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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic
neurons, leading to the motor dysfunctions of patients. Although the etiology of PD is still unclear,
the death of dopaminergic neurons during PD progress was revealed to be associated with the abnormal
aggregation of α-synuclein, the elevation of oxidative stress, the dysfunction of mitochondrial
functions, and the increase of neuroinflammation. However, current anti-PD therapies could only
produce symptom-relieving effects, because they could not provide neuroprotective effects, stop or
delay the degeneration of dopaminergic neurons. Marine-derived natural compounds, with their
novel chemical structures and unique biological activities, may provide anti-PD neuroprotective
effects. In this study, we have summarized anti-PD marine-derived natural products which have
shown pharmacological activities by acting on various PD targets, such as α-synuclein, monoamine
oxidase B, and reactive oxygen species. Moreover, marine-derived natural compounds currently
evaluated in the clinical trials for the treatment of PD are also discussed.

Keywords: marine-derived natural compounds; Parkinson’s disease; α-synuclein; oxidative stress;
neuroprotective; clinical trials

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disease that mainly occurs in the
elderly [1,2]. The main pathological changes of PD included the progressive loss of dopaminergic (DA)
neurons in the substantia nigra pars compacta (SNc), the decrease of dopamine content in the striatum,
and the formation of α-synuclein aggregates in the brain [3]. The death of DA neurons in SNc could
further inhibit thalamic activity, and reduce the excitatory input to the motor cortex, resulting in slow
movements and limbs stiff in PD patients [4].

Although the etiology of PD is still unclear, the death of DA neurons during PD progress was
revealed to be associated with the abnormal aggregation of α-synuclein, the elevation of oxidative
stress, the decrease of mitochondrial functions, and the increase of neuroinflammation [5]. Anti-PD
drugs mainly aim to relieve motor and non-motor symptoms, and produce neuroprotective effects [6].
Clinically used anti-PD drugs include dopamine precursors (levodopa and carbidopa), dopamine
agonists (pramipexole, ropinirole, rotigotine and apomorphine), catechol-O-methyl transferase (COMT)
inhibitors and monoamine oxidase B (MAO-B) inhibitors (selegiline, rasagiline and safinamid) [7].
Levodopa is the first-line anti-PD drug used for relieving motor symptoms. As adjuvant therapies to
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levodopa, dopamine agonists are usually used in young PD patients. COMT inhibitors could increase
the bioavailability of dopamine in the central nervous system (CNS) by reducing peripheral dopamine
metabolism. MAO-B inhibitors can be used as a mono-therapy, or combined with t dopamine agonists
or levodopa. However, these anti-PD drugs could relieve motor or non-motor symptoms, but could not
produce neuroprotective effects. Therefore, the disease progress of PD could not be stopped or delayed
by these drugs. Moreover, some anti-PD drugs could produce serious side effects. For example,
levodopa could block aromatic amino acid decarboxylase, and cause nausea, vomiting, insomnia
and nightmares. Long-term use of levodopa could lead to “on-off” phenomena, a switch between
immobility and mobility in PD patients [8]. MAO-B inhibitors could increase synaptic availability
of dopamine, and lead to nausea, insomnia, hallucinations and serotonergic crisis in combination
with selective serotonin reuptake inhibitors [8]. Therefore, it is necessary to discover drugs that can
effectively treat PD with neuroprotective effects and few side effects.

Marine-derived natural compounds could produce a variety of pharmacological effects, and are
potentially highly useful for the development of new drugs [9]. 7 marine-derived natural compounds
have been approved for clinical use [10]. Here, we have summarized marine-derived natural
compounds with the effectiveness for the treatment of PD (Table 1). Moreover, marine compounds
that have entered clinical trials against PD have also been discussed (Table 2).

Table 1. Marine natural products (1–29) with anti-PD activities, and their mode of actions.

Source Compounds Species Mechanism of Action Reference

Archaea Mannosylglycerate (MG) (1) Thermophilic bacteria Inhibition of α-synuclein
aggregation [11]

Bacteria
NP7 (2) Streptomyces sp. Inhibition of H2O2-induced

neurotoxicity [12–14]

Piloquinones A (3) Marine-derived
Streptomyces sp.
CNQ-027

Inhibition of MAO-A or
MAO-B

[15,16]
Piloquinones B (4)

Fungi

Neoechinulin A (5) Microsporum sp. and
Aspergillus sp.

Neuroprotection against
MPP+-induced neurotoxicity [17–20]

Xyloketal B (6) Mangrove fungus
Xylaria sp. (no. 2508)

Neuroprotection against
MPP+-induced neurotoxicity [21–23]

Secalonic acid A (7) Aspergillus ochraceus and
Paecilomyces sp.

