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Human hepatitis B virus (HBV) is a small, enveloped DNA virus that causes acute

and chronic hepatitis. Chronic hepatitis B (CHB) is associated with

hepatocellular carcinoma pathogenesis. Interferons (IFNs) have been used

for the treatment of CHB for a long time, with advantages including less

treatment duration and sustained virological response. Presently, various

evidence suggests that epigenetic modification of the viral covalently closed

circular DNA (cccDNA) and the host genome is crucial for the regulation of viral

activity. This modification includes histone acetylation, DNA methylation, N6-

methyladenosine, and non-coding RNA modification. IFN treatment for CHB

can stimulatemultiple IFN-stimulated genes for inhibiting virus replication. IFNs

can also affect the HBV life cycle through epigenetic modulation. In this review,

we summarized the different mechanisms through which IFN-a inhibits HBV

replication, including epigenetic regulation. Moreover, the mechanisms

underlying IFN activity are discussed, which indicated its potential as a novel

treatment for CHB. It is proposed that epigenetic changes such as histone

acetylation, DNA methylation, m6A methylation could be the targets of IFN,

which may offer a novel approach to HBV treatment.
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Introduction

Hepatitis B is a global epidemic that remains a great challenge (1, 2). After acute

infection with the hepatitis B virus (HBV), 90%–95% of patients can be cured completely;

however, the remaining 5%–10% can act as carriers, allowing chronic HBV infections to

spread within populations (3). Moreover, HBV infection leads to liver cirrhosis and
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hepatocellular carcinoma (HCC), which can be fatal (4, 5).

China is the country with the heaviest burden of HBV

infection and liver cancer is the second most common cancer

in China (6, 7).

HBV is a small DNA virus belonging to the family

Hepadnaviridae. Its genetic material is 3.2 kb long and

consists of relaxed, circular, partially double-stranded DNA,

which is enclosed within the nucleocapsid core of the virus

(8). HBV enters hepatocytes through a receptor-mediated

pathway and binds to the receptor sodium taurocholate

cotransporter polypeptide (NTCP) on the surface of

hepatocytes via its envelope proteins PreS1 and PreS2 (9).

After entering the hepatocytes, the relaxed, circular, partially

double-stranded DNA (rcDNA) of HBV is released from the

viral nucleocapsid and transported into the nucleus (10).

Redundant sequences at the pol-linked terminal on minus

strand DNA and RNA oligonucleotides at the 5’ ends of plus

strand DNA are removed from rcDNA and gaps on both strands

are filled in and connected to generate cccDNA (11–13).

CccDNA is used as a template for the transcription of

pregenomic RNA (pgRNA) and subgenomic mRNA (Figure 1)

(14, 15). PgRNA was catalyzed by HBV polymerase to synthesize

viral genomic DNA. Meanwhile, subgenomic mRNA is

translated into various viral proteins as a part of the HBV life

cycle. Among the proteins, the packaging proteins are packaged

with the nascent viral DNA to form progeny virus and released

from the cells (16). HBV cccDNA is important for chronic

infection (17) and exists in the nucleus as a minichromosome,

bound to histones and non-histone proteins. The epigenetic

modification of cccDNA contributes to the viral replication and

affects the prognosis of chronic HBV infection (18). Therefore,
Frontiers in Immunology 02
epigenetic modifications, such as DNA methylation, RNA

methylation, histone acetylation, miRNA regulation, and

chromatin remodeling, can regulate the activity of cccDNA

and offer new therapeutic targets for HBV infection.

Current Food and Drug Administration (FDA)-approved

treatments for chronic HBV infection include interferon-a
(IFN-a) and nucleoside analogs (such as lamivudine, adefovir

dipivoxil, entecavir, telbivudine, and tenofovir fumarate

dipivoxil) (19). IFN-a has various therapeutic advantages,

which include less treatment time and higher clearance of

hepatitis B antigen and surface antigen (20). Moreover, IFN-a
has both immunomodulatory and antiviral effects (21) and can

inhibit cccDNA activity through epigenetic repression (22). In

this review, we have discussed the mechanism underlying the

IFN treatment for HBV infection and described the epigenetic

modification of HBV through IFN treatment.
IFN treatment for hepatitis B
virus infection

IFN is a natural immune substance with broad-spectrum

antiviral activity (23). It is released by virus-infected cells. The

following three types of IFNs have been identified: type I IFN

(including IFN-a, -b, -ϵ, -k, -w, and others), type II IFN (IFN-g),
and type III IFN (IFN-l) (24). IFN inhibits virus replication by

promoting the expression of downstream IFN-stimulated genes

(ISGs) viamultiple signaling pathways (25, 26). Different types of

IFNs bind to distinct receptors on the surfaces of cognate cells.

