
The Representational Dynamics of Perceived Voice Emotions 
Evolve from Categories to Dimensions

Bruno L. Giordano1,2,*, Caroline Whiting2, Nikolaus Kriegeskorte3, Sonja A. Kotz4,5, 
Joachim Gross2,6,*,†, Pascal Belin1,7,*,†

1Institute of Neuroscience of la Timone UMR 7289 Centre National de la Recherche Scientifique 
and Aix-Marseille University, Marseille, France

2Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK

3Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA

4Faculty of Psychology and Neuroscience, Department of Neuropsychology and 
Psychopharmacology, Maastricht University, Maastricht, The Netherlands

5Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 
Leipzig, Germany

6Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany

7Department of Psychology, University of Montréal, Montréal, Canada

Abstract

Long-standing affective science theories conceive the perception of emotional stimuli either 

as discrete categories (e.g., an angry voice) or continuous dimensional attributes (e.g., an 

intense and negative vocal emotion). Which position provides a better account is still widely 

debated. Here, we contrast them to account for acoustics-independent perceptual and cerebral 

representational geometry of perceived voice emotions. We combined multimodal imaging of the 

cerebral response to heard vocal stimuli (functional magnetic resonance imaging – fMRI – and 

magneto-encephalography – MEG) with post-scanning behavioral assessment of voice emotion 

perception. By using representational similarity analysis (RSA), we find that categories prevail 

in perceptual and early (< 200ms) fronto-temporal cerebral representational geometries and that 

dimensions impinge predominantly on a later limbic-temporal network (240ms and > 500ms). 

These results reconcile the two long-opposing views by reframing the perception of emotions as 
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the interplay of cerebral networks with different representational dynamics that emphasize either 

categories or dimensions.

A persistent and controversial debate in affective sciences is whether emotions are better 

conceptualized as discrete categories or continuous dimensions. Categorical theories argue 

that emotion is best described by a small number of discrete basic categories such as 

fear, happiness, or anger 1,2. Dimensional theories instead postulate the underpinning of 

continuous dimensions such as valence (reflecting the degree of pleasantness ranging from 

negative to positive) or arousal (reflecting the degree of intensity ranging from calm to 

excited) 3,4.

Despite decades of continuous effort, this question is unresolved 5. Neuroimaging research 

on the cerebral bases of emotion, either felt or perceived in others, has not settled this 

debate as meta-analyses of large bodies of neuroimaging data support both the notion of 

categories 6 and that of large-scale networks representing dimensional attributes 7,8. Multi­

voxel pattern analyses of functional magnetic resonance imaging (fMRI) data have identified 

distributed patterns of cerebral activity that allow machine learning algorithms to classify 

emotions into discrete categories, but also to provide estimates of valence and arousal 

indicating the relevance of both dimensions and categories in explaining brain response 

to affective stimuli 9–13. Recent studies using time-sensitive methods such as electro- or 

magneto-encephalography (MEG) instead suggest complex dynamics in both categorical 

and dimensional accounts of cerebral activity, although with little neuroanatomical detail 
14,15. Thus, a comprehensive understanding of the precise spatio-temporal dynamics of 

the cerebral networks involved in representing emotional dimensions and categories is still 

missing but appears crucial to reconciling the two accounts.

We address this issue by combining comprehensive behavioral assessments of affective 

vocal bursts (Fig. 1) with brain-activity measurements of the same participant at high 

spatial and temporal resolution (Fig. 2). Healthy adult participants (n=10) were scanned in 

8 alternating fMRI and MEG (4 fMRI and 4 MEG sessions) while they listened to affective 

bursts (Fig. 1) and performed a 1-back task (they had to press a button when they detected 

that a stimulus had been played twice in succession): this allowed to maintain and monitor 

attention to the auditory stimuli while avoiding directing attention to a particular stimulus 

dimension (e.g., emotional). After scanning, participants rated the perceived dissimilarity of 

all pairs of stimuli, again in the absence of instructions that would bias their judgment 

toward a specific stimulus feature. In the final session they then explicitly evaluated 

emotional attributes of the stimuli by rating their perceived valence, arousal, and intensity 

along four emotional categories and performed a 4-alternative forced-choice categorization 

for Anger, Fear, Disgust, or Pleasure.

Emotional stimuli consisted of brief (796ms) synthetic vocalizations generated by morphing 

between recordings from a validated database of affective bursts 16 that portrayed angry, 

fearful, disgusted, pleased, and neutral expressions of the vowel /a/. Morphing combined 

pairs of expressions with weights varying in 25% steps from 0 to 100% as well as 

each emotional expression with the neutral expression weighted between 100% (neutral) 

to 0 (original emotion) to -25% (emotional caricature). This resulted in 39 stimuli that 
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sampled densely the space of perceived emotions (Fig. 1a). Morphing was performed 

independently on recordings from two different actors (one male, one female) to dissociate 

general emotional from identity- and gender-related acoustics, resulting in 78 stimuli overall. 

Morphing weights of the original expressions reliably modulated perceived emotion: Fig. 

1b illustrates the clear variation in perceived emotional category by morphing weights (note 

the large inter-individual variability for 50%-50% morphs) and Fig. 1c shows that each 

perceived emotional attribute was selectively modulated by at least two morphing weights.

We used representational similarity analysis (RSA) 17 to relate the emotion categories and 

dimensions perceived by each participant to their own multivariate cerebral responses to 

the affective bursts (Fig. 2). With RSA, we examine the representational geometry of the 

cerebral response to emotional voices as a window onto the cerebral representation of vocal 

emotion.

This is performed by abstracting across participants over the specific structure of the 

cerebral response pattern that carries information about perceived emotions (e.g., potential 

lower latency evoked response for fear stimuli). By mapping each brain with its own 

perceptions, we simultaneously account for and generalize across idiosyncrasies in 

perception by identifying regions and response latencies that specify emotions reliably 

regardless of how much individual perceptions might deviate from the group average. The 

large amount of multimodal imaging data for each individual (8 sessions each) was crucial 

to adjudicate between competing but largely overlapping emotion models of their own 

perception (Fig. 3d) with robust analyses. As low-level acoustical properties could plausibly 

influence both perceptual and cerebral responses to the stimuli, we also considered their 

acoustic structure as reflected by their spectro-temporal modulations. For this we analyzed 

stimuli using banks of spectro-temporal modulation filters that can intuitively be described 

as the auditory analogue of Gabor-like representations in the early visual system 18. We built 

acoustic 39x39 representational dissimilarity matrices (RDM) capturing overall acoustic 

differences for each post-onset time window (Fig. 1d) and used them in subsequent analyses 

to remove acoustic confounds.