Neuroprotection in PD
model, inhibition of JNK and
p38pathways, Ca2+ influx,
and caspase-3 activation

[24–26]

6-Hydroxy-N-acetyl-β-oxotryptamine (8)
Penicillium sp.
KMM 4672 Protection against

6-OHDA-induced neuronal
death

[27–31]

3-Methylorsellinic acid (9)

8-Methoxy-3,5-dimethylisocHroman-6-ol (10)

Candidusin A (11) Aspergillus sp.
KMM 46764”-Dehydroxycandidusin A (12)

Diketopiperazine mactanamide (13) Aspergillus flocculosus

Algae

Astaxanthin (14) Haematococcus pluvialis
and Chlorella zofingiensis

Inhibition of apoptosis,
mitochondrial abnormalities,
and excessive ROS

[32–37]

Polysaccharide fucoidan (15) Turbinaria decurrens Incensement of antioxidants
and dopamine level [38,39]

Sulfated hetero-polysaccharides (DF1) (16) Laminaria japonica Activation of the PI3-K/Akt
pathway [40–42]

Sulfated galactofucan polysaccharides (DF2) (17)

Spirulina platensis (18) Cyanobacterium

Neuroprotection in
α-synuclein-, MPTP-,
6-OHDA-induced models
of PD

[43–46]

Fucoxanthin (19) Edible brown seaweeds
Activation of the PI3-K/Akt
cascade and inhibition of the
ERK pathway

[47,48]
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Table 1. Cont.

Source Compounds Species Mechanism of Action Reference

Sponge

Gracilins (A, H, K, J and L) (20) Spongionella sp.
Protection of mitochondrial
functions via acting on
Nrf2/ARE pathways

[49,50]
Tetrahydroaplysulphurin-1 (21)

24-Hydroperoxy-24-vinylcholesterol (22) Xestospongia testudinaria Activation of NF-κB [51,52]

Iotrochotazine A (23) Iotrochota sp.
Acting on the early
endosome and lysosome
markers

[53–55]

Mirabamides A–H peptides (24) Siliquariaspongia mirabilis
and Stelletta clavosa

Inhibition of the formation
of AGEs [56–59]

Coral 11-Dehydrosinulariolide (25) Sinularia flexibili
Activation of PI3-K/Akt,
p-CREB, and Nrf2/HO-1
pathways

[60–63]

Mollusk Staurosporine
(AM-2282) (26)

Prosobranch mollusk,
flatworm, and ascidians

Inhibition of AMPK,
and promotion of DA
neurite outgrowth

[64–67]

Sea
cucumber

Whole body-ethyl acetate (WBEA), whole
body-butanol (WBBU), and body wall-ethyl
acetate (BWEA) (27)

Holothuria scabra
Reduction of α-synuclein
aggregation and attenuation
of DA degeneration

[68]

Sea cucumber glucocerebrosides (SCG-1, SCG-2,
and SCG-3) (28) Cucumaria frondosa

Activation of the
TrkA/CREB/BDNF
signaling pathway

[69,70]

Conus α-Conotoxin (TxIB) (29) Conus textile Selectively acting on
nAChRs [71]

Table 2. Marine-derived natural products (30–34) used in clinical trials against PD (Data sources:
ClinicalTrials.gov).

Source Drug Study Title Outcome Reference

Fish and algea Omega-3 fatty acids (30)

Reducing dyskinesia in PD with
omega-3 fatty acids (Phase 1);
Quality improvement and practice
based research in neurology using
the EMR (Phase 4)

Improvement of
depressive symptoms,
decrease of inflammation
and oxidative stress

[72–75]

Sponge Inosine (31)
Safety of urate elevation in PD
(Phase 2); Study of urate elevation
in PD (Phase 3)

Increase of serum and CSF
urate, generally safe and
well tolerated

[76,77]

Marine yeasts Pramipexole (32)
Pramipexole versus placebo in PD
patients with depressive
symptoms (Phase 4)

Direct antidepressant
effects [78,79]

Marine bacteria
Nocardiopsis sp.
(K252a)

CEP-1347 (KT7515) (33)
Safety and efficacy study of
CEP-1347 in the treatment of PD
(Phase 2 and 3)

Identification of serum
urate as the first molecular
factor directly related to
typical PD progression

[80–83]

Marine bacteria
Pseudomonas sp. GM1 ganglioside (34) GM1 ganglioside effects on PD

(Phase 2)
Significant improvement
in sports score [84–87]

2. The Therapeutic Targets of PD

Many targets, including the abnormal aggregation of α-synuclein, MAO-B, neurotrophic factors,
and reactive oxygen species (ROS) have crucial impacts on the progress of PD.