IFN-I binds to IFN-a receptor 1 (IFNAR1) and 2 (IFNAR2)

heterodimers, whereas IFN-III binds to interleukin-10 receptor 2
FIGURE 1

HBV particles and genome.
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(IL-10R2) and IFN-l receptor 1 (IFNLR1) heterodimers, and

IFN-II binds to heterodimers consisting of IFN-g receptor 1

(IFNGR1) and 2 (IFNGR2) (27). The binding of IFNs to their

receptors initiates the signaling cascades via the Janus kinase

(JAK)- signal transducer and activator of transcription (STAT)

pathway, leading to the transcriptional regulation of several genes

(28). The binding of IFN-I and IFN-III to their respective

receptors leads to the phosphorylation of TYK-2 near JAK1,

which is followed by further activation of STAT1 and STAT2.

Phosphorylated STAT1 and STAT2 bind to IRF-9, which forms

the heterotrimeric complex ISGF3 (29). Subsequently, ISGF3 is

transported into the nucleus where it binds to ISREs and activates

ISG transcription. The intracellular domains of the IFN-II

receptors, IFNGR1 and IFNGR2, bind and activate JAK1 and

JAK2 kinases, respectively. They induce phosphorylation of

STAT1 and STAT2, which subsequently form homodimeric

GAF. This is transported into the nucleus where it binds to

GAS and induces ISG transcription (30–32) (Figure 2).

ISGs play an important role in host resistance to HBV

infection. It inhibits viral entry and exit as well as viral

replication, transcription, translation, and post-translational

modification (33, 34). For the invasive phase of the virus, ISGs

include the myxovirus resistance gene (Mx) and the IFN -induced

transmembrane proteins CH25H, viperin, and tetherin. IFN-

induced proteins are capable of inhibiting viral replication and

transcription. They include 2′-5′-oligoadenylate synthetase

(OAS), protein kinase R (PKR), ZAP, IFN-induced protein

with tetratricopeptide repeats, ISG15, and members of the

TRIM family. Furthermore, the release phase of the virus is
Frontiers in Immunology 03
inhibited by proteins, including viperin and tetherin (35, 36).

The SMAD4A can bind to the Smaug recognition region (SRE)

sequence in the HBV virus sequence to trigger the degradation of

the virus (37). TRIM25 is downregulated in HBV patients, and

TRIM25 overexpression results in increased IFN production and

decreased HBV replication (38). The proteomic data analysis

showed that after IFN treatment, the levels of the proteins RIG-I

and RIG-G (known to be suppressed by HBV) are restored.

Moreover, RNA metabolism, translation, and endoplasmic

reticulum targeting are differentially regulated in the biological

process (39). Therefore, as a class of effector molecules mediating

antiviral effects, ISGs can target virtually all the processes of viral

invasion, uncoating, genome replication, and virion assembly and

release, thereby inhibiting viral proliferation in vivo (Figure 2).
Clinical applications of IFN in the
treatment of HBV

Presently, seven therapies have been approved by the FDA

for their use in HBV clinical treatment, including standard IFN

and pegylated interferon (peg-IFN) (19). Peg-IFN has been

recommended by the guidelines of the major liver associations

(40, 41). The course of peg-IFN therapy is finite and can lead to

long-term benefits, such as continuous and cumulative

responses. Moreover, the progression of hepatitis to

fibrosclerosis and hepatocellular carcinoma can be reduced

(42). The clinical applications of interferon and its

mechanisms underlying the HBV treatment are discussed below.
FIGURE 2

The IFN-signaling cascade and the entry of HBV.
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Even though the mechanisms underlying IFN treatment for