Results

Modulation of perceived emotions through voice morphing

We initially sought to assess the presence of effects of voice morphing on perceived 

emotions, and potential asymmetries between the modulatory effect of morphing for the 

perception of categories and dimensions. We assessed the selective modulatory effect of 

each of the five morphing weights (one for each of the four original emotions plus one 

for the emotionally neutral vocalization) on each of the emotion rating scales (four category­

intensity rating scales, and valence and arousal rating scales) via semi-partial correlations 

(s.p.r). Data from each of the emotion rating tasks were selectively modulated by at least 

two of the morphing weights (p ≤ 0.05 FWE-corrected across rating tasks and morphing 

weights (absolute significant T(9) ≥ 4.343, permutation-based two-tailed p ≤ 0.039 corrected 

for multiple comparisons across pairs of rating scales with morphing weights, absolute 

Fisher Z scale chance-corrected s.p.r ≥ 0.042, SEM ≤ 0.077, widest percentile bootstrap 

95% CI = -0.522/-0.394; absolute non-significant T(9) ≤ 3.801, p ≥ 0.078, absolute s.p.r 
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≤ 0.123, SEM ≥ 0.016, narrowest 95% CI = -0.010/0.022; N permutation and bootstrap 

samples = 100,000, see Supplementary Table 1 for full results), showing that our morphing 

manipulation reliably modulated perceived emotions (Fig. 1c). We then sought to assess 

whether the morphing modulated more strongly perceived categories or dimensions. To this 

purpose, we tested for significant differences between the speaker- and rating scale averaged 

variance explained by the five morphing weights together for the categories and dimensions 

tasks. We observed a descriptively smaller effect of morphing on perceived categories than 

dimensions that however failed to reach significance (T(9) for categories minus dimensions 

RSQ contrast = -0.125, two-tailed p = 0.906, Fisher Z scale RSQ categories – dimensions 

difference =-0.007, SEM = 0.053, bootstrap 95% CI = -0.088/0.104). Accordingly, we 

found no credible support for a potential asymmetry between the strength of the perceptual 

modulation of categories and dimensions via our morphing manipulation.

Perceptual representational geometry of voice emotions

To address our main question about emotional dimensions and categories, we first asked 

whether the perceived structure of the stimulus set, as captured by ratings of perceived voice 

dissimilarity, resembled the emotion ratings provided in the final session, while accounting 

for acoustic confounds. For this, we built different behavioral RDMs and investigated 

their inter-relation (T(9) for acoustics-independent pairwise correlation r between categories 

and valence RDMs = 10.57, p < 0.001, Fisher Z r = 0.367, SEM = 0.035, percentile 

bootstrap 95% CI = 0.318/0.440; T(9) for categories and arousal RDMs = 3.18, p = 0.016, 

Fisher Z r = 0.154, SEM = 0.048, bootstrap 95% CI = 0.069/0.246; T(9) for valence 

and arousal RDMs = 4.63, p = 0.002, Fisher Z r = 0.334, SEM = 0.072, bootstrap 95% 

CI = 0.209/0.476, N permutation samples and bootstrap samples for CI computation = 

100,000). Visual inspection of Fig. 3a, 3b, and 3c suggests a strong resemblance between 

the dissimilarity RDM and the categories RDMs, which we confirmed by examining the 

variance in dissimilarity ratings selectively explained by categories or dimensions after 

accounting for acoustics (semi-partial correlation – s.p.r – tests and unique explained 

variance contrasts; one- and two-tailed cluster and permutation-based inference for s.p.r 

and unique explained variance, respectively; p for s.p.r tests FWE corrected across the 

three emotion RDMs). As shown in Fig 3d, perceived stimulus dissimilarity represented 

selectively both categories and dimensions (T(9) for categories s.p.r. = 14.96, p < 0.001, 

Fisher Z s.p.r = 0.373, SEM = 0.025, percentile bootstrap 95% CI = 0.327/0.420; T(9) for 

arousal s.p.r = 6.34, p = < 0.001, Fisher Z s.p.r = 0.089, SEM = 0.014, bootstrap 95% CI = 

0.060/0.110; T(9) for valence s.p.r = 2.76, p = 0.063, Fisher Z s.p.r = 0.046, SEM = 0.017, 

bootstrap 95% CI = 0.060/0.077), but was more strongly modulated by categories than by 

both dimensions together (T(9) for the categories minus dimensions contrast = 14.057, p < 

0.001, contrast of Fisher Z unique variances = 0.251, SEM = 0.018, bootstrap 95% CI = 

0.066/0.286; cf. Supplementary Fig. 1-2 for cerebral representational geometry of perceived 

dissimilarity). Thus, behavioral data indicate that both categories and dimensions influence 

the perception of the emotional voice stimuli, but that categories have a stronger influence, 

even after removing acoustic confounds (see below and Fig. 4 for perceptual and cerebral 

representational geometry of acoustics).
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Cerebral representational geometry of voice emotions

Next, we asked where and when in the brain was neural activity associated with the 

categorical or dimensional models. We first built fMRI RDMs at each cerebral location 

(voxel) reflecting the pairwise stimulus-evoked blood oxygenation level signal differences 

measured via fMRI within a local sphere centered on that voxel. Each fMRI RDM was 

tested for a significant correlation with the categorical, arousal or valence RDMs derived 

from the behavioral ratings from the same participant (Supplementary Fig. 2). We used 

these fMRI correlations maps to constrain spatially subsequent MEG analyses and built 

time-varying MEG RDMs of pairwise signal differences projected in the brain only at 

locations that yielded significant fMRI-emotion RDM correlations (123ms before stimulus 

onset to 1037ms after stimulus onset). This procedure developed a spatio-temporal analysis 

of emotion representation that took advantage, simultaneously, of the strengths of each 

imaging modalities in terms of spatial (fMRI) and temporal (MEG) resolution. As for 

the behavioral data, we examined the representation of MEG RDM variance unique to 

each perceived emotion via semi-partial correlation tests that also removed contributions 

of acoustic structure (Fig. 5; Supplementary Table 2 for peak coordinates and statistics; 

Supplementary Fig. 3 for pairwise emotion RDM contrasts; Supplementary Fig. 4 for 

individual results at peak coordinates).

As shown in Fig. 5a, selective representations of the categories model in the cerebral 

representational geometry (cluster and permutation-based p ≤ 0.05, FWE corrected across 

voxels and latencies, N permutations = 10,000; one-tailed inference to ascertain an expected 

increase in the dissimilarity of cerebral response patterns for increasingly diverse voice 

emotions) occurred as early as 117ms after stimulus onset in bilateral perisylvian areas, 

peaking in left supramarginal gyrus and then in left inferior frontal gyrus pars orbitalis 40ms 

later (T(9) ≥ 4.139, Fisher Z s.p.r ≥ 0.051, SEM ≤ 0.012, widest percentile bootstrap 95% 

CI = 0.028/0.076, N bootstrap samples for CI computation = 100,000). A second period 

of significant category representation occurred at around 400ms post-onset in a bilateral 

auditory network peaking in right anterior superior temporal gyrus (T(9) = 7.870, Fisher 

Z s.p.r = 0.049, SEM = 0.006, bootstrap 95% CI = 0.037/0.060). In contrast, selective 

representations of dimensions in the cerebral representational geometry occurred later and 

in a strongly right-lateralized network (Fig. 5b; one-tailed cluster and permutation-based p ≤ 

0.05, FWE corrected across voxels and latencies, N permutations = 10,000). They occurred 

first briefly at 237ms post-onset in right temporal cortex (arousal; T(9) = 4.468, Fisher Z 

s.p.r = 0.078, SEM = 0.017, bootstrap 95% CI = 0.048-0.113), then dominated the later post­

stimulus period with selective association peaks in the right amygdala at 557ms (arousal; 

T(9) = 3.561, Fisher Z s.p.r = 0.043, SEM = 0.012, bootstrap 95% CI = 0.021-0.066), 

then in right precentral gyrus at 717ms (arousal; T(9) = 8.102, Fisher Z s.p.r = 0.228, 

SEM = 0.028, bootstrap 95% CI = 0.179-0.283) and the right insula at 757ms (valence; 

T(9) = 5.493, Fisher Z s.p.r = 0.080, SEM = 0.015, bootstrap 95% CI = 0.050-0.105). 

