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ABSTRACT

Identifying DNA cis-regulatory modules (CRMs) that
control the expression of specific genes is crucial for
deciphering the logic of transcriptional control. Nat-
ural genetic variation can point to the possible gene
regulatory function of specific sequences through
their allelic associations with gene expression. How-
ever, comprehensive identification of causal regu-
latory sequences in brute-force association testing
without incorporating prior knowledge is challeng-
ing due to limited statistical power and effects of
linkage disequilibrium. Sequence variants affecting
transcription factor (TF) binding at CRMs have a
strong potential to influence gene regulatory func-
tion, which provides a motivation for prioritizing such
variants in association testing. Here, we generate
an atlas of CRMs showing predicted allelic variation
in TF binding affinity in human lymphoblastoid cell
lines and test their association with the expression
of their putative target genes inferred from Promoter
Capture Hi-C and immediate linear proximity. We re-
veal >1300 CRM TF-binding variants associated with
target gene expression, the majority of them unde-
tected with standard association testing. A large pro-
portion of CRMs showing associations with the ex-
pression of genes they contact in 3D localize to the
promoter regions of other genes, supporting the no-
tion of ‘epromoters’: dual-action CRMs with promoter
and distal enhancer activity.

INTRODUCTION

Identifying DNA cis-regulatory modules (CRMs) that con-
trol the expression of specific genes is crucial for deciphering
the logic of transcriptional control and its aberrations. Ad-
vances of the last decade have made it possible to predict ac-
tive CRMs based on chromatin features (1,2) and detect the
binding of dozens of transcription factors (TFs) to these re-
gions (3,4). However, deletion of known or predicted CRMs
often shows no observable phenotype, suggesting that some
CRMs either lack appreciable gene regulatory function or
are efficiently buffered by other sequences, at least under
normal conditions (5-9). In addition, the sequence, chro-
matin state and genomic location of CRMs do not immedi-
ately provide information on their target genes (10). There-
fore, evidence from complementary approaches is required
to establish the function of specific CRMs in transcriptional
control.

Natural genetic variation can theoretically provide a di-
rect indication of gene regulatory function by revealing the
allelic associations between specific variants and gene ex-
pression (11,12). While expression quantitative trait loci
(eQTLs) identified this way have provided important in-
sights into gene control and the mechanisms of specific
diseases (13,14), a number of challenges hamper compre-
hensive detection of functional sequences in ‘brute-force’
eQTL testing (15,16). In particular, the immense search
space leads to a heavy multiple testing burden resulting in
reduced sensitivity. This problem is typically mitigated in
part by testing for ‘cis-eQTLs’ separately within a limited
distance window (~100 kb); this distance range is, how-
ever, an order of magnitude shorter than that of known
distal CRM activity (17-19). In addition, correlation struc-
ture arising from linkage disequilibrium (LD) requires dis-
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entangling causal from spurious associations, which is par-
ticularly challenging in the likely scenario, whereby multiple
functional variants with modest effects co-exist within the
same LD block (20). These challenges provide a strong mo-
tivation for incorporating prior knowledge into association
testing for identifying causal regulatory variants.

The recruitment of TFs to CRMs plays a key role in the
regulatory function of these elements (21,22), and muta-
tions leading to perturbed TF binding are known to under-
pin developmental abnormalities and disease susceptibility
(18,23,24). Therefore, sequence variation affecting TF bind-
ing affinity at CRMs has a strong potential to have causal
influence on their function and can provide insights into
the logic of gene control. Variation in TF binding across
multiple individuals has been assessed directly for several
TFs (25-30), but high resource requirements of these anal-
yses limit the number of TFs and individuals profiled this
way. Alternatively, the effects of local sequence variation
on TF binding can be predicted, at least in part, based on
prior information regarding the TFs’ DNA binding prefer-
ences. The representation of such preferences in the form of
position weight matrices (PWMs) (31) has proven partic-
ularly useful, as it provides a quantitative measure of how
much a given sequence substitution is likely to perturb TF
binding consensus. Consistent with this, we and others have
previously shown that the specificity of TF binding prefer-
ences to a given motif position correlates with the functional
constraint of the underlying DNA sequences, both within
and across species (32-34). Classic PWM-based approaches
to TF binding prediction focused on identifying short se-
quences showing a non-random fit to the PWM model com-
pared with background (35,36). More recently, biophysical
modelling of TF binding affinity (37,38) has provided a nat-
ural framework to extend this analysis by integrating over
all PWM match signals within a DNA region (39,40), in-
cluding those from lower affinity sites that are a known fea-
ture of many functional CRMs (41-43).

Long-range CR Ms such as gene enhancers commonly act
on their target promoters through DNA looping interac-
tions (44,45). Therefore, information on 3D chromosomal
organization enables predicting the putative target genes of
these elements (46,47) and thus has the potential to signif-
icantly improve the functional interpretation of regulatory
variation. Approaches that couple chromosome conforma-
tion capture with target sequence enrichment such as Pro-
moter Capture Hi-C (PCHi-C) (48-50) are particularly use-
ful in this regard, as they make it possible to detect regula-
tory interactions globally and at high resolution with rea-
sonable amounts of sequencing (51-59).