2.1. α-Synuclein Aggregates

The aggregation of α-synuclein is associated with neurotoxicity in the brain, leading to the
progressive loss of DA neurons during PD progress. Therefore, abnormal α-synuclein aggregation
has been intensively considered as a main therapeutic target for PD [88]. Moreover, Lewy bodies,
protein inclusion bodies contain mainly aggregated α-synuclein, are presented in the pre-synaptic
neurons [89]. Accumulation of α-synuclein aggregation could be produced either by the excessive
aggregation of α-synuclein or by the incapable clearance of aggregated α-synuclein [90]. Abnormal
aggregates of α-synuclein, such as oligomers or fibrils, may interfere with cell processes, leading to

ClinicalTrials.gov
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the diffusion of α-synuclein aggregates between neurons [91]. It has been shown that wild-type mice
treated with aggregates of α-synuclein in the striatum could cause the intracellular transmission of
α-synuclein in the whole brain. Moreover, the administration of α-synuclein aggregates results in the
loss of DA neurons in SNc, the decrease of dopamine levels in the striatum, and eventually the motor
deficits in PD [92]. Although it is not clear how α-synuclein aggregates cause neuronal toxicity, there is
evidence that α-synuclein aggregates may disrupt protein degradation systems and mitochondrial
functions [93]. Therefore, inhibiting the expression and aggregation of α-synuclein or increasing the
clearance rate of aggregated α-synuclein may be an important strategy for the treatment of PD [94].

2.2. MAO-B

MAO-B mainly located in the outer membrane of mitochondria [95]. Unlike monoamine oxidase-A
(MAO-A), which is involved in the metabolism of serotonin, norepinephrine and dopamine, MAO-B
is specialized to metabolize dopamine neurotransmitters, and produces ROS that directly damages
DA neurons [96]. Therefore, MAO-B inhibitors could elevate the concentration of synaptic dopamine
by blocking the degradation of dopamine, and eventually produce neuroprotective effects [97].
For example, selegiline, an irreversible MAO-B inhibitor, could produce neuroprotective effects in vitro [98].
Rasagiline, another MAO-B inhibitor, could be used to prevent the symptoms of idiopathic PD [99].
In animals, selegiline and rasagiline could prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced toxicity to DA neurons through the inhibition of neurotoxicity produced by
1-methyl-4-phenyl-pyridinium (MPP+), an MPTP metabolite [100]. Therefore, novel MAO-B inhibitors
have been extensively studied for treating PD [101].

2.3. Neurotrophic Factors

Neurotrophic factors could promote the survival of neurons, and therefore be served as potential
therapeutic agents for the treatment of PD [102]. It has been found that the glial cell-derived
neurotrophic factor (GDNF) could enhance the differentiation and survival of DA neurons, producing
anti-PD neuroprotective activity [103]. Moreover, other neurotrophic factors, such as neurturin,
could protect and regenerate DA neurons [104]. Recent studies have shown that SKF38393, a D1
receptor selective agonist, could improve the growth of DA neurons by increasing the expression of
brain-derived neurotrophic factor (BDNF) in neuronal cultures [105]. Moreover, natural compound
PYM50028 could lead to a significant increase in GDNF and BDNF, reducing MPTP-induced loss of
DA neurons in mice [106]. These studies support the idea that neurotrophic factors have therapeutic
potential by preventing DA neuronal damage during PD progress, and drugs that could elevate the
expression of neurotrophic factors might be used in the treatment of PD.

2.4. ROS

DA is not only a physiological neurotransmitter, but also a main source of ROS. DA contains
an unstable catechol moiety, which can oxidize to form ROS [107,108]. In addition, the oxidation
products of DA could be polymerized to form neuromelanin, a highly cytotoxic substance [109]. Many
neurotoxins, such as MPTP, 6-hydroxydopamine (6-OHDA) and paraquat (PQ) could induce the
elevation of ROS, and lead to similar pathological and biochemical symptoms as PD in humans [110].
Therefore, these neurotoxins are commonly used to establish PD animal models.

Many endogenous proteins could produce antioxidant activities. For example, DJ-1, a conserved
protein involving in neurodegeneration, could produce neuroprotective effects against oxidative
stress via activating the extracellular signal-regulated kinase (ERK) pathway [111]. Moreover,
hydrogen peroxide (H2O2)-induced neurotoxicity is inhibited by a pro-survival phosphoinositide
3-kinase (PI3-K)/Akt pathway [112]. The transcription factor nuclear factor-erythroid 2-related
factor 2 (Nrf2) could regulate the transcription of endogenous protective proteins, and protect
against neuroinflammatory and oxidative stresses [113]. The Nrf2/antioxidant responsive element
(ARE) cascade can be further involved in the maintenance of mitochondrial homeostasis [114].
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Voltage-dependent anion-selective channel 1 (VDAC1) is located in the outer membrane of
mitochondria. ROS produced by mitochondrial complex III could be released into the cytosol
from VDAC1 [115]. In the brain of PD patients, VDAC1 could also increase the concentrations
of Ca2+ in the mitochondria, leading to the increase of mitochondrial permeability, the disruption
of mitochondrial membrane potential, and eventually to neuronal apoptosis and degeneration [116].
Therefore, neuroprotective agents that could elevate anti-oxidative stress via acting on VDAC1, ERK,
PI3-K/Akt and Nrf2/ARE cascades might produce anti-PD activities.