Differences between the representational dynamics of the categories and dimensions models 

were confirmed by directly contrasting their unique explained variance while accounting 

for the confounding effects of acoustics (two-tailed cluster and permutation-based p ≤ 0.05, 

FWE corrected across voxels and latencies, N permutations = 10,000). Figure 5c shows 

that categories initially dominated over dimensions at around 157ms post-onset in right 
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mid-STG (T(9) = 6.801, Fisher Z unique variance contrast = 0.080, SEM = 0.012, bootstrap 

95% CI = 0.062-0.106). Nearly the same area of right temporal cortex showed the opposite 

pattern 560ms later, with significantly greater uniquely explained variance for dimensions 

than categories at 717ms (T(9) = 6.450, Fisher Z unique variance contrast = 0.050, SEM = 

0.008, bootstrap 95% CI = 0.037-0.066).

Perceptual and cerebral representational geometry specifying acoustics

We finally verified the role of acoustics in the perceived dissimilarity and emotions of the 

voice stimuli, and in their cerebral representational geometry (Fig. 4; Supplementary Fig. 

4 for individual results at peak coordinates). We observed a reliable association between 

perceived dissimilarity and acoustics throughout the entire sound duration peaking during 

the first 200ms of the heard voice (Fig. 4a, left panel). An analysis of the selective 

acoustical specification of perceived emotions revealed that acoustics include strong unique 

information about categories throughout the entire length of the sound signal, and of 

emotion dimensions at around sound onset (before 250ms from sound onset) or close to 

the sound offset (starting from 750ms). Critically, a direct contrast of the unique acoustics 

variance about categories and dimensions in acoustics reveals predominant categorical 

information at around 300ms and 650ms after sound onset, and of dimensions information 

at around 750ms. Significant representations of acoustics in the cerebral representational 

geometry finally emerged in the bilateral temporal cortex starting at 117ms from sound 

onset, and covering the initial 200ms of the evoked response (Fig. 4b; one-tailed cluster and 

permutation-based p ≤ 0.05, FWE corrected across voxels and latencies, N permutations = 

10,000; Peaks T(9) ≥ 8.134, Fisher Z r ≥ 0.090, SEM ≤ 0.010, widest bootstrap 95% CI 

= 0.082-0.126). These results show that early acoustical structure was, as largely expected, 

reflected in the perceived dissimilarity and cerebral representational geometry of the heard 

voices, and that strong acoustical information about categories and dimensions emerged at 

mid- and very late sound latencies for categories and dimensions, respectively. Considering 

that the evoked cerebral response lags relative to sound onset, none of these results can 

easily account for the transition from an early cerebral dominance of categories (157ms) to 

a late dominance of dimensions (717ms) be it for an implicit attentional bias to focus on the 

acoustical structure that best differentiates the two (starting at 300ms for categories and at 

750ms for dimensions).

Discussion

Converging evidence from three modalities (behavior, fMRI, and MEG) contrasting 

directly the categorical and dimensional models shows that both explain the perceptual 

and cerebral representational geometry of emotions in the voice—but with markedly 

different spatio-temporal dynamics. Our results indicate progressive refinement of emotional 

stimulus representations from the formation of emotional categories well suited to 

trigger fast adaptive reactions to increasingly fined-grained representations modulated by 

valence and arousal. Selective representation of categories impinged on the early cerebral 

representational geometries in a bilateral temporal network extending to the left inferior 

prefrontal cortex, the latter potentially reflecting early activation of verbal categorical 

labels 19. The representation of dimensions instead relied on late cerebral representational 
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geometries in a right-lateralized temporal network extending to two regions, the insula and 

amygdala, part of a “salience” network 4 that links the processing of emotional states 

and events across species 20,21 and thought to represent a phylogenetic precursor for 

communicative behavior in primates and humans 10.

The representational dynamics observed for the right auditory cortex suggests a transition 

from an early dominance of feed-forward sensory processing to late attentional modulations 

potentially resulting from feedback signals transmitted through lateral and medial cortical 

connections from the amygdala. Fig. 5c (right panel) shows the 2D representations of the 

stimulus set obtained by interindividual difference scaling of the Cerebral RDMs in the 

right temporal cortex at the two different time points, and exemplifies how in the same 

right-temporal area representational geometries related to perceived categories evolve in 

time to subsequently emphasize dimensions instead.

Our study aimed at disentangling the perceptual and cerebral representational geometry of 

categories and dimensions in perceived voice emotions, but left unanswered several factors 

and important theoretical distinctions considered in the affective science literature. Our 

results are consistent with those of previous neuroimaging studies of emotions recognized 

in linguistic materials 14,15 and of behavioral studies of felt emotions while watching video 

clips or hearing prosodically rich speech 22,23. However, future studies will be required 

to disentangle the influence of emotion-evoking materials and of the distinction between 

perceived and felt emotions on the spatio-temporal dynamics of emotion representation. 

Future studies will also be required to ascertain the role of context on perceived voice 

emotions, factor central to appraisal theories of emotion 11. Finally, while factoring out the 

role of acoustics from perceived and cerebral representational geometries, we considered a 

strictly feed-forward signal-processing model of sound representation in the auditory cortex 
18. By doing so, we did not contemplate the effects of feedback projections of acoustic 

representations 24 that have a potentially determinant role on the cerebral representation of 

sound stimuli.

In sum, converging evidence from behavior and neuroimaging thus demonstrates that both 

the categorical and dimensional models explain the representational geometry of behavioral 

and cerebral response to emotions in the voice. This is consistent with evidence in support 

of either one or the other model provided by many studies 9–15. Our results however 

also shed significant light on this debate by showing that categorical and dimensional 

representations develop along different timescales in different cerebral regions. Our fine­

grained characterization of the dynamics of perceived emotion in the voice thus reframes 

a debate of long-opposing theories as the interplay of partially overlapping large-scale 

cortico-subcortical systems with different representational dynamics 25.

Methods

Participants

Ten right-handed healthy adults (5 females; age from 19 to 38, mean = 25.1) participated 

in this study. All participants had normal hearing as assessed by an audiogram, provided 

written informed consent, and received financial compensation of £6/hour for their 
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participation. The study was conducted in accordance with the Declaration of Helsinki 

(version 2013) and was approved by the local ethics committee (College of Science and 

Engineering, University of Glasgow). No statistical methods were used to pre-determine 

sample sizes. The number of participants used is similar to that reported in 15 but smaller 

than that reported in 11,14. However, the number of neuroimaging trials acquired for each 

participant is up to one order of magnitude larger than that reported in previous publications 
11,14,15, leading to more accurate estimates of single-participant cerebral responses, and a 

corresponding decrease of the contribution of single-participant estimation error on between­

participants variability. The analyses of this study did not consider replicates as done in e.g., 

biological research on animal models. In other words, we did not assess statistically our 

questions on a separate group of participants investigated with the same experimental design 

as all others that was then discarded from the analyses reported in this study to prevent 

distortions in the inferential framework 26. However, we aimed to boost the replicability of 

our main conclusions by relying on the analysis of three different datasets collected on each 

of the experiment participants (behavior, fMRI and MEG).

Stimuli

Stimuli consisted of nonverbal emotionally expressive vocalizations from the Montreal 

Affective Voices database 16 and were produced by two actors (one male, one female). Each 

actor produced five vocalizations (vowel /a/) either with an emotionally neutral intention, or 

expressing anger, disgust, fear or pleasure. Vocalizations normalized in root mean square 

(RMS) amplitude were then used to generate the stimulus set by morphing between each 

pair of vocalizations from the same speaker (each stimulus morphed to the same duration 

of 796 ms, corresponding to the average duration of the sound stimuli in the ten selected 

unmorphed samples from the MAV database).