hepatitis B are still being elucidated, IFN has been used in the

clinical treatment of HBV for decades and remains an effective

therapy. For patients with chronic hepatitis B (CHB), standard

(peg-IFN) monotherapy is administered subcutaneously once

weekly for 48 weeks, which has decreased treatment time and

sustained virological response (43). After peg-IFN-a treatment,

some patients with CHB maintained a functional cure, related to

lower HBcrAg and higher HBsAb levels (44). Clinical trial

results have shown that peg-IFN-a2b treatment can lead to a

greater decrease in HBV DNA in patients with HBeAg positive

compared with patients who received an only placebo (45). In

addition, peg-IFN-a2b was effective in approximately one-third

of patients who were refractory to standard IFN or lamivudine

therapy (46). Compared with HBeAg-negative patients who

received Entecavir (ETV) monotherapy, HBeAg-negative

patients who received peg-IFN monotherapy showed a

significantly greater decline in HBsAg levels (47).

IFN can also be used as an adjuvant with other types of drugs

to achieve better HBV treatment effects. The peg-IFN-nucleoside

analog (NA) sequential optimization therapy (SOT) can lower

HBsAg, undetectable HBV DNA, and ALT normalization

compared with peg-IFN monotherapy (48). One study showed

that after 48 weeks of treatment, HBsAg in the early combined

treatment group (ETV plus Peg-IFN-a-2a) decreased by more

than 1500 IU/mL, and the average HBsAg level was significantly

lower than that in the late combined treatment group and the

NA monotherapy group (P <0.05) (49). In another study, after

peg-IFN treatment, responses were doubled in patients that were

not treated with peg-IFN with HBsAg below 4000 IU/mL and

HBV DNA below 50 IU/mL. These patients are the candidates

for peg-IFN add-on therapy (50). In addition, the combination

therapy after hepatitis B vaccination significantly increased the

seroclearance of HBsAg (51).

Presently, HBV cannot be completely cured by current

approved clinical drugs. Reducing the loss of serum HBV DNA

and HBsAg is presently a method that can reduce the probability

of transformation to hepatitis and hepatic cell carcinoma. IFN

therapy has the advantages of a shorter treatment cycle and fewer

treatment times that can improve the patient’s compliance and

treatment effectiveness. Moreover, IFN therapy has advantages

over NAs in immunology mechanisms and can alter the state of

immune tolerance. However, despite the side effects of IFN

therapy, the relatively low response rates are a problem. NAs

do not target the cccDNA; therefore, the HBV can reactivate.

Therefore, combination therapy can exert a better effect on the

treatment of CHB.
The therapeutic mechanism of IFN

IFN can develop direct anti-viral effects and develop a

complex immune response in the treatment of HBV. IFN-a14
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can suppress the transcription of cccDNA and the production of

HBsAg and HBeAg (52). IFN has been shown to increase T cell

survival, the expression of T cell antigens, and IL 12 (53). It can

induce antiviral activity in hepatocytes through the regulation of

gene expression and protein translation, thereby playing a non-

cytolytic antiviral role in many stages of the HBV life cycle (54).

For example, the MX2 induced by IFN-a can decrease the

number of cccDNA and the levels of HBV RNA (55).

Furthermore, TRIM14 is an important molecule in the IFN

signaling pathway, playing a crucial role in HBV suppression

mediated by IFN-I. The TRIM14 SPRY domain interacts with

the C-terminus of HBx, which can block the role of HBx in

promoting HBV replication by inhibiting the formation of the

Smc-HBx-DDB1 complex (56). To elucidate the mechanism

underlying IFN treatment in HBV, high-throughput

bimolecular fluorescence complementation screening was

performed to determine the interactions between HBx protein

and 145 ISGs. The results showed that seven HBx-interacting

ISGs (GBP2, PVRL4, CBFb, TRIM38, TRIM5g, TRIM25, and

Gadd45g) exerted strong inhibitory effects on HBV replication.