To date, PD is a complex disease with multiple pathological factors. Therefore, the effects of
multiple factors coordination in PD progress should not be negligible. Multi-target drugs could
simultaneously act on two or more anti-PD targets, and might produce greater therapeutic potential
than single-target drugs for treating PD.

3. Potential Candidates from Marine-Derived Compounds for the Treatment of PD

3.1. Archaea

Many hyperthermophiles could release zwitterionic natural products in extreme environments
such as high temperature and osmotic pressure to prevent thermal denaturation and aggregation
of proteins [117]. Such natural products may be used to inhibit abnormal α-synuclein aggregation.
Mannosylglycerate (MG) (1) is a compatible solute produced by hyperthermophilic bacteria in the hot
environment (Figure 1). MG could inhibit the formation of α-synuclein aggregates in a PD yeast model.
Moreover, MG could promote the folding of α-synuclein, preventing the pathological aggregation of
α-synuclein [11]. Therefore, MG represents a good candidate for the treatment of PD.
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Figure 1. Marine natural product mannosylglycerate (MG) (1) derived from archaea.

3.2. Bacteria

Secondary metabolites from marine-derived bacteria represent a rich source for drug development
with novel chemical structures and diverse biological activities [118,119]. NP7 (2) is a marine-derived
compound from Streptomyces sp (Figure 2). NP7 is an antioxidant, and could pass the blood-brain
barrier. NP7 at 5–10 µM could prevent apoptosis and necrosis induced by H2O2 in neurons and
glial cells [12]. In addition, NP7 could inhibit microglial activation, and prevented the increased
phosphorylation of ERK induced by H2O2. Therefore, NP7 may be developed as a neuroprotective
agent against oxidative stress in PD [13,14].

The inhibitory activity of piloquinones, marine-derived compounds isolated from Streptomyces sp.,
on MAO-B was reported [120]. Piloquinone A (3) and piloquinone B (4) were isolated from Streptomyces
sp. CNQ-027 (Figure 2) [15]. Piloquinone (A) is a potent inhibitor of MAO, with an IC50 value of
1.21 µM for MAO-B and an IC50 value of 6.47 µM for MAO-A, respectively. At the same condition,
piloquinone (B) is only effective against MAO-B, with an IC50 value of 14.50 µM [16]. These results
indicated that piloquinone derivatives may be useful lead compounds in the development of MAO-B
inhibitors for the treatment of PD.
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from bacteria.

3.3. Fungi

There are many marine fungal metabolites could produce anti-PD neuroprotective activities.
Neoechinulin A (5) is a diketopiperazine alkaloid of isoprene quinone isolated from the red
algae-related fungus Microsporum sp. and Aspergillus sp. (Figure 3) [17]. Neoechinulin A could protect
PC12 cells against MPP+- and peroxynitrite-induced neuronal death via reversing mitochondrial
complex I dysfunction [18,19]. Moreover, Neoechinulin A could prevent rotenone-induced neurotoxicity
by activating mitochondrial-related cytoprotective mechanisms [20]. Therefore, neoechinulin A may have
the potential to interfere with progressive DA degeneration of PD.
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Figure 3. Marine natural products neoechinulin A (5), xyloketal B (6), secalonic acid
A (7), 6-hydroxy-N-acetyl-β-oxotryptamine (8), 3-methylorsellinic acid (9) and 8-methoxy-3,5-
dimethylisochroman-6-ol (10), candidusin A (11), 4-dehydroxycandidusin A (12) and diketopiperazine
mactanamide (13) derived from fungi.

Xyloketal B (6) belongs to a series of new ketal compounds isolated from the mangrove fungus
Xylaria sp. (Figure 3) [21]. Xyloketal B could scavenge di(phenyl)-(2,4,6-trinitrophenyl)imino-nitrogen
(DPPH) free radicals, and protect PC12 cells against ischemia-induced neurotoxicity [22]. Moreover,
the neuroprotective effects of xyloketal B may be due to the inhibition of NADPH oxidase-derived ROS
production [23]. However, the effects of xyloketal B on the prevention of MPP+-induced neurotoxicity
are only moderate. Therefore, 39 new xyloketal derivatives were synthesized to screen drug candidates
for the treatment of PD [121].