Voice morphing was performed using STRAIGHT 27 in Matlab (Mathworks, Inc, Natick, 

USA). STRAIGHT performs an initial time-by-time pitch-adaptive spectral smoothing 

in each stimulus to separate the contributions to the voice signal arising from the 

glottal source or from the supra-laryngeal filtering. A voice stimulus is decomposed 

by STRAIGHT into five parameters (f0, frequency structure, duration, spectro-temporal 

density, and aperiodicity) that can be manipulated and combined independently across 

stimuli. Time-frequency landmarks that aid correspondences across voices during morphing 

were manually identified in each stimulus, and corresponded to the frequencies of the first 

three formants at the onset and offset of phonation. Morphed stimuli were then generated 

by resynthesis based on the linear (time and aperiodicity) and logarithmic (f0, the frequency 

structure and spectro-temporal density) interpolation at these time-frequency landmarks.

Two types of morphing continua were produced: 1) between neutral and each of the four 

emotions (neutral-anger, neutral-disgust, neutral-fear, and neutral-pleasure), and 2) between 

pairs of emotions (anger-disgust, anger-fear, anger-pleasure, disgust-fear, disgust-pleasure, 

and fear-pleasure). The morphing continuum between neutral and each emotion consisted 

of 6 stimuli, progressing in acoustically equal steps of 25% (e.g., 100% neutral; 75% 

neutral/25% anger; 50% neutral/50% anger; 25% neutral/75% anger; 100% anger; 125% 

anger). The 125% emotion morph was generated by extrapolating along the neutral-to­
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emotion dimension to create a caricatured emotion. The morphing continuum between pairs 

of emotions consisted of 5 stimuli, again progressing in acoustically equal steps of 25%. In 

total, 78 stimuli were used in the experiment, consisting of 39 stimuli for each speaker (cf. 

Supplementary Audio Files 1-78). They were low-pass filtered at 5 kHz to account for the 

spectral bandwidth of the MEG stimulation system (same stimuli used in all imaging and 

behavioral sessions; see below) and finally RMS normalized once more.

Experimental design

Each individual took part in 11 experimental sessions. Neuroimaging data were collected 

during the first 8 sessions (4 fMRI and 4 MEG; imaging modalities alternated with fMRI 

first for a random selection of half of the participants; MEG at least 3 days after prior fMRI 

session to avoid magnetization artifacts). Behavioral data were collected during the last three 

sessions, perceived emotion categories and dimensions being estimated only during the last 

session to avoid introducing explicitly an attentional focus towards either during the rest of 

the experiment. Data collection and analysis were not performed blind to the conditions of 

the experiments.

On each run of the fMRI and MEG acquisition (20 runs per fMRI session and at least 78 

runs per participant across all of the MEG sessions), participants were presented with all 

of the stimuli from one speaker (random speakers order on each pair of subsequent blocks; 

inter-stimulus interval – ISI – jittered uniformly between 3 and 5 s) while carrying out a one­

back repetition detection task (1 repetition per run; random selection of repeated stimulus; 

group averaged p correct = 98%; SEM = 0.2%). Throughout the session, participants were 

instructed to fixate a black cross presented against a white background (RGB values = 

[0,0,0] and [255,255,255], respectively; screen field of view = 19° x 80° and 26° x 19° 

degrees for fMRI and MEG, respectively).

On each of the first two behavioral sessions, participants rated the dissimilarity between all 

of the stimuli from the same speaker (speaker order counterbalanced across participants). 

On each trial, they were presented with one of the possible 741 pairs of sounds (within-pair 

ISI = 250ms; random within-pair order) and were asked to rate how dissimilar they were by 

placing a slider along a visual analogue scale marked “very similar” and “very dissimilar” 

at the two extremes. They could listen to the pair of stimuli as many times as necessary 

before giving a response. This experimental phase was preceded by an initial familiarization 

phase during which participants were presented with all of the sound stimuli two times (ISI 

= 250 ms; random order). In this phase, they were instructed to estimate the maximum and 

minimum between-sound dissimilarity, so as to optimize the usage of the rating scale in the 

subsequent experimental phase. The dissimilarity rating task was initially practiced with a 

set of 10 vocalizations not included in the main experiment.

During the last behavioral session, participants performed two tasks – categorical and 

dimensional ratings as well as emotion categorization. In the rating task, participants rated 

each stimulus on arousal (low to high), valence (negative to positive), and emotional 

intensity for four emotions (anger/disgust/fear/pleasure, low to high) using an on-screen 

slider. In the categorization task, they identified the emotion as being anger, disgust, fear, 

or pleasure. Before the experiment began, participants were given 10 practice trials for 
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both tasks on a set of vocal stimuli not included in the main experiment. Participants were 

then familiarized to the entire stimulus set before the first block. On each block of trials, 

participants carried out either the rating or categorization tasks (alternated across blocks) for 

all of the stimuli from the same speaker (pseudo-random order of speaker gender with not 

more than two subsequent same-gender blocks). Throughout the session, each of the two 

tasks was repeated three times for each of the speakers, for a total of 12 blocks of trials.

Sound stimuli (sampling rate = 48 kHz; bit depth = 16 bit) were presented through 

electrostatic headphones (NordicNeuroLab, Bergen, Norway) for fMRI, Etymotic ER-30 

tubephone for MEG, and during the behavioral sessions through BeyerDynamic DT 770 Pro 

headphones receiving the audio signal from the Audiophile 2496 sound card amplified with 

a Mackie 1604-VLZ PRO monitor system. The MEG tubephone system introduced strong 

spectral coloring of the sound stimuli and suppressed heavily frequencies > 6 kHz. Stimuli 

for all sessions were consequently low-pass filtered at 5 kHz. Flat-frequency response for 

the MEG audio stimulation chain was achieved through inverse filtering methods.

Neuroimaging data acquisition

fMRI scans were acquired with a Siemens 3T Trio scanner, using a 32-channel head coil. 

Functional multiband echo planar imaging (EPI) volumes were collected with a repetition 

time (TR) of 1s (echo time TE = 26 ms; flip angle = 60; multiband factor = 4; GRAPPA 

= 2). Each functional volume included 56 slices of 2.5 mm thickness (inter-slice gap = 

2.5 mm; interleaved even acquisition order in an axial orientation along the direction of 

the temporal lobe, providing nearly whole-brain coverage. The in-plane voxel size was 2.5 

mm2 (78 × 78 matrix). A whole-brain, high-resolution, structural T1-weighted MP-RAGE 

image (192 sagittal slices, 256 × 256 matrix size, 1 mm3 voxel size) was also acquired to 

characterize the participant’s anatomy. In each of the fMRI sessions, we also collected a 

field map to correct for geometric distortions in the EPI volumes caused by magnetic field 

inhomogeneities 28.

MEG recordings were acquired with a 248-magnetometers whole-head MEG system 

(MAGNES 3600 WH, 4-D Neuroimaging) at a sampling rate of 1017.25 Hz. Participants 

were seated upright. The position of five coils, marking fiducial landmarks on the head of 

the participants, was acquired at the beginning and at the end of each block.

Measurement of acoustic dissimilarity

We modelled the time-varying acoustic structure of the sound stimuli by considering most 

accurate acoustics-driven computational model of the cortical representation of complex 

sounds currently available: the modulation transfer function (MTF 182930. The MTF 

was computed on each of 100 post-onset temporal windows (0-800 ms), resulting in a 

5-dimensional complex-number representation with dimensions temporal window (ms), 

frequency (Hz), modulation rate (ω), modulation-rate direction (up vs. down) and scale 

(Ω). For each temporal window independently, we then computed the acoustic RDM by 

computing the Euclidean distance between the stimulus-specific MTF representations in the 

complex plane (Fig 1d).