Here, we integrate TF binding profiles in a human lym-
phoblastoid cell line (LCL) (4) with patterns of natural se-
quence variation (60) to generate an atlas of CRMs pre-
dicted to show significant TF binding variability across
LCLs derived from multiple individuals. We delineate the
putative target genes of these CR Ms from their interactions
with gene promoters based on PCHi-C and linear proxim-
ity (49,61) and test for associations between the CRMs’ TF
binding affinity and target gene expression using transcrip-
tomics data for hundreds of LCLs (62). Prioritizing CRMs
that show predicted variation in TF binding affinity based
on a biophysical model (39,40) makes it feasible to perform
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association analysis in a manner that accounts for multi-
ple variants affecting the binding of the same TF, as well as
for multiple CRMs targeting the same gene. Using this ap-
proach, we reveal >1300 CRM variants associated with ex-
pression of specific genes, the majority of them undetected
with conventional eQTL testing at a standard false discov-
ery rate (FDR) threshold. We find that a large proportion
of CRMs showing associations with the expression of distal
genes localize in the immediate vicinity of the TSSs of other
genes and connect to their targets via DNA looping inter-
actions, suggesting their role as ‘epromoters’: the recently
identified dual-action regulatory regions with promoter and
distal enhancer activity (63-65).

MATERIALS AND METHODS
CRM definition

ChIP-seq narrow peak files for 52 TFs in GM 12878 were
downloaded from the UCSC ENCODE portal (4). Where
multiple datasets were available for the same TF, the inter-
sect of the ChIP-seq peaks was taken for all TFs except
ERGI1, for which we took the union of the two datasets
available, since one of them had substantially fewer peaks
than the other. CRMs were defined by taking the union of
the peaks for the 52 TFs with a minimum overlap of one
base pair.

Detection of TF binding affinity variants

Variant calls for 359 LCLs of European ancestry (CEU,
TSI, FIN, GBR and IBS) that overlapped with the CRMs
defined earlier were downloaded from the 1000 Genomes
Project (release Phase 3; 20130502) (60). Multi-allelic vari-
ants and variants with a minor allele frequency <5%
were removed. Unique haplotypes (i.e. unique combi-
nations of single-nucleotide polymorphisms [SNPs] and
insertions/deletions [indels]) were identified across the 359
LCL individuals for each CRM. The GRCh37 genomic
sequence for each CRM (accessed using the Bioconduc-
tor package BSGenome, https://doi.org/10.18129/B9.bioc.
BSgenome) was then patched to create the sequence for each
unique haplotype.

For each TF detected as bound at a given CRM in
GM12878 (based on ChIP-seq data), we computed the
affinity for each haplotype and each PWM for this TF avail-
able from ENCODE (66). The library of ENCODE motifs
was imported from the R package atSNP (67), and 41/52
TFs for which there was an exact match between TF name
and motif name were taken forward to the analysis. TF
affinities were computed using the TRAP biophysical model
(39) as implemented in the R package tRap (https://github.
com/matthuska/tRap). Default parameters were used, with
the exception of setting pseudocount to zero, since we were
using frequency as opposed to count matrices. We chose
TRAP over approaches based on individual motif hits, as
it naturally incorporates the effects of multiple low-affinity
sites and multiple variants per CRM.

CRM binding affinities were normalized using a method
proposed by Manke et al. (40), such that changes in them
could be compared between different PWMs. Briefly, CRM
affinities are converted to statistical scores (A) representing
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the probability of observing a given or higher affinity for a
given TF in the background sequence (note that lower val-
ues of A therefore reflect higher affinities). Binding affini-
ties are parameterized using the extreme value distribution
whose parameters are estimated for a range of background
sequences encompassing the lengths of all CRMs (40, 100,
200, 250, 300, 400, 500, 800, 1000, 2000 and 3000) using the
fit.gev function in the R package tRap. CRMs not bound
by a given TF are cut/extended to the required length and
used as background sequences.

For all CRM TF/PWM combinations with 4 < 0.1 in
the highest affinity allele of GM 12878, we computed the log
fold change in affinity between all observed haplotypes and
the highest affinity allele of GM12878:

log FCA = logo(AaLt) — log o(min(Agmi2878)).

where min(Agmi2g78) 1s the normalized affinity of the high-
est affinity allele in GM12878 cells and Aarr is the nor-
malized affinity of the alternative haplotype. For instances
where AT or Agmizs7s for a given PWM was zero, the low-
est observed non-zero normalized affinity for that PWM
across all CRMs was used instead. The log FCA values for
multiple PWMs of the same TF were then combined by tak-
ing the median. Overall, this approach produced a single log
FCA for each TF binding affinity haplotype at each CRM.
We shall refer to this quantity as the ‘log ratio’ in the ‘Re-
sults’ section.

DeepSea analysis

For all SNPs at CRMs, DeepSea (68) predictions were ob-
tained using the online tool (http://deepsea.princeton.edu/
job/analysis/create) with the SNPs in VCF files provided as
input, in seven batches. Since the predictions of log fold
change in signal generated by DeepSea can be noisy when
probabilities are small, we used ‘chromatin feature proba-
bility differences’ (.diff files) as robust predictors. DeepSea
predictions available for 33/41 TFs analysed in our study,
as well as for DNase-seq signals, were used for comparison
with our biophysical model predictions of TF binding affin-
ity effects at SNP level.

DNase I sensitivity QTL analysis

The DNase I sensitivity QTL (dsQTL) dataset from (69)
lists significant associations between normalized DNase-
seq read depth (binned in 100 bp non-overlapping windows)
and the genotypes of SNPs/indels within 1 kb of the DNase
hypersensitivity sites (DHS) in 70 Yoruban LCLs. We down-
loaded this dataset from Gene Expression Omnibus (acces-
sion number GSE31388), and converted it to GRCh37 us-
ing liftOver (70). For all CRMs with a predicted log FCA
> 0 for at least one TF, the individual effect of all SNPs at
the CRM on TF affinity was calculated. CRMs were then
filtered for those where the SNP causing the largest change
in TF affinity (‘driver SNP’) had a minor allele frequency
(MAF) below 0.05 in the 70 individuals from (69). We then
counted the number of overlaps between these CRMs and
the 100 bp DHS windows (minimum overlap 1 bp), repeat-
ing this for CRMs filtered according to successively larger
log FCA thresholds. To estimate expected overlap, for each

threshold, we randomly sampled a control set of CRMs
1000 times, matching the sample size and ‘driver’ SNP al-
lele frequency distribution to the test set at a given thresh-
old, and overlapped this set with DNase HS windows in the
same way as the test set.