Among them, TRIM5g and TRIM31 promoted HBx

degradation, which can offer a novel therapeutic method in

cases of IFN drug resistance (57). Under the action of a key

nuclease for IFN-triggered cccDNA clearance, IFN-a induced

the non-cytolytic removal of HBV cccDNA from the nucleus of

infected hepatocytes in an A3A deaminase-dependent manner

(22, 58). Further cell-based assays were performed to detect the

anti-viral activity of ISGs. These results showed that SMAD4A

was the strongest suppressor of HBV replication, functioning

through an SRE-like sequence located in viral RNA. Moreover,

the SMAD family inhibited HBV in mouse models (37).

Elucidating the mechanism of action of IFN in the treatment

of HBV can contribute to the development of IFN-related drugs

in clinical practice and provide new targets for HBV treatment.
Epigenetic regulation of HBV by IFN

The cccDNA is a major hindrance in the treatment of HBV

infection (12, 59). After HBV treatment, cccDNA molecules

persist in low numbers, which causes CHB. Epigenetic

modification regulates the transcriptional activity of cccDNA

chromosomes (60). Therefore, studying the epigenetic

modification of cccDNA can aid the development of new

therapeutic drugs to eliminate cccDNA (61).
Epigenetic changes involved in the
process of HBV infection

HBV has a tightly condensed DNA genome of only 3.2 kb in

length. The four functional viral proteins are produced in

overlapping open reading frames (ORFs), which are orientated
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in the same direction and encoded by negative chains (62),

which are as follows: (i) preS/S, encoding the three viral surface

proteins (HBs) (termed the small [S], medium [M], and large [L]

surface antigens) that bind to the viral envelope and mediate

viral entry; (ii) Precore/core, encoding the HBV core protein

(HBc) and the secreted e-antigen (HBeAg); (iii) viral polymerase

POL, which participates in viral replication and packaging; and

(iv) the X region, encoding the X protein (HBx), which has been

proved to have multiple functions, such as viral replication, and

is the main cause of liver cancer caused by HBV (63, 64). In

addition, two enhancers (enhancers I and II) and three predicted

CpG islands constitute the structure of HBV cccDNA. HBV

cccDNA exists as a minichromosome and undergoes post-

translational modification (PTM) of the bound histones (65).

Furthermore, the transcriptional activity of cccDNA is highly

affected by epigenetic modification (15). IFN and NA treatment

have limited treatment effects because they cannot eliminate

HBV cccDNA. Therefore, the understanding of epigenetic

modifications in the replication and disease development of

HBV is important for degrading cccDNA and developing new

therapeutic approaches. The epigenetic changes involved in the

process of HBV infection are mentioned below.

DNA methylation typically occurs on CpG dinucleotides

through the activity of DNA methyltransferases (DNMTs) and

is often associated with gene transcriptional silencing (66). The

HBc maintains its binding to cccDNA by binding to CpG island 2

in the HBV genome, and its relative abundance is highly

associated with the serum HBV DNA levels in patients (67, 68).

One study showed that patients with occult hepatitis B infection

had a high methylation density at CpG island 2 (69). CpG island 2

methylation was significantly higher in patients with HBeAg-

negative. In addition, HBV DNA methylation was higher in CpG

islands 2 and 3 in HCC tissues compared with infected and

cirrhotic tissues (70–72). HBx expression increased total DNMT

activity by upregulating DNMT1, DNMT3A1, and DNMT3A2

and selectively promoted the regional hypermethylation of specific

tumor suppressor genes, which caused hepatocarcinogenesis (73).

HBV infection cause hypermethylation of the promoter region of

the tumor suppressor E-cadherin, the expression of which is

frequently absent in HCC (74). A study showed that the HBV

DNA demethylation and increased abundance of 5hmc residues

in viral CpG sequences is associated with the HBV replication

(75). In general, these reports indicated that the DNA

modification plays an important role in the HBV replication

and HCC development, which may provide a new target for

HBV treatment.

Histone acetylation also occurs during the process of HBV

infection. Many histone modifying enzymes, such as

acetyltransferases (HATs), deacetylases (HDACs), lysine

methyltransferases, and protein arginine methyltransferases,

can modify histones associated with cccDNA (76).