Giordano et al. Page 10

Nat Hum Behav. Author manuscript; available in PMC 2021 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Preliminary analysis of behavioral data

We initially assessed whether block averaged emotion categorization proportions (Fig. 1b) 

and category intensity ratings were, as expected positively correlated. We computed the 

Spearman rank correlation between ratings and categorizations for each speaker and scale 

and then used a permutation approach to assess whether the speaker- and group-averaged 

correlation was significantly larger than zero (one-tailed inference, 100,000 independent 

stimulus permutations for each participant). As expected, categorization proportions and 

category intensity ratings were strongly correlated with each other (T(9) for anger 

categorization/ratings correlation = 8.77, p < 0.001 corrected for multiple comparisons 

across emotions, participant averaged Fisher Z correlation = 0.948, SEM = 0.108, percentile 

bootstrap 95% CI = 0.784/1.176; T(9) for disgust = 12.95, p < 0.001, Fisher Z correlation 

= 1.024, SEM = 0.079, bootstrap 95% CI = 0.887/1.180; T(9) for fear = 12.72, p < 0.001, 

Fisher Z correlation = 0.898, SEM = 0.071, bootstrap 95% CI = 0.753/1.011; T(9) for 

pleasure = 11.45, p < 0.001, Fisher Z correlation = 0.829, SEM = 0.072, bootstrap 95% CI 

= 0.694/0.964). Following previous studies, all subsequent analyses considered the category 

intensity ratings to avoid confounding genuine differences between perceived category and 

dimensions with differences in the measurement scale and reliability of categorization and 

rating data 14,15. We subsequently assessed the effect of voice morphing on perceived 

emotion attributes (five morphing % parameters describing each experimental stimulus 

– one for each expressed emotion and one for the neutral vocalization; six measures 

of perceived emotion – four emotion category intensity ratings and valence and arousal 

ratings). The five morphing parameters were not orthogonal because for each stimulus only 

two at best had a non-zero value (average Spearman correlation between morph parameters 

= -0.24; STD = 0.02). For this reason, the selective perceptual effect of morph parameters 

was assessed independently of their shared variance by measuring their Spearman semi­

partial correlation (s.p.r) with the perceived emotion ratings. Significance testing for all of 

the analyses in this study relied on a permutation-based group-level random effects (RFX) 

approach 2431. Here, we: [1] estimated independently for each participant and speaker the 

null s.p.r distribution for each of the 30 morph/emotion pairs by permuting randomly the 

stimulus labels (N permutations = 100,000; same permutations across speakers and morph/

emotion pairs, but not across participants); [2] averaged across speaker genders permuted 

and unpermuted s.p.r converted to the Fisher Z scale; [3] chance-corrected both the 

permuted and unpermuted s.p.r by subtracting the median of the null s.p.r distributions under 

permutation; [4] computed the T(9) test for the group-average permuted and unpermuted 

s.p.r; [5] finally established significance thresholds for the unpermuted T(9) tests as the 95th 

percentile of the distribution of the maximum of the absolute value of the permuted T(9) 

statistics (two-tailed inference) across pairs of morph parameters with perceived emotion 

measures, thus controlling for family-wise error (FWE) at a 0.05 level. We used a similar 

strategy to assess whether our morphing manipulation affected more the categories or 

dimension ratings. To this purpose, we measured the Fisher Z scale RSQ in a rank GLM 

predicting independently for each of the participant, speaker and rating scale the perceived 

emotions from the morphing weights, and subsequently averaged the resulting RSQ across 

speakers and across either the category intensity or dimension rating scales. We then used 

the same permutation-based approach specified above to assess whether the RSQ for the 
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category intensity rating scales differed significantly from the RSQ for the dimension rating 

scales (two-tailed inference; N permutations = 100,000).

We then assessed the acoustic specification of perceived emotions by carrying out s.p.r 

tests of the association of the time-by-time acoustic RDMs with the perceived emotion 

representational dissimilarity matrices (emotion RDMs). We subsequently contrasted the 

variance in the time-by-time acoustic RDM variance uniquely explained by the category vs. 

dimensions model (valence and arousal together). S.p.r and unique variance measures were 

computed independently for each participant and speaker. The valence and arousal RDMs 

measured the absolute pairwise difference in valence and arousal ratings, respectively. The 

category RDM was defined as the Euclidean distance between stimulus-specific category 

ratings response profiles (e.g., category intensity ratings of 1, 0.2, 0.2 and 0.05 for anger, 

disgust, fear and pleasure, respectively). Significance testing relied on a similar approach as 

for the analysis of the effect of morph parameters on perceived emotions (N permutations 

= 100,000; reshuffling of rows and columns of distance matrices traditionally known as 

Mantel test 32; one- and two-tailed inference for s.p.r and for the unique variance contrasts, 

respectively; p ≤ 0.05 adjusted for multiple comparisons across acoustic RDM time points 

at family-wise error rate (FWER) = 0.05; square root of unique explained variances Fisher 

Z transformed prior to contrast; Fig S2a). Note that the permutation-based chance-level 

adjustment at the basis of our statistics framework captures and corrects for expected 

chance-level differences between the variance explained by one category RDM vs. two 

dimension RDMs.

Analysis of dissimilarity ratings

We then assessed the s.p.r of perceived stimulus dissimilarity (pairwise dissimilarity 

ratings) with the emotion RDMs (one-tailed inference to assess an expected increase of 

perceived dissimilarity for increasingly diverse voice emotions; p ≤ 0.05 FWE-corrected 

across emotion-RDM pairs; Fig 2d) and subsequently contrasted the dissimilarity RDM 

variance uniquely explained by the category vs. dimension RDMs (two-tailed inference; 

p ≤ 0.05 as based on the percentiles of the null permutation distribution). The results of 

these two tests also partialled out from the emotion RDM variance what accounted for 

by acoustics dissimilarity. Critically, and mirroring the procedure followed for the cerebral 

RDM analyses (see below), partialling from the emotion RDMs the perceived dissimilarity 

variance jointly explained by the acoustic RDM required establishing which of the 100 

time-by-time acoustic MTF RDMs best explained the dissimilarity RDM. Indeed, within 

the traditional non-cross-validated association framework adopted in this study, partialling 

out all of the 100 acoustic RDMs from each of the emotion RDMs would have resulted in 

overfitting and overestimation of the emotion RDM variance accounted for by acoustics. To 

estimate which MTF RDM latency best explained perceived dissimilarity we thus adopted a 

procedure inspired by a recent study on the cerebral representation of speech 24 and relying 

on a leave-one-participant out scheme. In practice, and independently for each participant, 

we initially computed the speaker-average Fisher Z correlation between each of the MTF 

RDMs and the perceived dissimilarity RDM in the rest of the participants, and used as 

optimal MTF RDM latency estimate for a given participant that which maximized the 

group-average correlation between acoustics and perceived dissimilarity (resulting optimal 
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latency = 0 ms for all participants). This optimal latency acoustic RDM was then partialled 

out from each of the emotion RDMs prior to the computation of their s.p.r with perceived 

dissimilarity or of the uniquely explained perceived dissimilarity variances. These analyses 

of perceived dissimilarity were finally complemented with the assessment of the correlation 

between perceived dissimilarity on the one hand, and the time-by-time MTF RDM, on 

the other (one-tailed inference; p ≤ 0.05 FWE-corrected across MTF RDM time points; 

Fig S2a), and with the assessment of the correlation between the (time-invariant) emotion 

RDMs, after partialling out from each of them the variance they shared with the optimal 

latency acoustic RDM (one-tailed inference; p ≤ 0.05 FWE-corrected across emotion-RDM 

pairs; Fig 3d).