Comparison with ATAC-QTLs

ATAC-QTLs from (71) detected in at least two populations
at P < 0.005 were used for analysis. For all SNPs at CRMs
with a predicted log FCA > 0, we calculated the proportion
of overlapping ATAC-QTLs over the exceeding thresholds
of the maximum log FCA across all analysed TFs for each
SNP. To estimate the expected overlap, we randomly sam-
pled a control set of CRMs 100 times, matching the sample
size and minor allele frequency distribution to those in the
test set at a given threshold.

Comparison with MPRA data

MPRA results were downloaded from (72). The effects of
SNPs on reporter expression (combined log, skew over two
LCLs tested) were used for comparison with their maxi-
mum predicted effects on TF binding affinity obtained from
the biophysical model in our study.

Linking of CRMs with target genes

PCHi-C data for GM12878 were obtained from Mifsud
et al. (49). Significant interactions were re-called at a
HindIII restriction fragment level using the CHiCAGO
pipeline (61), with a CHiIiCAGO score cut-off of 5
(CHiCAGO scores correspond to soft-thresholded, log-
weighted P-values against the background model). Baits
were annotated for transcriptional start sites (TSSs) us-
ing the bioMart package in R (73) based on Ensembl
TSS data for GRCh37 reference assembly. Baits contain-
ing TSSs for more than one gene were excluded (4178 out
of 22 076), leaving 17 898 baits in the analysis. CRMs
were assigned to target promoters by overlapping with
the promoter-interacting regions of significant interactions
(‘distal’ CRMs). Restriction fragments immediately flank-
ing the promoter fragment are excluded from PCHi-C anal-
ysis, creating a ‘blind window’. Therefore, we additionally
called ‘proximal’ CRMs using a window-based approach,
assigning all CRMs located within 9 kb of the midpoint
of the promoter-containing fragment to the respective pro-
moter.

Gene expression data processing

We downloaded PEER-normalized (74) gene-level RPKMs
for 359 EUR LCLs profiled in the GEUVADIS project (62)
from ArrayExpress (75) (accession E-GEUV-3). The data
were filtered to expressed genes by removing genes with zero
read counts in >50% of samples. For expression association
testing by linear regression, the PEER -normalized residuals
for each gene were further rank-transformed to standard
normal distribution, using the rntransform function in the
R package GenABEL (76).
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Association between TF binding affinity variants and gene ex-
pression: thresholded approach

In this approach, we classified each predicted TF binding
affinity CRM haplotype as either ‘high’ or ‘low’ affinity
based on a threshold. In some instances, however, using a
hard threshold to classify alleles can result in alleles with
very similar log fold affinity changes being differentially
classified, which can obscure true affinity—expression asso-
ciations. To avoid this, we used a dynamic thresholding ap-
proach, where for each affinity variant we set the threshold
log FCA( to 80% of the value of the 85th percentile of all
log FCA values less than or equal to the hard threshold of
—0.3. All alleles with log FCA < log FCA, were taken as
low affinity. Alleles with either log FCA > log FCA/4 (for
log FCAp/4 > —0.3) or log FCA > —0.3 were taken as high
affinity. Note that this resulted in some alleles classified as
neither high nor low affinity. Individuals containing at least
one unclassified allele for a given TF/CRM were excluded
from the testing for the respective association (the number
of individuals tested for each association is listed in Supple-
mentary Table S1).

A regression model was then fitted using TF binding
affinity CRM haplotypes as predictors of the expression
level of their target genes (presented in terms of normalized
PEER residuals). Suppose that a gene is targeted by K pre-
dicted TF affinity CRM variants, denoted as X = (X1, X>,
..., Xk), which are encoded as the number of copies of the
low-affinity allele carried by each individual. The regression
model is fitted as follows:

E[Y]=Bo+ p1 X1 + B Xo+ - -+ B Xk,

where E[Y] is the expected value of the normalized PEER
residuals Y. Where multiple predicted TF affinity CRM
variants targeting a given gene were in perfect correlation
(181 > 0.99), they were collapsed into a single predictor.
ANOVA was used to test the overall significance of
each regression model, with multiple testing correction per-
formed on the gene-level P-values by FDR estimation. For
genes showing significant associations at 10% FDR in mod-
els with multiple TF binding affinity variants as predictors,
t-tests were performed to identify variants with regression
coefficients significantly different from zero. Variants with
unadjusted coefficient-level P-values <0.05 were taken to
be significantly associated with target gene expression, con-
ditional on significant gene-level association at 10% FDR.

Association between TF binding affinity variants and gene ex-
pression: threshold-free approach

In this approach, we performed multiple regression using
PEER expression residuals for each gene as the response
variable, this time using the sum of log FCA across both
alleles for each individual for each TF affinity CRM variant
as predictors instead of thresholded CRM haplotypes. For
each gene, all distal and proximal CRMs with log FCA > 0
were included. As with the thresholded approach, ANOVA
was used to test the significance of each gene model, and
genes showing associations at 10% FDR were considered
significant.