Transcription of HBV minichromosomes is regulated by

epigenetic changes in cccDNA-bound histones, whereas the
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acetylation status of H3/H4 histones that regulate cccDNA

binding a ffec t s HBV repl icat ion (77) . Chromat in

immunoprecipitation (ChIP)-sequencing assays of HBV

cccDNA showed non-randomly distributed PTMs, which

strongly suggested that PTMs in the stained cccDNA are

specifically introduced after histone assembly. High levels of

H3K4me3, H3K27ac, and H3K122ac have been detected in

infected cells, which indicates their importance for HBV

transcription (78). Therefore, understanding the role of

histone acetylation in cccDNA transcription is important for

HBV treatment.

While DNA methylation and histone acetylation are

targeted to DNA and proteins, RNA transcriptional regulation

is also involved in epigenetic modifications in HBV. N6-

methyladenosine (m6A) modification is the most common

form of modification in eukaryotic cells and viruses, which

includes HBV, regulating RNA transcription, splicing,

degradation, and translation without changing the base

sequence (79, 80). m6A regulates HBV RNA stability and

reverse transcription during the HBV life cycle (81). HBV can

affect m6A levels in host cells to achieve HBV-directed immune

evasion. A study has shown that HBV significantly increased

m6A modification of PTEN RNA, which resulted in decreased

levels of PTEN protein. In the absence of PTEN, IRF-3

dephosphorylation at Ser97 was diminished and IFN synthesis

was impaired (82). Moreover, ChIP analysis of wild-type HBV

and HBx-null virus-infected primary human hepatocytes and

HepG2-NTCP cells revealed recruitment of METTL3/14

proteins by HBx at transcriptional initiation sites, which led to

internal RNA m6A modification (83). Overall, m6A

modification occurring during HBV replication directly

affected co-transcriptional synthesis and modification of

viral RNA.

MiRNA is an important factor in HBV. Cellular miRNAs are

specific noncoding RNA molecules and 21–25 nucleotides in

length. They regulate gene expression by preventing translation

or accelerating RNA degradation by targeting specific mRNAs

(84). Viruses can also encode miRNAs that regulate viral

replication by altering host gene expression (85). miRNAs can

affect HBV replication directly by binding to HBV transcripts or

indirectly by targeting cytokines involved in HBV replication

(86). HBV-miR-3, an HBV-encoded miRNA whose expression

is highly related to HBV activity, promotes the anti-HBV effects

of IFN and also induces the production of IL-6 in M1

macrophages (87). Liver tissue samples from 52 of 87 patients

with CHB showed expression of HBV-miR-6. The levels of

HBV-mir-6 correlate with hepatic HBV DNA and plasma

HBsAg levels, suggesting that this molecule can participate in

viral excretion or particle formation (88). Therefore, miRNA

encoded by HBV can be a new target for HBV treatment.

To summarize, epigenetic modifications involved in the

HBV life cycle include DNA methylation, histone acetylation,

m6A modification, and miRNA expression. Therefore, a deeper
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investigation into epigenetic regulatory processes can provide

new avenues for controlling CHB.
The role of epigenetic modification
induced by IFN in HBV infection

Epigenetic repression of HBV by IFN-a is one of the most

important mechanisms of modulating cccDNA modulation (89).

IFN-a can regulate the HBV cccDNA minichromosome by

modulation of GCN5-mediated succinylation of histone H3K79,

facilitating clearance of HBV cccDNA (90). IFN-a2b reportedly

increased the HDAC3-mediated de-2-hydroxyisobutyrylation of

histone H4 lysine 8 (H4K8) on the HBV cccDNA

minichromosome, restricting transcription of the cccDNA in liver

(91). Another study showed that the proteins YY1 and Ezh2

(components of the transcriptional repressor complex PRC2) and

the histone deacetylases HDAC1 and hSirt1 were actively recruited

to cccDNA after IFN-a treatment, which led to the hypoacetylation

of cccDNA-bound histones (89) (Figure 3). Furthermore, the high-

dose IFN-a-mediated upregulation of cytidine deaminase or NFkB
pathway induction by antibody-mediated activation of the

lymphotoxin-b receptor (LTbR) can promote partial cccDNA

degradation (92).

Further anti−HBV effects of IFN−a involve m6A

modification (Figure 4). For example, increased m6A

modification of pgRNA was observed after IFN-a2a treatment.