Secalonic acid A (7) is a natural product obtained from marine fungus Aspergillus ochraceus and
Paecilomyces sp. (Figure 3) [24]. Secalonic acid A at 3–10 µM significantly inhibited colchicine-induced
apoptosis of cortical neurons by the inhibition of JNK and p38 phosphorylation, and the reduction
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of Ca2+ influx and caspase-3 activation [25]. Secalonic acid A could also protect DA neurons against
MPTP/ MPP+ by reversing mitochondrial apoptotic pathways [26].

Melatonin analog 6-hydroxy-N-acetyl-β-oxotryptamine (8), 3-methylorsellinic acid (9) and
8-methoxy-3,5-dimethylisochroman-6-ol (10) were isolated from marine fungus Penicillium sp (Figure 3).
KMM 4672. These compounds could produce neuroprotective activity against 6-OHDA- and
PQ-induced neuronal toxicity [27,28]. Similarly, candidusin A (11) and 4-dehydroxycandidusin A (12)
from Aspergillus sp. KMM 4676, and diketopiperazine mactanamide (13) from Aspergillus flocculosus,
can protect Neuro2A cells from the toxicity effects of 6-OHDA via scavenging ROS (Figure 3) [29–31].
These results suggested that such compounds may be used to develop anti-PD leads.

3.4. Algae

Marine algae are a rich source of antioxidants [122]. Carotenoids, particularly astaxanthin (14)
derived from marine microorganisms (algae such as Haematococcus pluvialis and Chlorella zofingiensis),
is proven to be an effective adjuvant therapy for preventing and/or delaying the progression of
neurodegenerative diseases (Figure 4) [32,123]. The unique chemical structure of astaxanthin allowed
it to easily cross the blood-brain barrier [33]. Moreover, astaxanthin could produce anti-PD effects
in mice [34]. It was demonstrated that astaxanthin could reduce the activation of microglia in the
brain of mice [33]. Astaxanthin could also inhibit neuronal apoptosis and mitochondrial abnormalities,
and reduce intracellular ROS [35,36]. In addition, synthetic astaxanthin is superior to algae-extracted
astaxanthin in terms of anti-inflammatory and anti-oxidant properties, leading to astaxanthin that is
convenient and promising for the treatment of PD [37].
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Algae polysaccharides are effective free radical scavengers and antioxidants in vitro [124].
Fucoidan (15), a representative algae polysaccharide, could prevent MPTP-induced neurotoxicity via
its antioxidant and anti-apoptotic abilities [125]. Moreover, fucoidan could inhibit lipopolysaccharide
(LPS)-induced nitric oxide (NO) production in microglia. The underlying mechanisms of these effects
may include the down-regulation of intracellular ROS and pro-inflammatory cytokines [126,127].

Brown algae could produce a variety of fucoidan. The polysaccharide fucoidan is one of
the main sulfated polysaccharides extracted from Turbinaria decurrens [38,124]. Mice treated with
polysaccharide fucoidan could prevent MPTP-treated behavioral abnormities, possibly by increasing
tyrosine hydroxylase (TH) levels in the substantia nigra and striatum [39]. These results indicated that
polysaccharide fucoidan may produce neuroprotective effects against PD.

Sulfated hetero-polysaccharides (DF1) (16) and sulfated galactofucan polysaccharides (DF2) (17),
another two fucoidan derived from brown seaweed Laminaria japonica, also possess neuroprotective
activities [40]. The antioxidant activity of sulfated polysaccharides depends on their molecular weight,
types of glucose and glycosidic branching [128]. DF1 and DF2 could significantly increase the number
of DA neurons in MPTP-induced mice [41]. Moreover, DF1 and DF2 could reverse MPP+-induced
decrease of mitochondrial activity [41]. DF1 has a more complex chemical composition, and shows
the greater neuroprotective activity than DF2 [41]. In addition, DF1 could protect SH-SY5Y cells
against H2O2-induced apoptosis by activating the nerve growth factor (NGF) /PI3-K/Akt signaling
pathway [42].
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Spirulina platensis (18) is a multicellular filamentous cyanobacterium with high levels of protein
and a large amount of essential fatty acids [43]. Spirulina platensis protein extract and phycocyanin
could exert antioxidant activity by elevating the activity of cellular antioxidant enzymes, indicating
that Spirulina platensis is a powerful antioxidant that interferes with free radical-mediated cell death
through mechanisms associated with antioxidant activity. The enhanced diet by Spirulina platensis
could provide neuroprotection in α-synuclein-induced neurotoxicity model of PD [44]. Moreover,
Spirulina polysaccharides could produce protective effects against MPTP- and 6-OHDA-induced loss
of DA in mice [45,46].