Due to high collinearity among the predicted affin-
ity changes, to identify specific CRM variants signifi-

Nucleic Acids Research, 2020, Vol. 48, No. 6 2869

cantly associated with target gene expression we used elas-
tic net regression for each significantly associated gene
(A2 = 0.5). The significance of each predictor as it en-
tered the model was then tested using a method by
Lockhart et al (77) and implemented in the R pack-
age covTest (https://cran.r-project.org/src/contrib/Archive/
covTest/covTest_1.02.tar.gz). Variants that entered the
model with P < 0.05 and remained in the model were taken
as significant.

eQTL fine mapping

We fine-mapped eQTL causal variants in the LCL expres-
sion data within a window of +200 kb of each CRM, us-
ing a Bayesian stochastic search fine-mapping method that
allows for multiple causal variants, GUESSFM (https://
github.com/chrlswallace/ GUESSFM) (78). This requires a
prior on the number of causal variants per region, which
we set as Bin(n, 2/n) where n is the number of variants in
the fine-mapping window. This setting gives a prior expec-
tation of two causal variants per region but allows all values
from 0 to n. We visually checked traces to ensure the Markov
chain Monte Carlo (MCMC) samples had converged. Raw
GUESSFM data have been uploaded to the Open Science
Framework (OSF; https://osf.io/eSvsh/).

To estimate the proportion of possibly causal eQTLs
identified by GUESSFM (marginal posterior probability of
inclusion [mppi] > 0.001) among the TF binding affinity
variants showing the strongest eQTL signal per CRM (‘test
SNPs’), we compared it with the same proportion obtained
for ‘random SNPs’. The ‘random SNPs’ were sampled from
the same +200 kb windows around CRMs, matching the
distribution of their minor allele frequencies to that across
the ‘test SNPs’.

Causal variant colocalization analysis

An association between an epromoter variant and the ex-
pression of both a proximal and a distal gene may indi-
cate that this variant is causal for the expression of both
genes. However, the same association may arise from dis-
tinct causal variants for each gene that are in LD with
each other and are tagged by the same epromoter vari-
ant. To differentiate between these situations, we used the
Bayesian colocalization technique coloc (79). Coloc eval-
uates the posterior probabilities of five mutually exclusive
hypotheses: no association of any variant in the region with
either trait (HO), association with first trait but not the sec-
ond (HI1), association with second trait but not the first
(H2), two separate causal variants (H3) and finally a unique
shared causal variant (H4). Coloc assumes at most one
causal variant per locus. To mitigate this limitation, where
there was evidence for multiple causal variants, we tested for
colocalization between all pairs of signals for each gene by
conditioning out the other signals. Coloc has also been orig-
inally designed for testing two sets of associations measured
on different individuals. Therefore, before running it on the
data measured in the same individuals (i.e. the expression
of the proximal and distal gene across the 359 CEU LCLs),
we confirmed by simulation that for a quantitative trait the
results appear robust to correlated errors (Supplementary
Figure S1).
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RESULTS

An atlas of CRMs with predicted variation in TF binding
affinity in LCLs

We used the ChIP-seq binding profiles of 52 TFs profiled
by the ENCODE project (4) in GM12878 LCL to define
128 766 CRMs in these cells, merging across overlapping
ChIP regions for multiple TFs (Figure 1). Just over half
(55%) of CRMs defined this way were bound by more than a
single TF. For 41/52 TFs with known PWMs, we then used
a biophysical model (39) to estimate their binding affinity
to each allele of each CRM in GM 12878, pooling informa-
tion across multiple PWMs for the same TF where available
(see ‘Materials and Methods’ section). To enable the com-
parison of binding affinities between different TFs, we ex-
pressed them relative to the respective ‘background’ affini-
ties using an approach based on the generalized extreme
value distribution (40) (see ‘Materials and Methods’ section
for details).

We next asked how natural genetic variation at CRMs
affects their TF binding affinity. For this, we took advan-
tage of the genotypes of an additional 358 LCLs also de-
rived from European-ancestry individuals that are available
from the 1000 Genomes Project (60). These LCLs showed
sequence variation at 98 918 (79%) of the CR Ms relative to
GM12878. We then calculated a TF affinity log-ratio be-
tween each alternative haplotype and the highest-affinity
haplotype of GM 12878 (Figure 1; see ‘Materials and Meth-
ods’ section). SNP-level effects on TF affinity predicted by
the biophysical model showed a significant correlation with
those predicted by a deep learning algorithm DeepSea (68)
trained on epigenomic data across tissues (r = 0.36, corr test
P < 2.2e—16, Supplementary Figure S2A). Overall, 38 804
CRMs had one or more alternative haplotypes with pre-
dicted changes in binding affinity for at least one TF (affin-
ity log ratios ranging between —12.9 and 13.17). We have
made the full atlas of TF-binding CRM variants publicly
available at https://osf.io/fadu7.

TF-binding variants are enriched for associations with chro-
matin accessibility and effects on reporter gene expression

TF binding is known to be associated with increased chro-
matin accessibility. Consistent with this, variant effects on
TF affinity predicted by the biophysical model correlated
with DeepSea-predicted effects on DNase I signal (r = 0.33,
corr test P < 2.2e—16, Supplementary Figure S2B). To val-
idate these effects more directly, we took advantage of a
published study (69) that profiled chromatin accessibility
across 70 LCLs using DNase-seq and identified ~9000 sig-
nificant associations between DNase-seq signal and geno-
type (dsQTLs). If our predicted TF affinity variants re-
flected real changes in binding affinity, we would expect
them to be enriched at regions of differential chromatin ac-
cessibility (see Figure 2A for an example). To verify this, we
quantified enrichment of differential chromatin accessibil-
ity at sets of CRMs showing predicted TF affinity variation
above successively larger thresholds. As can be seen from
Figure 2B, CRMs with non-zero differences in TF bind-
ing affinity across LCLs showed a significant enrichment
at differential DNase I sensitivity regions compared with a

matched random set of CRMs (permutation test P < 0.001,
see ‘Materials and Methods’ section for details). Moreover,
this enrichment increased with the magnitude of the pre-
dicted affinity change (Figure 2B).