The expression of METTL3 and METTL14 was significantly

upregulated, whereas that of FTO was downregulated in IFN-

a2a-treated HepG2.2.15 cells. These results suggested that IFN-

a2a can regulate m6A RNAmodification (93). IFN-a can induce
Frontiers in Immunology 06
ISG20 to selectively degrade m6A-containing HBV RNA. ISG20

can form a complex with YTHDF2 to recruit ISG20, which leads

to the degradation of HBV transcripts (94). Overall, IFNs can

epigenetically regulate RNA transcription, which leads to

transcriptional repression of cccDNA.

Moreover, a study showed that during the peg-IFN

treatment, the serum mir-6126 is high, which predicted

HBsAg 1-log drop, and the mir-6126 can inhibit HBsAg

production and HBV replication in vitro (95). A lentivirus-

mediated RNAi high-throughput screen for epigenetic modifiers

was performed, and it was found that the methyltransferase

SETD2 was a key factor involved in the IFN-amediated antiviral

response. It can directly mediate STAT1 methylation on lysine

525 through its methyltransferase activity to increase IFN-a
activated STAT1 phosphorylation and antiviral cellular

responses (96). IFN can exert the anti-viral effect which

inhibits the cccDNA transcription and improve its anti-viral

activity through epigenetic modification. The study of epigenetic

modification in IFN treatment in HBV infection can offer new

insight into the combination of epigenetic drugs and IFN for

CHB treatment.
Discussion

Disease caused by HBV is a global health burden, with 256

million people chronically afected (97, 98). HBV is an enveloped

DNA virus, belonging to the Hepadnaviridae family (99, 100). After

the entry of the virus into the nucleus, cccDNA is formed through

the action of DNA polymerase (101), acting as a stable template for

viral transcription (102). Even when antigen levels fulfill the
FIGURE 3

Histone acetylation involved in IFN treatment.
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treatment criteria, cccDNA remains in the infected cells and tissues,

which can reactivate again (103). Owing to the inherent stability of

cccDNA, it is now recognized as the main marker of virus

persistence and the main obstacle in curing CHB. IFN therapy is

a common therapy used for the treatment of CHB based on its

immune response; however, drug resistance is a problem. IFN-a
significantly induces IL-6 expression inHBV replicated hepatocytes,

which upregulates the expression of cytokine signal transduction

inhibitor-3 (SOCS3) and downregulates the expression of

downstream effectors of IFN-a. This impairs IFN-a anti-HBV

efficiency and leads to IFN resistance (104). Moreover, IFN

therapy leads to side effects such as fatigue, thyroid dysfunction,

depression, and cognitive slowing because of off-target effects (105).

Therefore, IFN in combination with epigenetic modification

inhibitors may decrease the off-target effect to achieve a better

therapeutic effect.

Because the function of cccDNA is dependent on its

epigenetic modification, silencing the activity of cccDNA

through epigenetic mechanisms can be an efficient and

practical approach to control CHB (18, 106). Epigenetic drugs

have been used for the treatment of HBV to silence the

transcription of cccDNA. The HAT inhibitor C646 can

downregulate H3K27ac and H3K122ac, thereby silencing

cccDNA and decreasing HBV transcription (78). Moreover,

Gs5801 (Gilead), a prodrug that specifically inhibits lysine

demethylase 5, can inhibit cccDNA transcription by removing

H3K4me3 (107). SAM can decrease the methylation level of

STAT1, which can increase the antiviral effect of IFN-a (108).

Because IFN can modulate the epigenetic status of cccDNA, a

combination of epigenetic drugs and IFN therapy can be more

effective for patients with CHB in the future. To develop such

therapies, further elucidation of the molecular mechanisms

underlying cccDNA epigenetic regulation in IFN treatment

is required.
Frontiers in Immunology 07
Conclusion

IFN is crucial to HBV treatment, and it can also inhibit HBV

replication through ISGs and some epigenetic modification

occurred during its treatment. HBV is a DNA virus whose

infection is tightly linked to its cccDNA. Epigenetic changes

such as histone acetylation, DNA methylation, m6A

modification, and miRNA expression is involved in its

infection process. Therefore, it is important to understand the

epigenetic changes involved in the pathogenesis and treatment

of CHB which may provide a new therapeutic target to develop

new treatment methods.
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