Fucoxanthin (19) is a marine carotenoid extracted from edible brown algae, and was reported to
have anti-oxidant and anti-inflammatory activity (Figure 5) [47]. Recently, fucoxanthin was found to
produce neuroprective effects through multiple targets. Fucoxanthin could attenuate neurotoxicity
induced by H2O2 via activating the PI3-K/Akt cascade and inhibiting the ERK pathway [48]. These
reults suggested that fucoxanthin may play a role in the treatment of PD.
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3.5. Sponge

Marine sponges are a rich source of bioactive chemicals [129,130]. Gracilins (A, H, K, J and L) (20)
and tetrahydroaplysulphurin-1 (21) are a group of diterpene derivatives isolated from Spongionella sp.,
acting on tyrosine kinases (Figure 6) [49]. Both gracilins and tetrahydroaplysulphurin-1 could protect
cortical neurons against oxidative damage by activating the Nrf2/ARE pathway, indicating that these
metabolites may be interesting candidates for neurodegenerative diseases [50].
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24-hydroperoxy-24-vinylcholesterol (22) is isolated from sponge Xestospongia testudinaria
(Figure 6) [51]. 24-hydroperoxy-24-vinylcholesterol is an unusual oxidative steroid containing a
hydroperoxy group in the branch. It has shown that the activation to nuclear factor kappa B (NF-κB)
with an IC50 value at 31.3 µg/mL, suggesting that it might be useful for PD therapy [52].
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Iotrochotazine A (23), contains a 1,1-dioxo-1,4-thiazine ring and a coumarin backbone,
representing a novel structural class of marine alkaloid (Figure 6). Iotrochotazine A is extracted from
Iotrochota sp. [53]. Iotrochotazine A could specifically affect the morphology and cellular distribution
of lysosomes and early endosomes in olfactory neurosphere-derived cells from idiopathic PD patients,
suggesting that iotrochotazine A may be developed as a novel anti-PD lead [54,55].

Mirabamides A-H peptide (24) is a group of marine peptides from the sponges Siliquariaspongia
mirabilis and Stelletta clavosa [56,57]. It have been reported that elevated advanced glycation endproducts
(AGEs) could induce the abnormal aggregation of α-synuclein [58]. Mirabamides A-H peptides
could preferably inhibit pyridoxamine-based AGEs, and therefore might be developed as anti-PD
candidates [59].

3.6. Coral

Marine-derived compound 11-dehydrosinulariolide (25) was extracted from soft coral
Sinularia flexibili (Figure 7) [60]. 11-dehydrosinulariolide could up-regulate the PI3-K/Akt pathway
to protect DA neurons against 6-OHDA-mediated damage [61]. Moreover, 11-dehydrosinulariolide-
induced up-regulation of DJ-1 protein expression was revealed by 2D gel electrophoresis [62].
Furthermore, 11-dehydrosinulariolide could attenuate the damage of DA neurons in 6-OHDA-induced
zebrafish and rats [63]. These results suggested that 11-dehydrosinulariolide can exert neuroprotective
effects in PD models.
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3.7. Mollusk

Staurosporine (AM-2282) (26) is a kinase inhibitor originally isolated from the actinomycete
Streptomyces staurosporeus (Figure 8) [64]. Staurosporine (AM-2282) could also be found in marine sea
squirt and flatworm [65]. By activating AMP-activated protein kinase (AMPK)/mammalian target of
rapamycin (mTOR) signaling pathway, staurosporine (AM-2282) at 10 nM could induce DA neurite
outgrowth in mesencephalic primary cultures [66]. Moreover, staurosporine (AM-2282) could protect
neurons against ischemic-induced toxicity [67]. However, staurosporine is very toxic. Therefore,
staurosporine analogues have been developed from structural modification with the aim of reducing
toxicity [131].
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3.8. Sea Cucumber

Sea cucumber is a marine invertebrate that contains valuable ingredients. In many Eastern
counties, sea cucumber is recognized as a tonic and traditional therapy for neurodegenerative disorders.
Whole body-ethyl acetate (WBEA), whole body-butanol (WBBU), and body wall-ethyl acetate (BWEA)
(27) are extracts of sea cucumber Holothuria scabra. These compounds could significantly attenuate
the degeneration of DA neurons induced by 6-OHDA in caenorhabditis elegans [68]. Moreover, these
extracts could inhibit abnormal aggregation of α-synuclein, and restore lipid content [68].