ATAC-seq provides another readout of chromatin acces-
sibility. Consistent with the findings from DNase-seq analy-
sis, we observed that the magnitude of variant effects on TF
affinity positively associated with an enrichment for ATAC-
QTLs from a recent study using a much larger cohort of
LCLs across populations (71) (Supplementary Figure S3).

Finally, we assessed the effects of TF-binding variants on
reporter gene expression using data from a massively par-
allel reporter assay in LCLs (MPRA) (72), which included
results for 1519 variants mapping to the CRMs from our
study. Variant effects on reporter activity showed a signif-
icant correlation with those on TF affinity (r = 0.11, corr
test P = 0.005, Supplementary Figure S4).

Jointly, these results provide evidence that our approach
adequately predicts functionally relevant variant effects on
TF binding.

Variation in TF binding affinity at CRMS associates with tar-
get gene expression

To identify quantitative associations between TF binding
variation at CRMs and the expression of their target genes,
we used genome-wide gene expression data from the GEU-
VADIS project (62) that included 358/359 of the LCLs used
in our analysis (with the exception of GM12878). In con-
trast to traditional eQTL testing, here we devised an ap-
proach that prioritizes TF-binding variants and their puta-
tive target genes a priori and performs testing at the CRM
level. In total, we selected 3285 CRMs with predicted vari-
ation in the binding for at least one TF (log ratio >0.3).
We then tested the association of each CRM haplotype with
the expression levels of their target genes defined on the ba-
sis of 3D interactions or close spatial proximity (within 9
kb; see ‘Materials and Methods’ section). As evidence of
3D promoter—-CRM interactions, we used high-resolution
PCHi-C data in GM 12878 cells (49,61). The highly reduced
search space has enabled testing for associations at the gene
level, with all CRMs targeting the same gene and show-
ing TF binding variation included into the regression model
(see ‘Materials and Methods’ section). This approach iden-
tified 245 ‘eGenes’ with significant associations between
predicted TF binding affinity at CRMs and gene expression
(16% of 1530 genes tested, at 10% FDR; Supplementary Ta-
ble S1). In total, 161 ‘proximal’ (within 9 kb) and 101 ‘distal’
TF-CRM affinity variants (with contacts detected by PCHi-
C) were found to underlie these associations, corresponding
to 26% and 6% of all variants tested, respectively (¢-test P-
value <0.05; Supplementary Table S1). Figure 3 shows an
example of the detected association between the expression
of KLF6 and variation in the binding affinity of BATF at
a distal CRM that is located 88 kb away from KLF6 pro-
moter and contacts it in 3D according to PCHi-C (gene-
level FDR = 1.21 x 1072, BATF variant P-value = 5.16
x 1074, effect size = 0.26; the genome segmentation pro-
file shown is based on chromHMM (80)). Individuals ho-
mozygous for the high-affinity BATF binding allele showed
the lowest levels of KLF6 expression, while those homozy-
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Figure 1. Variation in TF binding affinity at a distal CRM. (A) Chromosomal interactions (green arcs) of a distal CRM on chromosome 6 (left) with two
downstream genes in the LCL GM 12878 detected by PCHi-C (49,61). HindlIII restriction fragments containing the CRM (left) and baited promoters (two
fragments on the right) are shown in orange. (B) Top: the ChIP-seq peaks from ENCODE (4) detected at this CRM (dark green) and used to define its
boundaries (light blue). Bottom: the positions of 1000 Genomes Project SNPs within the CRM (red). (C) CRM haplotypes detected in 1000 Genomes
Project (left) and changes in the affinity for the bound TFs at them with respect to the reference haplotype estimated using the biophysical model (39). (D)
The MEF2A motif instance underlying the highest change in the affinity of this TF at the CRM. Top: motif logo; bottom: the reference and alternative

haplotypes for this instance.

gous for the low-affinity BATF binding alleles showed the
highest levels (Figure 3). This suggests that BATF acts as
a negative regulator of KLF6 expression, consistent with
its known role as a repressor of AP-1-dependent transcrip-
tional activity (81).

A total of 420/1530 genes (27%) were linked with multi-
ple predicted TF-binding variants (either for different TFs
bound at the same CRM or at different CRMs). For 16
of these genes, we detected significant associations between
more than one such variant and the expression level. One
example is the nuclear receptor gene NR2F6 whose expres-
sion significantly associated with predicted variation in the
binding affinities of SMC3 and SRF to distal CRMs lo-
cated, respectively, 41 and 19 kb away (Figure 4; gene-level

FDR =4.06 x 10~7, SMC3 effect size = 0.26, P-value = 3
x 10~%; SRF effect size = 0.61, P-value = 1.19 x 1077).
Owing to the a priori prioritization of variants for as-
sociation testing in our approach (i.e. testing only variants
predicted to impact TF binding), we carried out far fewer
association tests than in a standard eQTL analysis, thus
reducing the multiple testing burden and increasing sensi-
tivity. We therefore asked whether we were able to detect
additional associations compared with those reported for
a standard eQTL analysis performed by the GEUVADIS
project (note that this analysis also used an additional 103
LCLs not included in our study, which were either of non-
European ancestry or not genotyped in 1000 Genomes
project). To compare our CRM-based association results
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Figure 3. Example of association between a TF binding affinity CRM variant and gene expression. (A) Genome browser representation of the distal inter-
actions (pink arches) of KLF6 promoter in the LCL GM 12878, as detected by PCHi-C (49). Two out of the three fragments interacting with KLF6 promoter
are shown; the third fragment, which is located 850 kb away from the KLF6 promoter and contains the gene LINC00705, was omitted due to space con-
straints. The chromHMM genome segmentation tracks for GM 12878 are shown immediately below (80). CRMs at the two distally interacting fragments
and the TSS-proximal window are depicted in azure blue. The rightmost CRM, which interacts with the KLF6 promoter 88 kb away, is predicted to impact
BATF binding affinity across the 359 LCLs. (B) Box plot showing the association between mRNA levels (as measured with RNA-seq by the GEUVADIS
consortium) and predicted CRM haplotype with respect to BATF binding affinity in LCLs. KLF6 expression is significantly associated with BATF binding
type (gene-level FDR adjusted P-value = 1.21 x 1072, BATF variant P-value = 5.16 x 1074, effect size = 0.26).