Preprocessing of neuroimaging data

Analyses were carried out in Matlab using SPM12, Fieldtrip 33, GLMdenoise 34 and custom 

code. The initial preprocessing of fMRI and MEG data produced for each participant 

the stimulus-specific responses further analyzed to assess the representation of perceived 

emotions (see below). Functional MRI images from all runs were realigned to the first 

image in the first run, unwarped to correct for movement-by-distortion interactions (full 

width at half maximum – FWHM = 5 and 4 mm for realignment and unwarp, respectively; 

for both 7th degree B-spline for interpolation), and slice time corrected to the onset of 

the temporally central slice. Anatomical volumes were co-registered to the grand-average 

of the preprocessed functional volumes and segmented into grey matter, white matter, 

and cerebro-spinal fluid. Diffeomorphic Anatomical Registration using Exponentiated Lie 

algebra (DARTEL 35) was used to create a common brain template for all of the participants. 

An initial group DARTEL grey-matter mask was created by considering all non-cerebellum 

voxels with a grey-matter probability > 0.1. The final analysis mask for each individual 

was given by the 6-connected voxels within the conjunction of the group mask deformed to 

native space with the voxels associated with a participant-specific grey-matter probability > 

0.25.

For each participant, the 80 fMRI runs (40 for each of the two speaker genders) were 

divided into 5 mixed-gender groups of 16 runs each (interleaved assignment of runs to 

groups). Unsmoothed native-space data within the analysis mask for each group of runs 

were analyzed within a massively univariate general linear model (GLM) that estimated 

the fMRI response specific to each stimulus. Stimulus-specific regressors were created by 

convolving a sound on-off binary time-series with the canonical hemodynamic response 

function (HRF). The GLM included a high-pass discrete cosine transform (DCT) filter (cut 

off = 128 s), the head motion regressors estimated during the realignment step and a run­

specific intercept. The GLM also included additional noise regressors that modeled temporal 

effects unrelated to the stimulus condition (e.g., blood pulse). These noise regressors were 

estimated independently for each of the groups of runs and participants using GLMdenoise 
34 (default polynomial detrending replaced with DCT filter), resulting in N noise regressors 

= 6 on average (across-participant STD = 2).

Several initial steps of the preprocessing of MEG data were carried out on the unsegmented 

data from each run. Infrequent SQUID jumps (observed in 2.3% of the channels, on 
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average) were repaired using piecewise cubic polynomial interpolation. For each participant 

independently, we then removed channels that consistently deviated from the median 

spectrum (shared variance < 25%) on at least 25% of the runs (N removed channels = 

8.4 on average; STD = 2.2). Runs associated with excessive head movements or MEG 

channels noise or containing reference channel jumps were finally discarded, leaving on 

average 75.9 runs per participant (range = 65–84; average maximum coil movement across 

blocks and participants = 5 mm; STD = 1 mm). Environmental magnetic noise was removed 

using regression based on principal components of reference channels. Both the MEG and 

reference data were then filtered using a forward-reverse 70 Hz FIR low-pass (-40 dB at 

72.5 Hz), a 0.2 Hz elliptic high-pass (-40 dB at 0.1 Hz) and a 50 Hz FIR notch filter (-40 

dB at 50 ± 1Hz), and were subsequently resampled to 150 Hz. Residual magnetic noise was 

then removed applying once more the same method as for the full-resolution signal. ECG 

and EOG artifacts were removed using ICA (runica on 30 components) and were identified 

based on the time course and topography of IC components 36. MEG data from each run was 

finally segmented into trials (-0.2 to 1.3 s after sound onset).

A native-space source-projection grid with a resolution of 3.5 mm was prepared for 

each participant by resampling the native-space analysis mask for the fMRI data. 

Depth-normalized lead fields were computed based on a single shell conductor model. 

Source-projection filters were then computed for each run using LCMV beamformers 

(regularization = 5%; sensor covariance across all trials excluding repetitions) and reduced 

to the maximum-variance orientation across all runs. Source-projected stimulus-specific 

time courses were finally averaged within 5 independent mixed-gender groups of runs 

(interleaved assignment of runs to groups), leading to a reduction of the computational 

burden for subsequent data-analysis steps.

Analysis of cerebral representational geometries

We implemented a whole-brain searchlight representational similarity analysis (RSA 17; 

Fig. 2) to assess the spatiotemporal representational dynamics of perceived emotions. To 

this purpose, we relied on a method of statistical multimodal fusion of representations 

in multivariate spatial (fMRI) and spatiotemporal (MEG) cerebral response patterns. 

Importantly, we combined the complementary strengths of fMRI (high spatial resolution) 

and MEG (high temporal resolution) by adopting a method that builds on recent work 

on the fusion of same-participant fMRI and MEG data 3738. For this purpose, we 

used an initial mask of fMRI correlations to constrain spatially subsequent tests on 

time-varying MEG RDMs at searchlight-center locations within the fMRI masks (see 

below for details; note that the constraining procedure operates only on the selection 

of the RDM-specific searchlights, i.e., MEG RDMs are computed at all brain locations 

before the fMRI masking takes place). As compared to previous work, our approach: [1] 

considered spatial information in the MEG data; [2] measured representations of stimulus 

and perceived attributes independently in MEG and fMRI instead of taking fMRI as the 

golden representational standard; [3] imposed on MEG only mild spatial fMRI constraints 

by considering lenient non-selective fMRI representation masks instead of stringent selective 

fMRI representation masks. This approach also mitigated the multiple comparison problem 

for source-based MEG analysis compared to what otherwise faced in the absence of fusion 
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with fMRI results. The statistical framework followed in general the same approach adopted 

for the analysis dissimilarity rating data, and measured here the association between emotion 

and cerebral response RDMs.

For fMRI, cerebral RDMs were computed in native space within a spherical region (6 mm 

diameter) centered at each grey-matter mask location (at least 50% in-mask voxels). In 

particular, we computed the cross-validated Mahalanobis (Crossnobis) distance between 

stimulus-specific response patterns (Mahalanobis whitening of stimulus-specific GLM 

estimates using the GLM residuals within the searchlight) by cross-validating the response 

pattern covariance across the 5 groups of mixed-gender runs, and finally converting it to 

a (whitened) Euclidean distance 39,40. For MEG, cerebral RDMs were computed within a 

native-space spatiotemporal searchlight of 10 mm diameter and 50 ms temporal window 

from -0.15 to 1.1 seconds from onset with 15 ms of overlap between subsequent temporal 

windows. For each searchlight, we derived the cross-validated Euclidean distance between 

stimulus-specific beamformed time-courses from the covariance between stimulus-specific 

response patterns cross-validated between the 5 groups of mixed-gender runs.

