydrated state [11],
whereas other radiotolerant animals exhibit certainly more tolerant in a dehydrated state. There is
another different feature in tolerability between tardigrades and other desiccation-tolerant animals.
Dehydration usually causes DNA damage as radiation does. In sleeping chironomid, dehydration
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made 40–50% of DNA fragmented, and this is comparable to DNA damage induced by irradiation
with a 70-Gy He ion-beam [52]. In contrast, a desiccation-tolerant tardigrade, M. tardigradum, exhibited
much fewer DNA breaks after dehydration stress, with only approximately 2% of DNA detected
as fragmented after 2 days of dehydration [53]. DNA in tardigrades seems to suffer much less
damage by dehydration stress compared to other animals [53,54]. These observations lead to the
postulation that tardigrades possess the mechanism protecting DNA from damaging agents and
that such mechanisms contribute to the extreme radio-tolerance of the animal. Recent studies have
identified a tardigrade-unique DNA-associating protein, Dsup, as a potential DNA protectant in
tardigrades [18]. This novel finding and its meanings will be discussed in the following sections.

Table 1. Tolerance to ionizing radiation in tardigrades.

Tardigrade Species State 1 Ionizing
Radiation Radiotolerance Reference

Macrobiotus areolatus Dehyd. X-ray 5700 Gy (LD50/1 day after) [55]

Richtersius coronifer

Hyd. γ-rays 4700 Gy (LD50/18 h) [16]
Hyd. γ-rays 2500 Gy (LD50/30 days) [16]

Dehyd. γ-rays 3000 Gy (LD50/22 h) [16]
Dehyd. proton-beam 10240 Gy (LD50/24 h) [56]
Dehyd. X-ray 2000 Gy (Few animals revived within 7 days) [57]
Dehyd. 4He, 56Fe 2000 Gy (Most animals revived within 7 days) [57]

Milnesium
tardigradum

Hyd. γ-rays 5000 Gy (LD50/48 h) [15]
Dehyd. γ-rays 4400 Gy (LD50/48 h) [15]

Hyd. 4He 6200 Gy (LD50/48 h) [15]
Dehyd. 4He 5200 Gy (LD50/48 h) [15]

Ramazzottius
varieornatus

Hyd. 4He 4000 Gy (Most animals survived for 48 h) [11]
Dehyd. 4He 4000 Gy (Most animals revived within 48 h) [11]

Hypsibius dujardini Hyd. γ-rays 4180 Gy (LD50/48 h) [49]

Echiniscoides
sigismundi 2

Hyd. γ-rays 1270 Gy (LD50/48 h) [58]
Hyd. γ-rays 1550 Gy (LD50/7 days) [58]

1 Hyd.: in hydrated state; Dehyd.: in dehydrated state. 2 Marine tardigrade.

4. Tardigrade-Unique DNA-Associated Protein, Dsup, Improves Radiotolerance

R. varieornatus is one of the most radiotolerant species in tardigrades [11]. Considering DNA as
a major target of radiation damage, the tardigrade is assumed to possess some proteins associated
with DNA to protect and/or to effectively repair DNA. Recently, as a representative of such proteins,
Damage suppressor (Dsup) was identified from a chromatin fraction of the tardigrade [18]. A human
cultured cell line was engineered to express Dsup protein and was irradiated with X-rays. Intriguingly,
such engineered cells exhibited substantially suppressed (approximately half) DNA fragmentation
compared to non-engineered cells. In the analyses, cells were irradiated on ice and DNA fragmentation
was detected immediately after irradiation, suggesting that the suppressed fragmentation was detected
before significant DNA repair occurred. Thus, the reduced DNA fragmentation in Dsup-expressing
cells was likely due to the reduced occurrence of DNA breaks rather than facilitation of the DNA repair
process. This notion was further evidenced by the fact that Dsup-expressing cells exhibited a much
lower number of the DNA break marker γ-H2AX, which accumulates shortly after irradiation and
is usually retained for several hours, even after completion of DNA break repair (Figure 2A) [59–62].
In addition to irradiation stress, Dsup-expressing cells exhibited a significant reduction in DNA
fragmentation when exposed to hydrogen peroxide (a kind of ROS), compared to untransfected
cells [18]. Thus, Dsup protein has ability to protect DNA from ROS and serves as a DNA protectant
against indirect effects of X-rays.