to GEUVADIS eQTL SNPs, we identified the SNP caus-
ing the largest change in affinity for the respective TF at
each CRM (192 eQTL SNPs in total at 5% FDR to match
the FDR level used by GEUVADIS). Of these, 78 SNPs
(42%) were detected as significant by GEUVADIS. There-
fore, the remaining 114/192 (58%) eQTL SNPs identified in
our approach corresponded to not previously reported as-
sociations.

Threshold-free testing based on TF binding affinities reveals
further expression associations

The above-mentioned analysis was performed broadly
within the conventional paradigm of eQTL testing, whereby
expression was compared across three diploid genotypes
(two homozygous and one heterozygous), except that these
genotypes corresponded to cases whereby variation was
predicted to appreciably disrupt TF binding based on a pre-
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and the other 19 kb away, predicted to impact SMC3 and SRF binding affinity, respectively, across the 359 LCLs. (B) Association between NR2F6 mRNA

levels and predicted SMC3 and SRF binding affinity haplotypes.

defined threshold (we shall refer to this approach as ‘thresh-
olded’), and the gene-CRM combinations were selected for
association testing based on PCHi-C data. However, since
TF binding affinity haplotypes were defined at the CRM
level, more than two haplotypes were commonly observed
per CRM with respect to a given TF (in 12-100% cases
depending on the TF). In the thresholded approach, we
pooled multiple alleles into either ‘high-affinity’ or ‘low-
affinity’ haplotypes and disregarded outliers (see ‘Materi-
als and Methods’ section). We reasoned, however, that it is
also possible to regress gene expression against normalized
TF binding affinities directly without thresholding and hap-
lotype pooling, leading to increased precision and sensitiv-
ity of association testing. As expected, this ‘threshold-free’
approach revealed a considerably larger number of genes
significantly associated with CRM affinity variants (1033
eGenes at 10% FDR compared with 245 detected in the
‘thresholded’ approach mentioned earlier).

One challenge arising in the threshold-free approach is
that it leads to many more TF affinity CRM variants tested
for each gene. Since the same SNPs or those in LD with

each other can impact CRM affinity for multiple TFs, the
explanatory variables in the regression models are often cor-
related, posing challenges for the standard ordinary least
squares (OLS)-based association testing. Therefore, to de-
tect significant associations in the unthresholded setting, we
performed elastic net regression for each of the 895/1033
identified eGenes that were targeted by multiple TF affinity
CRM variants. To ascertain the significance of regression
coefficients in elastic net regression, we used a covariance
test for adaptive linear models (77), identifying 1328 sig-
nificant CRM-gene associations for the 895 eGenes tested
(Supplementary Table S2; see ‘Materials and Methods’ sec-
tion for details). One example of a newly identified asso-
ciation is between a nucleotide transporter gene SLC29A43
and the binding affinity of SIN3A at a CRM overlapping
with the TSS of SLC29A43 (gene-level FDR = 1.60 x 107%).
Five alternative SIN3A binding affinity haplotypes were
observed across the 358 LCLs (Figure 5A), with log-fold
changes in affinity for SIN3A (relative to the highest affin-
ity allele of GM12878) ranging from —0.037 to 0.001 (elas-
tic net effect size = —0.14, P-value ~0; Figure 5B). In total,
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Figure 5. Unthresholded approach for detecting TF binding affinity CRM variant associations with gene expression and their validation using GUESSFM.
(A) Example of a CRM with multiple SNPs affecting the affinity for the same TF, SIN3A. (B) Association between log-fold change in CRM affinity for
SIN3A (relative to the highest affinity allele observed in GM12878) and mRNA level (normalized PEER residuals) of the connected gene, SLC2943
(gene-level FDR adjusted P-value = 1.60 x 1074, 8 = —0.14). (C, D) Examples of loci, whereby the SNP predicted to have the strongest impact on a
CRM’s binding affinity for a given TF has been fine-mapped as a potentially causal variant driving the locus’s association with the expression of a physically
connected target gene (GUESSFM mppi > 0.001). (C) eGene: MB21D2;eQTL rs2886870, predicted to affect NFKB binding affinity. (D) eGene: PIEZO2,
eQTL rs12455452, predicted to affect TCF12 binding affinity. See insets for the effects of the SNPs on the respective TF’s PWM match.

72% of the TF-CRM variants showing significant associa-
tions with gene expression had three or more TF binding
affinity haplotypes.