The sea cucumber extract glucocerebrosides (SCG-1, SCG-2, and SCG-3) (28) from
Cucumaria frondosa are important sphingolipids (Figure 9) [69]. SCG-1, SCG-2, and SCG-3 could
promote neurite outgrowth in NGF-induced PC12 cells in a dose-dependent and structure-selective
manners, possibly via enhancing NGF-induced TrkA phosphorylation and increasing BDNF
expression [70]. These results suggested that sea cucumber extracts and its active ingredient
compounds may have anti-PD potential.

Mar. Drugs 2019, 17, x 10 of 20 

 

Therefore, staurosporine analogues have been developed from structural modification with the aim 
of reducing toxicity [131]. 

 
Figure 8. Marine natural product staurosporine (AM-2282) (26) derived from prosobranch mollusk, 
flatworm, and ascidians. 

3.8. Sea Cucumber 

Sea cucumber is a marine invertebrate that contains valuable ingredients. In many Eastern 
counties, sea cucumber is recognized as a tonic and traditional therapy for neurodegenerative 
disorders. Whole body-ethyl acetate (WBEA), whole body-butanol (WBBU), and body wall-ethyl 
acetate (BWEA) (27) are extracts of sea cucumber Holothhuria scabra. These compounds could 
significantly attenuate the degeneration of DA neurons induced by 6-OHDA in caenorhabditis elegans 
[68]. Moreover, these extracts could inhibit abnormal aggregation of α-synuclein, and restore lipid 
content [68]. 

The sea cucumber extract glucocerebrosides (SCG-1, SCG-2, and SCG-3) (28) from Cucumaria 
frondosa are important sphingolipids (Figure 9) [69]. SCG-1, SCG-2, and SCG-3 could promote 
neurite outgrowth in NGF-induced PC12 cells in a dose-dependent and structure-selective 
manners, possibly via enhancing NGF-induced TrkA phosphorylation and increasing BDNF 
expression [70]. These results suggested that sea cucumber extracts and its active ingredient 
compounds may have anti-PD potential. 

 
Figure 9. Marine natural product glucocerebrosides (SCG-1, SCG-2, and SCG-3) (28) derived from 
Cucumaria frondosa. 

3.9. Conus 

Nicotine acetylcholine receptors (nAChRs) could regulate dopamine release, and are regarded 
as important target of PD [132]. Many marine organisms could produce toxins that selectively 
target nAChRs. α-conotoxin (TxIB) (29) derived from Conus textile is a 16 amino acid peptide 
(Figure 10). α-conotoxin could block α6/α3β2β3 nAChR with an IC50 value of 28 nM, indicating that 
α-conotoxin may be a potential candidate against PD [71]. 

Figure 9. Marine natural product glucocerebrosides (SCG-1, SCG-2, and SCG-3) (28) derived from
Cucumaria frondosa.

3.9. Conus

Nicotine acetylcholine receptors (nAChRs) could regulate dopamine release, and are regarded
as important target of PD [132]. Many marine organisms could produce toxins that selectively target
nAChRs. α-conotoxin (TxIB) (29) derived from Conus textile is a 16 amino acid peptide (Figure 10).
α-conotoxin could block α6/α3β2β3 nAChR with an IC50 value of 28 nM, indicating that α-conotoxin
may be a potential candidate against PD [71].Mar. Drugs 2019, 17, x 11 of 20 
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4. Marine-Derived Drugs for Clinical Trials of PD

4.1. Omega-3 Fatty Acids (30)

The consumption of marine fish and seafood has been associated with mental health. Most
of neurological benefits provided by seafood consumption is believed from an adequate uptake of
omega-3 fatty acids (n-3/PUFAs) [133]. In the CNS, cell membranes of neurons contain (n-3)/PUFAs
such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) [72]. Omega-3 fatty acids
are mainly contained in deep-sea oily fish, as well as algae [73]. Omega-3 fatty acids are used as a
therapy in 1356 clinical trials, including 2 clinical trials related to PD. In a double-blind, randomized,
placebo-controlled clinical trial, 29 PD patients receiving omega-3 fatty acid supplements completed a
12-week trial. The results showed that PD patients taking fish oil and antidepressants largely relieved
depressive symptoms, suggesting that omega-3 fatty acid supplements are safe to PD patients, and may
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be used as an adjunct to other drugs [74]. In another double-blind, randomized, placebo-controlled
clinical trial, after taking omega-3 fatty acids and vitamin E, 60 PD patients have beneficial effects at
the unified PD rating stage [75].