Irradiation with a sublethal dose (e.g., 4 Gy) of X-rays leads to a loss of proliferative ability in
mammalian cells [63]. Surprisingly, many Dsup-expressing cells exhibited a normal morphology even
after irradiated with 4 Gy of X-ray, and the cell numbers increased over time, suggesting that these
irradiated cells retained proliferative ability (Figure 2B). Considering these results, Dsup protein is
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able to confer not only DNA protection but also improved radiotolerance to human cultured cells.
Enhanced DNA repair has been supposed to be an important basis for the high radiotolerance, but
DNA protection might also be another key factor, at least in tardigrade’s resilience.
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cultured cells. (A) Quantitative comparison of DNA-break marker, γ-H2AX foci number among
untransfected human cultured cells (Control), Dsup-expressing cells (Dsup), and Dsup-knockdown
cells (Dsup + shDsup) under non-irradiated and 1 Gy X-ray irradiated conditions. ** p < 0.01, n.s.
indicates not significant (Tukey–Kramer’s test). (B) Comparison of growth curves of untransfected cells
(Control), Dsup-expressing cells (Dsup), and Dsup-knockdown cells (Dsup + shDsup) in irradiated
conditions. Values represent mean ± s.d. Reproduced from [18].

5. DNA-Association is Necessary for DNA Protection Activity of Dsup Protein

C-terminal region of Dsup is required and sufficient for association with DNA in vitro and
for colocalization with nuclear DNA in transfected cells. A stable line expressing a mutant Dsup
protein, Dsup∆C, which lacks the C-terminal DNA-associating region, exhibited no reduction in DNA
fragmentation compared to control cells. Therefore, the association with DNA is prerequisite for
Dsup protein to protect DNA from X-rays. On the other hand, transient expression of C-terminal
region of Dsup alone (Dsup-C) co-localized with nuclear DNA, but induced an abnormal aggregation
of nuclear DNA, and we could not establish any stable cell liens expressing Dsup-C. It is possible
that nonspecific binding of Dsup-C to DNA interferes with DNA replication and/or transcription,
thereby preventing cell proliferation. Similar adverse effects were reported for some DNA-binding
proteins; e.g., overexpression of a bacterial histone-like nucleoid-structuring (H-NS) protein, or
a small acid-soluble spore protein (SASP) associated with spore DNA of Bacillus subtilis, causes severe
condensation of DNA and loss of cell viability [64,65]. In contrast, full-length Dsup-expressing cells
exhibited an almost normal distribution of nuclear DNA, similar to that in control cells. The N-terminal
region and the predicted α-helical region at the middle (Figure 3) would be important to relieve the
adverse effects induced by the association of proteins with DNA (e.g., possible heterochromatinization
and/or interference on transcription and replication).
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6. What is the Origin of Dsup, a DNA Protective Protein?