TF binding affinity variants are highly enriched for causal
eQTLs

We asked what proportion of TF-binding variants show-
ing association with target gene expression in our analysis
could be fine-mapped as causal purely based on the pat-
tern of association signals in their vicinity, without a pri-
ori prioritization and pooling of variants per CRM. To this
end, we supplied genotype information for 200 kb win-
dows around the CRMs with detected associations and the
respective gene expression data to GUESSFM, a Bayesian
fine-mapping approach that accounts for possible multi-
ple causal variants per locus (78). GUESSFM identified at
least one causal variant in ~38% of the analysed CRMs
(1807/4718); associations in the remaining CRMs likely
could not be fine-mapped due to a lack of statistical power.
In ~30% (548/1807) of CRMs with successful fine map-
ping, the TF-binding variant showing the strongest asso-
ciation per CRM was ranked as possibly causal (mppi >
0.001), and in the majority of such cases (477/548) this vari-

ant was also ranked by GUESSFM among the top five high-
est scoring variants in the window (see Supplementary Ta-
ble S3 and Figure 5C and D for examples). In contrast, just
2.6% (48/1807) random variants within the same windows
(matched by allele frequency) were detected as potentially
causal by GUESSFM, corresponding to a very significant
enrichment of fine-mapped variants for those affecting TF
binding (Fisher test P = 107!26).

Many CRMs associated with distal gene expression show fea-
tures of epromoters

We noted that a large number of distal CRMs showing as-
sociation between TF binding affinity and target gene ex-
pression (224 CRMs, 243 TF-CRM variants; Supplemen-
tary Table S4) and connecting to the distal gene promot-
ers in 3D based on PCHi-C also mapped in close proxim-
ity (within 200 bp) of the TSS of either one or more other
genes (165 and 59 CRMs, respectively, and 284 eGenes; note
that the number of eGenes is greater than that of CRMs
due to some CRMs mapping in close proximity of mul-
tiple TSSs). The absolute majority (87%) of these CRMs
localized within chromatin segments with the characteris-
tic features of gene promoters (Figure 6A). Taken together,
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Figure 6. TF binding affinity variants highlight transcriptional regulatory effects of epromoters. (A) Bar plot showing the proportion of distal CRMs
showing association between TF binding affinity and target gene expression that map in close proximity (within 200 bp) of another gene’s TSS overlap-
ping each genome segmentation category (80) for GM12878. (B) Top: The association between log FC in CRM affinity for ELF1 relative to the highest
affinity allele of GM 12878 and mRNA level (normalized PEER residuals) of SRD5A43 and CLOCK. Bottom: Genome browser representation of the distal
interactions detected by PCHi-C (49) for SRD5A3, with CRMs identified at each fragment as well as the proximal window depicted in light blue. The
genome segmentation track for GM 12878 based on chromHMM (80) is shown immediately below (see Figure 4A for the colour key). Inset: Enlarged
view of an interacting fragment containing three CRMs, one of which harbours variants predicted to impact ELF1 binding affinity and overlaps with
the CLOCK promoter. (C) Colocalization analysis showing shared association between epromoter-located SNP rs12889775 and the expression of both its
distal and proximal genes (IRF2BPL, top, and IncRNA RPI1-7F17.7, bottom, respectively). Posterior probability of shared association estimated by the
coloc software Prsq = 0.997. This SNP is predicted to affect the epromoter’s binding affinity for EGR1 (see inset).

this suggested that some promoter regions might act as dis-
tal regulatory regions of other genes, whose promoters they
physically contact. This class of CRMs with dual promoter
and enhancer activity were independently identified in two
recent studies (63,64). We shall follow Dao et al. (63) in re-
ferring to these CRMs as ‘epromoters’.

Most genes located in the immediate vicinity of the
identified epromoters were appreciably expressed in LCLs
(232/284, 82%). However, TF binding variation at nearly
two-thirds of epromoters whose proximal gene was ex-
pressed (139 variants, 64.7%; see Supplementary Table S2)
showed detectable association with a distal gene alone in in-
dependent tests (assessed with the threshold-free approach).
For example, variation in ELF1 binding affinity at a CRM
that shows promoter-associated chromatin marks and lo-
calizes within 200 bp from the TSS of CLOCK gene does
not affect CLOCK expression. Instead, it associates with
expression of SRD5A3 located 198 kb away, whose pro-
moter it contacts in 3D as detected by PCHi-C (Figure 6B;
SRD5A3: gene-level FDR = 3.33 x 107!, ELF1 elastic net

P-value = 0, ELF1 elastic net 8 = —0.21; CLOCK: gene-
level FDR = 0.88).

The remaining 76 TF—epromoter CRM variants showed
associations between with the expression levels of both dis-
tal and proximal genes. To obtain formal evidence that these
associations were indeed driven by the same variant and not
by different variants in LD with each other, we used colo-
calization analysis (79), while accounting for multiple inde-
pendent associations (see ‘Materials and Methods’ section).
We submitted to this analysis the most tractable subset of
seven epromoters, for which the association of the respec-
tive TF-binding variant with distal gene expression was in-
dependently confirmed by fine mapping (GUESSFM mppi
> 0.001). At 6/7 analysed epromoters, we found prevailing
evidence of shared association signals for both the proxi-
mal and distal genes (Pyy4 > 0.66; Supplementary Table S5).
An example of such high-confidence shared signal is varia-
tion in EGR1 binding affinity at the epromoter of IncRNA
RPI11-71F7.7 that associates with the expression of both
RPI11-71F7.7 and another gene, IRF2BPL (Figure 6C). The
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promoters of these two genes, transcribed in a convergent
orientation, are ~69 kb apart and contact each other in 3D
as detected by PCHi-C.

Taken together, our findings confirm long-range tran-
scriptional regulation by epromoters and suggest that regu-
latory variants within these elements may have both shared
and independent effects on the expression of their proximal
and distal target genes.