4.2. Inosine (31)

Inosine, a precursor of uric acid, can be isolated from sponges (Figure 11) [76]. As an important
physiological antioxidant, uric acid has been identified as a molecular predictor associated with a
reduction in PD risk and a potential neuroprotective agent for PD [77]. In the clinical trial, inosine
was generally safe, tolerable and effective in raising serum and cerebrospinal fluid urate levels in PD
patients. These findings support further development of inosine as a potential disease-modifying
therapy for PD [134].
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4.3. Pramipexole (32)

Pramipexole is a dopamine agonist, and could be used in the treatment of PD (Figure 12). Marine
yeast in deep seabed sediments can be used as a biocatalyst for stereo-selective reduction of different
ketones and biotransformation in seawater, and could be used to produce pramipexole [78]. The NIH
database showed that there are 79 clinical trials of pramipexoleon on PD. Particularly, improved
depressive symptoms were observed in PD patients using pramipexoleon [79].Mar. Drugs 2019, 17, x 12 of 20 
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4.4. CEP-1347 (KT7515) (33)

CEP-1347, a semisynthetic indolocarbazole derivative isolated from naturally occurring Nocardiopsis
sp. K252a (Figure 13) [80]. CEP-1347 could inhibit the SAPK/JNK pathway, which is activated after a
variety of neuronal toxic insults in neurons [81]. Moreover, CEP-1347 is a potent inhibitor of mixed
lineage kinase (MLK), and could be used to treat HIV-associated cognitive disorders by binding to ATP
site of MLK [82]. However, CEP-1347 did not show effective therapeutic effects in early PD patients in
a double-blinded, randomized, placebo-controlled clinical trial [83].
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4.5. GM1 ganglioside (34)

GM1 ganglioside has been suggested as a disease-modifying treatment for PD (Figure 14) [84].
Monosialoganglioside GM1 can be prepared using a sialidase-producing marine bacterium as a
microbial biocatalyst [85]. PD patients taking GM1 ganglioside showed early improvements of
symptom and slow progression of symptoms. The results of the imaging studies provided additional
data demonstrating the potential disease-modifying effects of GM1 on PD [86]. At another clinical
trial, PD patients taking GM1 ganglioside showed a significant improvements in motor scores [87].
It is speculated that GM1 ganglioside may modulate lipid raft structure and function to exert
neuroprotective activities. However, the detailed mechanism of neuroprotective effects of GM1
ganglioside is still uncertain.Mar. Drugs 2019, 17, x 13 of 20 
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5. Conclusions

Currently, there is no effective pharmacological treatment for blocking or slowing PD process.
As aging continues to increase, the incidence of PD and explosive mortality of PD patients are increasing
dramatically. Therefore, the discovery and development of new anti-PD drugs should not be delayed.

PD is a complex disease with many pathological factors. Therefore, it is possible to discover drugs
that work synergistically with multiple targets of PD. Most clinically used anti-PD drugs are produced
by acting on a single target with a certain degree of side effects. Marine-derived compounds usually
contain reactive groups such as -OH, -NH2, and –SH in their chemical structures, and might be act
as anti-oxidants. Other functional groups of marine-derived compounds might enable them to act
on anti-PD targets such as α-synuclein, MAO-B and other key proteins in the signaling pathways.
Therefore, marine-derived compounds, e.g., 7, 14, 16, 17, 18, 25, 26, 27, 28 in this review, might be
developed as anti-PD leads with multiple targets.
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Many clinical trials on PD aim to improve the efficacy of drugs already used in the treatment
of PD. This is partially because of the difficulty of finding novel natural compounds from terrestrial
organisms. The sea is a treasure for discovering novel natural compounds. Marine-derived compounds
have continuously entered into clinical trials against different diseases, and have become one of the
important sources of drug development [135]. Recently, the anti-AD marine-a GV-971 has successfully
passed phase III clinical trial in China, and has gradually advanced in the process of drug application,
indicating that marine-derived compounds could be used to treat neurodegenerative disorders.
Some marine-derived compounds, e.g., 30–34 in this review, have entered clinical trials with the
aim of treating PD, further providing a support that novel anti-PD drugs might be developed from
marine-derived compounds.

With the increasing exploration of the ocean, more marine drugs have been emerged. However,
we have only touched the tip of the iceberg for marine resources. Marine organisms could produce a
large number of chemicals with novel structures and diverse activities. In addition to compounds that
are directly extracted or isolated from marine organisms, designed compounds could be modified and
synthesized from the marine-derived leads.

In this review, 34 marine-derived compounds with pharmacological potential on PD therapy
have been summarized, among which 5 compounds have entered into anti-PD clinical trials. Through
high-throughput screening and combinatorial chemistry applications, more drug candidates will be
found from the marine natural product library for the treatments of PD, especially those could be
synthesized directly, or could be obtained in large quantities by fermentation or culture. We anticipated
that further focusing on natural products from marine sources may be a promising idea for developing
anti-PD leads.
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