RSA analyses for fMRI assessed the Spearman correlation r between cerebral RDMs 

and each of the three emotion RDMs or the perceived dissimilarity RDM (non-selective 

representation; one-tailed inference to ascertain an expected increase in the dissimilarity 

of cerebral response patterns for increasingly diverse voice emotions; p ≤ 0.05 FWE­

corrected across fMRI searchlights; insets of Fig 3a-b). For MEG, RSA analyses assessed 

representation within progressively nested significance masks and included, in order: [1] the 

Spearman correlation between cerebral and emotion RDMs (non-selective representation; 

one-tailed inference; mask = significant fMRI r for categories, valence and arousal for MEG 

representation of categories, valence and arousal, respectively; p ≤ 0.05 FWE-corrected 

within mask); [2] the Spearman s.p.r between cerebral and emotion RDMs (selective 

representation; one-tailed inference; mask = significant r for a given emotion RDM; p ≤ 

0.05 FWE-corrected within mask); [3] the pairwise contrasts of the unique cerebral RDM 

variance explained by each of three pairs of emotion RDMs (pairwise representational 

dominance contrasts; two-tailed inference; mask = union of significant s.p.r for the emotion 

RDMs in the pairwise contrast; p ≤ 0.05 FWE-corrected within mask); [4] the explained 

cerebral RDM variance contrasts between the categorical and dimensional models (valence 

and arousal together; two-tailed inference; mask = significant s.p.r with category RDM in 

union with significant unique MEG RDM variance explained jointly by the valence and 

arousal RDMs; p ≤ 0.05 FWE-corrected within mask); [5] whether the emotion RDM s.p.rs 

(Fig 3a-b), the pairwise emotion RDM contrasts (Fig S5) and the category vs. dimensions 

contrast (Fig 3c) survived after partialling out of the cerebral RDM variance explained by 

the acoustic RDM (mask = significance of same test prior to partialling out acoustics; p ≤ 

0.05 FWE-corrected within mask). Importantly, at each step we: [1] computed all measures 

of representation (r, s.p.r and unique variance contrasts) in native space and carried out 

group-level RFX inference (T tests) on the representation maps transformed to the group 

DARTEL space (FWHM of Gaussian smoothing of native-space encoding maps = 8 for 

both fMRI and MEG; 500 native-space permutations for each of the participants; 10,000 

group-level DARTEL-space permutations each computed by selecting at random one of the 

500 permutations for each of the participants; median-permutation chance-level correction 
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of native-space statistics prior to DARTEL normalization notably leading to the elimination 

of chance-level differences between unique variance terms based on one – categories – vs. 

two – dimensions – RDMs; chance levels computed independently for each participant and 

searchlight); [2] used cluster mass enhancement of the group-level statistics, permutations 

included (permutation of rows and columns of RDMs, as for analysis of perceptual 

dissimilarity; 3D and 4D spatiotemporal cluster mass enhancement for fMRI and MEG, 

respectively; cluster-forming threshold of T(9) = 1.83 and 2.26 for one- and two-tailed 

inference, respectively 41; [3] mitigated the multiple comparison problem by constraining 

analysis masks at each testing step within the significance mask from the previous step (see 

above). Finally note that as a statistical instrument, semi-partial correlations are not biased 

towards finding segregated cerebral networks specifying different emotion attributes because 

they do not exclude the possibility that variance unique to each of the features is represented 

in the same cerebral searchlight (e.g., see simultaneous selective representation of categories 

and arousal RDM in perceived dissimilarity).

Partialling out acoustics variance from each of the measures of the representation of 

emotions in the cerebral representational geometry was achieved using a similar method 

as the leave-one-participant-out method outlined for perceived dissimilarity but now 

focusing on the MEG RDMs. Here, and building on previous methods 24, we optimized 

independently for each participant, and cerebral location (MEG projection grid points) the 

lag between the entire MTF RDM time series and the MEG RDM time series (acoustics-to­

brain lags from 0 to 250 ms, modelling MEG acoustic representations subsequent to the 

presentation of the sound stimulus) so as to maximize the Spearman correlation between 

the MEG RDM time series (window = 800 ms, corresponding to the temporal window of 

latencies for the MTF RDMs) on the one hand, and the MTF RDM time series, on the other 

(MEG/MTF correlation computed independently for each time window and then averaged 

across MEG latencies). The final acoustics-independent tests of the MEG representation 

of emotions at a given MEG latency were finally carried out by partialling out from 

the emotion RDMs the MTF RDM at the latency resulting from the combination of the 

MEG latency and the optimal acoustics-to-brain lag. Critically, this leave-one-participant-out 

approach also made it possible to assess the cerebral representation of the optimal-latency 

RDM in the absence of circularities in the analysis and subsequent artificial boosting of 

the statistical power. This final supplementary analysis of cerebral acoustic representations 

was carried out by measuring the Spearman correlation between the latency-optimized MTF 

RDM and the time-varying MEG RDM within a mask of significant fMRI correlations 

with any among the emotion RDMs, and the perceived dissimilarity RDM (p ≤ 0.05 FWE­

corrected within mask). For all analyses of fMRI and MEG data, we corrected for multiple 

comparisons within the entire analysis mask by establishing significance thresholds for the 

non-permuted cluster-mass enhanced T statistics as the 95th percentile of the permutation 

distribution for within-mask CM enhanced maxima for one-tailed tests and as the 2.5th and 

97.5th percentiles of within-mask minima and maxima, respectively for two-tailed inference 

(maximum-statistic approach; FWER = 0.05).

The global and local peaks of the significant-statistic MEG maps were identified based on 

an automatic local-peak detection algorithm applied to the Dartel-space results (negated for 

significant negative effects). These were further filtered to select only latencies associated 
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to a peak effect for a specific spatial location, separated in space by a minimum of 20 mm 

from peaks at the same latency, and associated with an absolute T(9) value of >3.25. The 

anatomical label for the selected peak was established by selecting the most frequent label 

within 10 mm from the identified location of the Dartel-deformed Automated Anatomical 

Labelling (AAL) atlas shipped with SPM12 42. The Dartel coordinates of the identified 

peaks were finally transformed to MNI space.

Visualization

The non-metric 2D MDS models in Fig. 1, 3 and 4 were computed using the R-package 

SMACOF 43. We modeled the dissimilarity ratings and the emotion RDMs (Fig 3) and 

the cerebral RDMs (Fig 4) using an inter-individual difference scaling model (INDSCAL; 

participant- and speaker-specific RDMs as inputs), avoiding well known distortions of the 

representational geometry associated with group averaging of distance data 44. Importantly, 

before being modelled with INDSCAL the cerebral RDMs were biased towards the cerebral 

variance diagnostic of perception (emotion and perceived dissimilarity RDMs) using the 

leave-one-participant-out cross-validation scheme described in 31 meant to minimize the 

impact of perception-independent variance (e.g., measurement noise) on the INDSCAL 

solution. To this purpose, and separately for each speaker and ROI, we first estimated the 

regression coefficients for predicting the cerebral RDM of all participants together minus 

one (all ranked RDMs stacked in one vector) using their emotion and perceived dissimilarity 

RDMs as predictors. The perception-diagnostic cerebral RDM input to the INDSCAL model 

was than estimated by predicting the cerebral RDM of the left-out participant from her own 

perception RDMs, but using the regression coefficients estimated during the first “training” 

step of the cross-validated procedure.

The 3D glass brains in Fig. 4–5 and Supplementary Fig. 1-3 comprised two components: [1] 

a mesh of the ICBM 152 2009c Nonlinear Asymmetric template 45; [2] the functional blobs, 

rendered by first modeling the surface of each blob with a 3D mesh, and then projecting 

onto it the volumetric statistical map it circumscribed (maximum projection within 7 mm 

radius sphere centered at mesh vertex). All meshes and projections were computed within 

BrainVISA (http://brainvisa.info/), and were rendered using a custom OpenGL shader for 

the transparency effect.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The following materials are available at a Dryad repository (https://datadryad.org/stash/

dataset/doi:10.5061/dryad.m905qfv0k): single-trial behavioural data, single-cross-validation 

fold fMRI data, and single-trial MEG data for all participants; anonymized anatomical 

information required to reconstruct the MEG sources and deform native-space statistical 

maps to Dartel and MNI space; sound stimuli and modulation transfer function 

representations.