DISCUSSION

In this study, we have generated an atlas of CRM vari-
ants predicted to affect TF binding in LCLs and established
their associations with the expression of their putative tar-
get genes. The key methodological innovations of our work
are the prioritization and pooling of variants at CRM level
using a biophysical model of TF binding affinity, as well
as the prioritization of CRM target genes based on high-
resolution PCHi-C data. We perform variant and target
gene prioritization a priori of eQTL testing to increase de-
tection sensitivity and the likelihood of revealing causal as-
sociations. Using this strategy, we have detected ~1300 as-
sociations between CRM variants and target gene expres-
sion in LCLs. Our approach reveals eQTLs detected at high
sensitivity, whose enrichment for causal variants is validated
by statistical fine-mapping analysis and by comparison with
independently generated MPR A data. Notably, we find that
many TF-binding variants showing associations with distal
gene expression localize to the promoters of other genes, in
support of the recently characterized class of ‘epromoter’
regulatory elements (63,64).

The atlas of binding variants generated in this study is
based on EUR individuals from 1000 Genomes Project re-
lease and extends our earlier work using the pilot data from
the same project (32). Importantly, unlike in our earlier
work (32) and other published resources (82,83), here we
have used a biophysical model (39) that aggregates TF bind-
ing affinities across the whole CRM to increase sensitivity.
This model has been used successfully in previous studies of
cis-regulatory control (84—-87). The relevance of integrating
information at CRM level is further highlighted by recent
studies showing the importance of weak TF binding events
in gene regulation (42,88,89). Therefore, our approach pro-
vides a biologically meaningful paradigm for variant pool-
ing at CRM level.

In choosing to quantify variant effects on TF binding
in terms of affinity changes, we were attracted by the di-
rect biological interpretability of this metric. A complemen-
tary strategy to score TF affinity at CRM level is provided
by hidden Markov models (HMMs) (90-92). HMM-based
frameworks can be useful, for example, for modelling ef-
fects of TF cooperativity (90,91), which could be incor-
porated into future variant prioritization frameworks. Ma-
chine learning algorithms, and particularly deep neural net-
works, may potentially model even more complex relation-
ships between DNA sequence and TF binding (68,93-95),
although typically at the expense of direct biological inter-
pretability. Reassuringly, our predicted variant effects on
TF binding affinity are generally correlated with the predic-
tions of the well-established deep-learning model DeepSea
(68). Notably, the biophysical model used in our study con-

stitutes one of the layers in a recently proposed fully inter-
pretable deep learning model of Drosophila transcriptional
control (96), highlighting the continued relevance of this ap-
proach.

Predicting the effects of genetic variants on the expression
of distal genes is a highly challenging task. To our knowl-
edge, no machine learning model currently generates such
predictions for CRM—promoter interaction distances be-
yond ~50 kb, reinforcing the importance of evidence from
functional genomics, chromosomal conformation and pop-
ulation genetics studies for understanding long-range vari-
ant effects. Here, to prioritize the target genes of distal reg-
ulatory variants at high sensitivity and resolution, we have
taken advantage of PCHi-C data. PCHi-C provides a 15—
20-fold enrichment of promoter interactions over the con-
ventional Hi-C technology (48-50) that was previously used
in variant effect analyses (95,97). Theoretically, the effects
of nucleotide variants on TF binding can also be incorpo-
rated as a prior in global association analyses such as fg-
was (98), and have already been used in eQTL fine mapping
(99). A formal eQTL testing framework using 3D interac-
tion data as a prior is, however, yet to be established.

Our finding that polymorphic TF binding sites at dis-
tal CRMs show gene expression associations less frequently
compared with proximal regions is consistent with the high
degree of redundancy of long-range regulatory elements (5—
7,100,101). Predicting the extent of buffering of regulatory
variation for a given CRM with a reasonable precision is an
important problem that is currently highly challenging due
to the sheer number of parameters and the relatively small
sample sizes of multi-individual expression datasets. Profil-
ing gene expression in the emerging much larger genotype
panels such as UK10K (102) and UK Biobank (103) may
provide opportunities for addressing this question.

We observe that a large proportion of CRMs show-
ing associations with the expression of physically con-
nected distal genes are located in the promoter regions of
other genes. This finding provides support to the recently
characterized class of ‘epromoters’: elements with a dual
proximal and distal activity that were discovered on the
large scale using high-throughput reporter and CRISPR
knockout screens (63-65). Empirically, chromosomal in-
teractions between epromoter CRMs and their distal tar-
gets fall into the category of promoter—promoter inter-
actions. Until recently, these interactions have been con-
sidered primarily in the context of coordinated gene acti-
vation or repression (104-106), such as that observed in
Hox and histone clusters (104,107). That some promoter—
promoter contacts reflect relationships between epromoters
and their distal target genes suggests that these contacts may
show functionally and possibly even structurally distinct
properties.

We show that TF binding variation at epromoters may
or may not co-associate with the expression of both proxi-
mal and distal genes at the same time. Shared association is
consistent with the findings from massively parallel reporter
assays that the same sequences are often involved in mediat-
ing both promoter and enhancer activity in vitro (108). It is
possible that some non-shared effects observed in our study
in vivo are underpinned by the role of the affected TFs in
mediating long-range contacts. Additionally, epromoter el-



ements may show different degrees of redundancy with re-
spect to the proximal and distal target genes.

Overall, our analysis demonstrates the potential of
model-based prioritization and pooling of variants a pri-
ori of testing for increasing the sensitivity of identifying in-
dividual associations and revealing their shared biological
properties.

DATA AVAILABILITY

The list of the detected TF affinity CRM variants, the full
data on CRM variant-gene expression associations and
the raw output of GUESSFM fine mapping have been up-
loaded to OSF (https://osf.io/fadu7/). The scripts used to
generate TF binding affinity variants and perform expres-
sion association testing have been uploaded to the same
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