Dsup protein has a characteristic amino acid sequence, and no similar proteins have been retrieved
using a BLAST search against NCBI non-redundant database. Thus, we carefully searched for potential
Dsup homologues from tardigrade sequence databases individually and identified a protein exhibiting
weak similarity with Dsup (bit-score = 34.3; E-value = 0.09) from the recent predicted proteome of a
freshwater tardigrade, H. dujardini [20]. The protein is annotated as ‘hypothetical protein BV898_01301’
in the NCBI database, and no functional information is available. This protein is composed of 328 amino
acids, which is slightly shorter than that of the original Dsup protein of R. varieornatus (445 amino
acids). Pairwise alignment using MAFFT revealed a certain similarity between two proteins with
26.4% identity and 35.5% similarity. Subcellular localization prediction using WoLF PSORT suggested
nuclear localization for both proteins, and a putative nuclear localization signal is predicted in both
proteins at a similar position near C-terminus by using cNLS Mapper software (Figure 4A). Despite
weak similarity in primary structure between two proteins, both proteins exhibited similar profiles in
hydrophobicity and charge distribution along protein. Both protein has a relatively broad hydrophobic
region at the middle position, and C-terminal halves of both proteins are positively charged showing
a characteristic charge distribution pattern well-conserved in two proteins (Figure 4B). Based on
the observed similarity between two proteins, e.g., certain similarity in the primary structure, the
position of NLS and profiles of hydrophobicity and charge distribution, we consider this protein as
a potential Dsup orthologue in H. dujradini. Two species, R. varieornatus and H. dujardini, belong to
the same taxonomic family Hypsibiidae, but the protein sequences of Dsup protein are unexpectedly
diverged between two species. This suggests that the primary structure of Dsup has been under weak
selective pressure during evolution. Similar sequence diversifications are observed in some intrinsically
disordered proteins, because amino acids in the disordered region are generally rather changeable. For
example, late embryogenesis abundant (LEA) proteins, which work as an unstructured desiccation
protectant, exhibit high diversification in protein sequences and their flexible structures are proposed to
function as a physical shield protecting other biomolecules or as a material supporting glass transition
during desiccation [66–68]. Accordingly, we speculate that Dsup protein might function with a flexible
structure rather than in a rigid form, e.g., as a physical shield of DNA rather than as an enzyme.
Although overall sequence similarity is relatively low in Dsup proteins, some short motifs are strictly
conserved between two proteins, e.g., KEKSKSPAKEV at positions 90–100 or AKGRGXRGRXPAAXK
at positions 275–289. These motifs could be important for Dsup function. Future mutational analyses
will reveal the importance of these conserved motifs.
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species. This suggests that the primary structure of Dsup has been under weak selective pressure 
during evolution. Similar sequence diversifications are observed in some intrinsically disordered 
proteins, because amino acids in the disordered region are generally rather changeable. For example, 
late embryogenesis abundant (LEA) proteins, which work as an unstructured desiccation protectant, 
exhibit high diversification in protein sequences and their flexible structures are proposed to function 
as a physical shield protecting other biomolecules or as a material supporting glass transition during 
desiccation [66–68]. Accordingly, we speculate that Dsup protein might function with a flexible 
structure rather than in a rigid form, e.g., as a physical shield of DNA rather than as an enzyme. 
Although overall sequence similarity is relatively low in Dsup proteins, some short motifs are strictly 
conserved between two proteins, e.g., KEKSKSPAKEV at positions 90–100 or 
AKGRGXRGRXPAAXK at positions 275–289. These motifs could be important for Dsup function. 
Future mutational analyses will reveal the importance of these conserved motifs. 
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the association with DNA is important for protection activity of Dsup protein, suggesting a possible 
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mechanisms (Figure 5). Considering that Dsup is a novel protein unique to tardigrade, tardigrades 
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Figure 4. Comparison of putative Dsup proteins in two tardigrade species. (A) Pairwise alignment
of Dsup protein of R. varieornatus (Rv_Dsup; accession number = BAV59442) and putative Dsup
protein of H. dujardini (Hd_Dsup, hypothetical protein BV898_01301, accession number = OQV24709).
Identical residues and similar residues are shown in inverted boxes and shaded boxes, respectively.
Predicted nuclear localization signals (NLS) are shown by red bars. Green shades indicate conserved
alanine-rich regions detected by PROSITE protein pattern search. (B) Comparison of distribution
profiles of hydrophobicity and charges between two tardigrade Dsup proteins. Hydrophobicity and
charge distribution were analyzed using the ProtScale program at ExPASy and EMBOSS charge
program, respectively.

7. Concluding Remarks

In this review, we summarized the current knowledge of extremely radiotolerant animals, mainly
focusing on tardigrades as an emerging animal model of extremophiles. Antioxidant defenses
and the efficient DNA repair by the protected enzymes have been accepted as a common basis
for elevated radiotolerance shared from prokaryotes to animals. The recent genome analysis revealed
that tardigrades also possess redundant copies of antioxidant enzymes and DNA repair enzymes,
while lacking ROS-producing enzymes [18], so a similar principle could be applicable to tardigrades as
well. The recent finding of the novel DNA protection protein in tardigrades provides strong evidence
that DNA protection could also be a possible mechanism contributing extraordinary radiotolerance in
addition to the well-accepted “protection of protein and repair of DNA” principle.

Although the precise mechanisms of DNA protection by Dsup protein remain to be elucidated,
the association with DNA is important for protection activity of Dsup protein, suggesting a possible
physical shielding of DNA from ROS and irradiation, and/or a local detoxification of ROS as
potential mechanisms (Figure 5). Considering that Dsup is a novel protein unique to tardigrade,
tardigrades could have invented their own tolerant mechanisms during evolution. Genome analysis of
R. varieornatus revealed the presence and abundant expressions of many tardigrade-unique genes, so
tardigrades and potentially other extremotolerant animals could be a bountiful resource of unidentified
tolerance genes and mechanisms. Recent rapid progress of molecular analyses of tardigrades and other
extremotolerant animals should accelerate elucidation of novel tolerant mechanisms and expand our
understanding of the molecular mechanisms of extremotolerance. Intriguingly, the Dsup story tells us
that the tolerant ability of extremotolerant animals could be transferred to more sensitive organisms at
least partly by transferring the corresponding genes. Unveiling the molecular mechanisms underlying
extremotolerance in tardigrades will provide novel clues that open new avenues to confer stress
resistance to intolerant species, including humans.
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induces DNA breaks, which could interfere DNA replication and gene expression. Heavily damaged 
cells lose their proliferative ability and are destined for death. Dsup protein suppresses X-ray induced 
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Thereby, Dsup protein can improve the radiotolerance of cultured animal cells. 
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