Code availability

The Matlab code for reconstructing the MEG sources, carrying out a group-level RSA 

analysis of the fMRI and MEG representation of perceived emotions, and generating MNI­

space statistical maps is available at the following Dryad repository: https://datadryad.org/

stash/dataset/doi:10.5061/dryad.m905qfv0k.
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Figure 1. Emotional voice stimuli.
Auditory stimuli consist of synthetic voice samples generated by morphing between brief 

affective bursts from a validated database (Montreal Affective Voices 16). a. 2-dimensional 

multi-dimensional scaling representation of the morphing-weight distance between stimuli, 

and corresponding distance matrix. Stimuli include both morphs between one emotion and 

the neutral expression (including caricatures, largest circles) and morphs between pairs 

of emotions. b. Example of morphing between three vocalizations expressing different 

emotions and categorization responses (error-bar = bootstrap SE; N participants = 10; N 

bootstrap samples = 100,000). Spectrograms of example stimuli are shown below. c. Effect 

of morphing on perceived emotional attributes (semi-partial correlation = s.p.r of emotion 

ratings with morphing weights; * two-sided p ≤ 0.05 FWE-corrected across morphing 

weight/rating scale pairs, see Supplementary Table 1 for full results). Each emotional 

attribute is selectively modulated by at least two morphing weights, and each morphing 

weight modulates at least two emotional attributes. d. Acoustic RDMs showing time-varying 
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acoustic dissimilarity of the sound stimuli (modulation transfer function, MTF 17) as a 

function of peri-stimulus time.
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Figure 2. Spatio-temporal representational similarity analysis 17 of the representation of 
perceived emotion attributes in cerebral representational geometries.
a. Spatial (fMRI) and spatio-temporal (MEG) stimulus-specific response patterns (percent 

signal change and source-space event-related fields for fMRI and MEG, respectively) 

were extracted within a grey-matter spherical searchlight (fMRI radius: 6mm. MEG 

radius: 10mm) for each of the participants. The MEG spatio-temporal searchlight had a 

duration of 50ms (hop size = 35ms). b. Cerebral representation analyses measured the 

association between the pairwise distance of stimulus-specific cerebral responses (cerebral 

representational dissimilarity matrices – RDMs, measuring the cerebral representational 

geometry) and the pairwise distance of stimulus-specific perceived emotion attributes 

derived from the behavioral data of the same participant (emotion RDMs; matching of 

each brain to the perceptions from the same participant). c. MEG representations were 

assessed in four subsequent steps within nested significance masks. First, we assessed 

the non-selective representation of perceived emotions by measuring the correlation (r) 

between same-participant cerebral and emotion RDMs. The masks of significant fMRI 

correlations derived from this step were used to constrain spatially the MEG correlation 

tests which were carried out within the fMRI correlation masks. Note that different emotion 

RDMs are correlated (see Fig. 2d) and explain overlapping portions of the cerebral RDM 

variance. The second step focused on portions of the cerebral RDM variance explained 

uniquely by each emotion RDM, and assessed their selective representation by means 

of their semi-partial correlations (s.p.r) with the cerebral RDMs. Third, we assessed the 
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representational dominance of each emotion RDM or of the categories vs. dimensions 

models by contrasting directly the explained cerebral RDM variance specific to the category- 

or dimension-encoding model, and the unique explained cerebral RDM variance explained 

by each of the three perceived emotion RDMs (three pairwise contrasts). Finally, we ruled 

out the acoustic confound hypothesis for the selective representation and representational 

dominance tests by repeating these tests after having partialled out form the emotion RDMs 

what explained by the time-varying dissimilarity of the modulation transfer function of the 

voice stimuli (MTF 18). This same approach was adopted to assess emotion representations 

in the perceived dissimilarity of the voice stimuli (Fig. 3).
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Figure 3. Categories better account for perceived dissimilarity than Valence and Arousal.
a–c. Perceptual RDMs averaged across speakers and participants (right) and 2D non-metric 

inter-individual difference multidimensional scaling model (left). a. Dissimilarity RDM: 

note the clear clustering of each emotion and their separation from morphs with the 

neutral expression. b. Categories RDM. Note the strong resemblance with the perceived 

dissimilarity RDM. c. Perceived dimensions RDMs. d. Left: Correlation (r) between 

perceived emotional attributes for each participant and speaker after partialling out the 

acoustic RDM. Right: semi-partial correlations (s.p.r) between emotional attributes and 

dissimilarity (selective representation; red, green and blue plots), and categories vs. 

dimensions variance contrast (representational dominance; yellow plot; both after partialling 

out the acoustic RDM). One-tailed inference for r and s.p.r, FWE corrected across emotion 

RDM pairs or emotion RDMs, respectively, and two-tailed inference for unique variance 

contrasts. N participants = 10.
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Figure 4. Perceptual correlates and cerebral representational geometry of acoustics.
a. Left: Correlation (r) between the time-varying RDM of the modulation transfer function 

(MTF 18) and the perceived dissimilarity RDM. Note the stronger correlation of perceived 

dissimilarity with the initial acoustical structure. Middle: selective acoustical specification 

of emotion RDMs measured with the semi-partial correlation (s.p.r) of the emotion RDMs 

with the time-varying MTF RDM. Right: unique variance (var.) contrast for the acoustical 

specification of emotion categories and dimensions (Fish. = Fisher). Thick lines = significant 

at p ≤ 0.05 FWE-corrected across MTF time points (one-tailed inference for r and s.p.r 

and two-tailed inference for unique variance contrasts; N participants = 10; N bootstrap 

samples for SE computation = 100,000). Note how both categories and dimensions are 

specified in acoustics around the onset and offset of the sound stimulus, and how stronger 

acoustic information about acoustics emerges only late in the sound stimulus (> 200ms). 

b. Significant cerebral representation of time-varying acoustics in MEG representational 

geometries as a function of peri-stimulus time; one-tailed p ≤ 0.05 FWE-corrected across 

voxels and time points. Cerebral acoustic representations were assessed within a mask of 

significant MEG correlation with any among the emotion RDMs and perceived dissimilarity 

RDM. PCS-L = left precentral sulcus; mSTG = middle superior temporal gyrus; pSTS-R = 

right posterior superior temporal sulcus; * = global T(9) peak; arrows = peak-effect latency; 

horizontal lines above graph indicate significant latencies (see Supplementary Table 2 for 

peaks statistics).
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Figure 5. Cerebral representational geometries initially dominated by categories subsequently 
emphasize dimensions.
a. Top: Selective representation of emotion categories at selected latencies. Statistical maps 

are thresholded for significance (one-tailed p ≤ 0.05 FWE-corrected across latencies and/or 

voxels; N participants = 10; * = global peak) and represented within a transparent MNI 

template. Bottom: time-varying T(9) statistics at selected peaks (see Supplementary Table 2 

for peaks statistics and anatomical abbreviations). Arrows = peak-effect latency; horizontal 

lines above graph indicate significant latencies. Dashed lines indicate the average value 

of the T(9) statistics outside the fMRI mask. b. Selective representation of dimensions 

(one-tailed p ≤ 0.05 FWE-corrected across latencies and/or voxels). c. Contrast for the 

cerebral-RDM variance uniquely explained by categories or dimensions (representational 

dominance; two-tailed p ≤ 0.05 FWE-corrected across latencies and voxels). Bottom: 

average cerebral RDMs and their 2D multidimensional inter-individual differences model. 
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Note how an initial temporal lobe representation with clear clustering of emotion categories 

(left) subsequently unfolds into a representation (left) where voices are arranged along a 

vertical valence dimension (bottom/top = negative/positive) and an almost horizontal arousal 

dimension (left/right = high/low; morph intensity of emotions increases with symbols size).
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